
VAULT SERVER ADMINISTRATION
TOOLS GUIDE

BIOVIA WORKBOOK 2021

Copyright Notice

©2020 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo,
CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3DVIA, 3DSWYM, BIOVIA,
NETVIBES, IFWE and 3DEXCITE, are commercial trademarks or registered trademarks of Dassault
Systèmes, a French "société européenne" (Versailles Commercial Register # B 322 306 440), or its
subsidiaries in the U.S. and/or other countries. All other trademarks are owned by their respective
owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written
approval.

Acknowledgments and References

To print photographs or files of computational results (figures and/or data) obtained by using Dassault
Systèmes software, acknowledge the source in an appropriate format. For example:

"Computational results were obtained by using Dassault Systèmes BIOVIA software programs.
BIOVIAWorkbook was used to perform the calculations and to generate the graphical results."

Dassault Systèmes may grant permission to republish or reprint its copyrighted materials. Requests
should be submitted to Dassault Systèmes Customer Support, either by visiting
https://www.3ds.com/support/ and clicking Call us or Submit a request, or by writing to:

Dassault Systèmes Customer Support
10, RueMarcel Dassault
78140 Vélizy-Villacoublay
FRANCE

https://www.3ds.com/support/

Contents
Chapter 1: About This Guide 1

Vault Server Setup Checklist 1

Logging in to the Vault Administration Console 2

Managing Vault Server Objects 2

Chapter 2: Assigning Default Templates and Workflow Actor Roles 4

Assign a Default Template to a User 4

Assign Users and Groups to WorkflowActor Roles 4

RemoveWorkflowActors from Users 5

Chapter 3: Administering Vault Server Repositories 6

Manage Repository Subscriptions 6

Subscribing Users and Groups to Repositories 7

Unsubscribe a User or Group from a Repository 7

Manage Access to Vault Objects 8

Summary of Vault Object Permissions 8

Add Repository Folders 10

Rename a Repository 10

Starting the Vault Services 11

Stopping the Vault Services 11

Chapter 4: Configuring Application Permissions 12

Summary of Application Permissions 12

Using the Import/Export Application Permission Utility 16

How the Utility Works 16

Running the Export Command 17

Editing and Tokenizing the AppPermissions.xml File (Optional) 17

Running the Import Command 18

Example Application Permission Files 19

Example AppPermissions.xml 19

Example permissionConfiguration Files 20

Sample Application 23

Implementing the DisableUndoMyCheckouts Permission 24

Requirements for Moving a Vault Folder or Object 25

Pipeline Pilot Configuration Keys 25

Configuring Pipeline Pilot RunProtocol Settings (New Installs Only) 26

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page i

Contents

Compound Registration 26

Modify Registration Service Properties 27

Registration Service Permission Parameters 27

DatabaseWeb Service and Material Property Lookup Service 28

Locking Recipe Sections at Specific Workflow Stages 28

Locking the Task Plan at Specific Workflow Stages 29

External Structures Conversion 30

Configure the External Data Conversion Service 30

Specify Document Conversion Template 31

Modify Section Settings in Document Conversion 32

Chapter 5: Developing Signature Policies 33

Signature Policy Events 33

Create a Signature Policy 33

Set Meanings or Reasons 34

Modify Signature Policies 35

Signature Policy Properties Reference 35

Document TemplateManagement Tools Signature Policy 36

Chapter 6: Defining Workflows 37

Workbook Activities fromWorkflows 37

WorkflowDesign Best Practices 38

Workflow Examples 39

Workflow SDK 39

Archive Using aWorkflow 40

Create Vault WorkflowActors 40

Add WorkflowDefinitions 41

Removing aWorkflowDefinition 41

Move Experiments or Objects Between Workflow Stages 42

Generate aWorkflowAssociation 42

GenerateWorkflowAssociation Code Example 43

Get VaultID for Generating a WorkflowAssociation 44

EnableWorkflowAssociations 45

Removing WorkflowAssociations 45

Disabling WorkflowAssociations 45

Placeholder Formats 46

Appendix A: Administering Vault using PowerShell Scripts 48

Page ii | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Contents

PowerShell Prerequisites 48

Initial PowerShell Commands 48

Vault Identifiers 50

Retrieve a Vault ID with Get-VaultId 50

Retrieve a Vault ID with Oracle SQL*Plus 51

PowerShell Scripts 51

Add-Association.ps1 Script 53

Change-WorkflowAssociationEnable-AddHistory.ps1 Script 55

Connect-Server.ps1 Script 56

Create-WorkflowActor.ps1 Script 57

Create-WorkflowAssociation.ps1 Script 58

Get-VaultId.ps1 Script 59

Get-VaultObject.ps1 Script 60

Load-Assemblies.ps1 Script 64

Publish-WorkflowActorAssociation.ps1 Script 64

Save-VaultObject.ps1 Script 66

Set-DefaultTemplate.ps1 Script 68

Set-Permissions.ps1 Script 69

Create Print Audit History Script 71

Create Signature Policy Examples 72

Standard signature policy 74

Countersign signature policy 74

Message Queuing Function Example 75

ManageWorkbook Folders 76

Create a Folder 76

Retrieve a Folder Using the Folder Name 77

Retrieve Folders with the Same Name 77

ManageWorkbook Permissions 77

Permissions 78

Retrieve Folder Permissions 78

Create Read Permissions 79

CreateWrite Permissions 79

Allow Read and Deny Permissions 79

Store Variables Using CSV files 80

Appendix B: Audit Trail Actions 81

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page iii

Contents

Action Types 82

Page iv | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 1:
About This Guide
This guide focuses primarily on how to use the Vault Administration tool, which is also known as the
Vault Administration Console. TheWorkbook Installer installs this tool after it runs the Vault
Deployment Utility. This guide also describes several other scripts and tools for administering Vault
repository objects. For additional information on administration tasks and tools, see the Vault Server
Administration Guide.

You use the Vault Administration Console to perform the following tasks:
Assign a default template to users.
Assign workflow actor roles created using theWorkflowDesigner to appropriate users and groups.
Manage repository folders and subscribe users and groups to repositories.
Configure application permissions so that Workbook features are correctly enabled or disabled and
so that Workbook can interface correctly with other applications and services, such as the look-up
service, registration, and external data repositories, if you use them.
Create signature policies for use in workflows, forms, and tables.
Create associations between workflow definitions and users, groups, experiments, folders, and
repositories.
Transition experiments in a workflow between various stages of that workflow.

Vault Server Setup Checklist
The following checklist identifies tasks you must perform before you can perform the Vault Server
administration and configuration tasks identified in this guide.

Task Actions Done

Verify installation of Vault
Server components.

Verify that the BIOVIA Vault Server and the Vault
Administration Console are installed.
If you use it, also verify that the optionalWorkflowDesigner
are installed.

☐

Identify projects, users, user
groups, and access
requirements.

List the projects and their users.
Group users based on their access requirements for projects
and for tasks, such as filling material substance tables,
creating templates, creating property sets, and creating
tables. Define permission levels accordingly.

☐

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 1

Chapter 1: About This Guide

Task Actions Done

Plan your repositories. A default repository is created when you install Vault Server,
but you can create additional repositories. Each repository
requires a separate Oracle Database schema.
BIOVIA recommends using separate repositories if you have
discrete unrelated projects and you need to segregate the
projects and their users.
For more information, consult your DBA and see the Vault
Server Administration Guide.

☐

Plan the folder structure for
each repository.

Decide whether separate folders are required for each user or
for each user group.
Take permission requirements into account:

If you create a read-only and give a user group write
permissions to that folder, the user group permissions
take precedence over the folder permissions.
If you create a read-only folder, but some folders lower in
its hierarchy need to be read-write, apply the Traverse
Folder permission to the folders above the read-write
folder.

☐

Verify that a secure certificate
is installed on the computer
that users will log in to when
they access Workbook.

☐

Logging in to the Vault Administration Console
Membership in the Vault Global Administrators group is required to modify properties using the Vault
Administration Console.

IMPORTANT! The Vault Administrator usermust be a member of the Vault Global Administrators
groups and the Repository Administrators groups. Do not remove the Vault Administrator user from
these groups. Similarly, do not remove any of the default BIOVIA users from the Vault Global
Administrators groups.

To log in to the Vault Administration Console:
1. From the Start menu, select Vault Administration Console.
2. In the Console Root\Vault Administration\Vault Server, expand Vault Administration.
3. Right-click Vault Server and select Server > Login.
4. In the Log in to Vault, type the Global Administration user name and password.
5. In theDomain field, select the domain for the server.
6. In the Vault Server field, select the specific Vault server to manage and click OK.

Managing Vault Server Objects
You can bulk-load objects to BIOVIA Vault Server by creating a comma-separated values (.csv) file
containing the required data, and then executing a custom PowerShell script that calls the file.

Page 2 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 1: About This Guide

BIOVIA Vault Server provides PowerShell scripts to assist with bulk-loads.
The objects that you manage in the Vault Administration Console, shown below, include:

Repositories
Signature Policies
Workflows

You can only delete associations with groups. All other objects remain in the Vault database. BIOVIA
recommends that you do not delete groups in BIOVIA Foundation Hub. Signing permission problems
occur when groups are deleted. Contact Dassault Systèmes Customer Support for more information.
You can create custom PowerShell scripts for specific tasks at your site. BIOVIA recommends this
procedure for bulk-loading vocabularies into the BIOVIA Vault Server database. For information on
PowerShell scripts, see Administering Vault using PowerShell Scripts on page 48.

Note: The Vault Administration Console contains a New Window from Here link in the Actions pane.
Do not use the link, because clicking the link can produce unexpected results.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 3

Chapter 2:
Assigning Default Templates and Workflow Actor
Roles

Assign a Default Template to a User
You can assign only one default template to a user at a time. You can assign a default template to users
rather than to groups. By default, users are not assigned to a template. You can change the default
template for a user at any time.
The Properties dialog's Profiles tab in the Vault Administration Console is the only location where some
of the templates installed with BIOVIA Vault Server are visible. The templates in the Site repository are
not searchable using Notebook Explorer. To make any of the templates in the Site repository available,
you must designate a template as the user’s default template, or create a copy of the template and
store it in a versioned repository.
Use the Set-DefaultTemplate PowerShell script to set up the default template. For more
information, see Set-DefaultTemplate.ps1 Script.
To assign a default template to a user:
1. In the Vault Administration Console, expand the Vault server node, and select Users.
2. In theUsers pane, select the user, and click Properties.
3. In the Selected Item Properties dialog for the user, click the Profile tab.
4. Click the (...) ellipsis button to open theDefault Document Templatewindow.
5. In theDefault Document Template, click the check box next to the template that you want to

assign to the user.
6. Click OK.

Assign Users and Groups to Workflow Actor Roles
This task is relevant only for WorkflowDesigner users. You use the Vault Administration tool to assign
users and groups to the workflow actor roles that you defined in WorkflowDesigner.
TheWorkflowDesigner enables you to identify the stages through which an object can be transitioned,
theworkflow actor roles that can edit the object at various stages in the workflow, and the workflow
actor role required to transition the object from one stage to another. When an object transitions from
a stage that allows editing by an actor role to a stage that does not allow editing by that same actor role,
the object's permissions are automatically updated.

IMPORTANT! BIOVIA strongly recommends against assigning administrative users or user groups to
workflow actor roles. Users such as the Vault Administrator, Global Administrator group, and
members of the Global Administrative group require continuous permissions for all objects in all
locations and workflow stages in order to perform their administrative duties. WorkflowDesigner
roles can result in the loss of such permissions.

Page 4 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 2: Assigning Default Templates and Workflow Actor Roles

To assign a workflow actor role to a user or group:
1. In the Vault Administration Console expand the Vault Server node and then click Users or Group.
2. In theUsers or Group pane, select the user or group to assign to workflow actor roles, and then

click Properties.
3. Click theWorkflow Actors tab.
4. In the Select Actors dialog, click Add.
5. Select the workflow actor roles to assign to the user or group.
6. Select the Actor (user or group) to assign to the Type.
7. Click Apply and OK.

Tip: Changes to workflow actor roles and associations can take up to fiveminutes to take effect.

Remove Workflow Actors from Users
You must havemembership in the Vault Global Administrators group to modify properties using the
Vault Administration Console.
To remove a Vault workflow actor from users:
1. In the Vault Administration Console, expand the Vault Server node, and select theUsers node.
2. In theUsers pane, select a user, and select Properties.
3. In Properties dialog, click theWorkflow Actors tab.
4. In theWorkflowActors tab, right-click the workflow actor and select Remove.
5. Click OK.
An audit history entry is created for this action. For more information, see Audit Trail Actions.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 5

Chapter 3:
Administering Vault Server Repositories
Vault Server uses information repositories to manage the data stored in the Oracle database. The data
includes the objects and the data provided by users. Vault provides three default repositories added
when you create the Vault database.
You can add and modify objects in the repositories. Objects added to the Vault repositories are saved in
the associated Oracle tables on the database computer.

Note: Workflow Tools is a Vault schema but it is not a repository.

Repository Name Description

Site Repository Contains the published workflow objects, including:
BIOVIAWorkbook Assemblies
Balance server configuration information
Framework application permissions
Workbook application permissions
Property Set Definitions
BIOVIAWorkbook templates

Note: You cannot delete objects in the site repositories.

Home Repository Contains the roaming repository for each user within the organization that can
access the BIOVIA Vault Server.
The Home repository stores objects, the user profile, and only the latest
versions of user files. Users can delete, and synchronize files in the Home
Repository. Auditing, workflow, and archiving are not allowed.
The user cannot search the Home Repository because it is not indexed.

VersionedRepository Contains the document management repository in BIOVIA Vault Server. The
versioned repository tracks changes, preserves version history, stores
versions, allows auditing, workflow, and archiving. The versioned repository
does not allow delete or synchronization.

Run the RequeueVaultObjects utility on objects with the Processed status. The utility enables the Search
function to work correctly and to display the requested data in Notebook Explorer.

Manage Repository Subscriptions
Users cannot access a Vault Server repository until an administrator subscribes them or groups to which
they belong to the repository. This is done by using the Vault Administration Console.
Subscribing a user or group to a repository enables the user or group to view that repository. To enable
the user or the group's members to actually perform Workbook actions within a repository, you must
switch to Foundation Hub to give them the appropriate permissions for those actions. For details, see
the Foundation Hub Administration Guide.

Page 6 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 3: Administering Vault Server Repositories

To go a level deeper and control who can act on specific folders or objects within a repository, you can
override the inherited permissions on the folders, subfolders, and objects within a repository. For
details, seeModify the Permissions on Vault Objects.

Subscribing Users and Groups to Repositories
You must explicitly subscribe users and user groups to each Vault repository that they need. Users
cannot view a repository or its objects until they or a group to which they belong has been subscribed
to that repository.

Note: To manage subscriptions to repositories, you must be a member of the Vault Global
Administrators group.

To subscribe users or groups to repositories:
1. Log on to the Vault Administration Console as a member of the Vault Global Administrators group

and expand the Vault Server node.
2. Select theGroups or theUsers node.
3. Select the specific group or user that you need to subscribe to a repository.
4. Select Properties, and click the Repository Subscriptions tab.

Each row on this tab represents a specific repository.
5. In the row that identifies the repository, click the Allow check box to select it.

Note: If the Allow check box is already selected, clicking it causes it to become unselected and
causes theDeny check box to become selected. If neither checkbox is already selected or if only
theDeny check box is already selected, clicking Allow causes the Allow check box to become
selected and theDeny check box to become unselected. Clicking theDeny check box has no
effect.

6. Click Apply and OK.
An audit history entry is created each time you subscribe or unsubscribe a user or a group. For more
information, see Audit Trail Actions.

Unsubscribe a User or Group from a Repository
If you need to remove a user or group's subscription to a repository so that they can no longer see or
use it, you can unsubscribe them.

Note: You must be a member of the Vault Global Administrators group to manage repository
subscriptions.

To unsubscribe a user or a group from a repository:
1. Log on to the Vault Administration Console as a member of the Vault Global Administrators group

and expand the Vault Server node.
2. Select theGroups or theUsers node.
3. Select the specific group or user that you need to subscribe to a repository.
4. Select Properties, and click the Repository Subscriptions tab.

Each row on this tab represents a specific repository.
5. In the row that identifies the repository, click Allow to unselect the Allow check box.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 7

Chapter 3: Administering Vault Server Repositories

Note: When the Allow check box is already selected, clicking it causes it to become unselected
and causes theDeny check box to become selected. If neither checkbox is already selected or if
only theDeny check box is already selected, clicking Allow causes the Allow check box to
become selected and theDeny check box to become unselected. Clicking theDeny check box has
no effect.

6. Click Apply and OK.
An audit history entry is created as a result of unsubscribing groups to repositories. For more
information, see Audit Trail Actions.

Manage Access to Vault Objects
Note: If an object is subject to a workflow definition whose rules impact permissions, the workflow
rules supersede any rules that are applied directly to the object.

The permissions for accessing Vault objects are specified and maintained by using the Notebook
Explorer in theWorkbook client application. Authorized administrators set and modify the permissions
of any object at any level in Notebook Explorer to control what can be done with that object, and by
whom (by which users and groups).
To access the Permissionsmenu option, a user must have the Vault/Administrator application
permission. To view the current permissions for a selected object (folder, subfolder, or specific object),
the user must also have ReadPermissions for that object. To change the object's permissions, the
user must also have UpdatePermissions.
To determine a user's permissions for an object, the system pools the permissions granted directly to
the user with those granted to the user's groups. Any explicitly denied permissions supersede allowed
permissions. For example, if the pooled permissions include a WriteData allowand a WriteData
deny permission for the same folder, the user cannot write data to that folder.
For a list of Vault object permissions, see Summary of Vault Object Permissions on page 8.
An audit history entry is created when permission settings are changed.

Summary of Vault Object Permissions
Workbook provides the following permissions for controlling access to objects (folders, subfolders,
experiments, templates, and so on) in a Vault repository.

Object Permission Tasks that Require this Permission

Checkout Change the checkout state of an object.

CreateFolder Create subfolders. This task also requires the following:
Membership in the Vault Global Administrators group.
The Vault/Folder.Administrator‡ application permission‡.

Delete Delete objects.

Note: Objects that have been checked in to the repository cannot be deleted.

ReadData Read object content. This task also requires the following:

Page 8 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 3: Administering Vault Server Repositories

Object Permission Tasks that Require this Permission

Read, Update, and Write permissions for the PropertySetDefinitions
folder in the Site Repository.
The Vault/PropertySetEditor application permission‡.

ReadPermissions View the permissions granted to all users of an object, instead of only those
granted to you.

ReadProperties View all properties of an object except its permissions.

Note: By default, the Pipeline Pilot Query Service that gathers data from
disparate data sources treats the ReadProperties permission the same as
the ReadData permission—users with only ReadProperties are also
allowed to ReadData. As of 2019 SP1, however, you can configure the
Workbook IDS Security Plug-in to differentiate between these two
permissions and to filter property and content data accordingly.

Rollback Roll an object back to an earlier version. This task also requires the following
permission:

Workflow Transition

TraverseFolder See all folders within the repository. To see folder content requires additional
permissions.
If a user has ReadProperties, this permission is not needed.

UpdateFlags Change the settings of the following flags on content objects:
ReadOnly - prevent all updates to the object.
Hidden and System - prevent the object from being displayed to end users.
Archive - include the object in the next run of the archive process.

Updating flags also requires:
The Vault/PropertySetEditor application permission‡.

The following permissions for the Site Repository's
PropertySetDefinitions folder: Read, Write, and Update.

Note: The user interface does not display the settings of update flags.

UpdatePermissions Change the permissions for Vault objects. This task also requires the following
permission:

The Symyx.Administration application permission called
Administrator.‡

UpdateProperties Change the properties of an object.

WorkflowTransition Transition an object from oneworkflow stage to another.
To transition an object, a user must also be identified as an allowed actor in
the workflow definition.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 9

Chapter 3: Administering Vault Server Repositories

Object Permission Tasks that Require this Permission

WriteData Change the content of an object.
This task also requires Read, Update, and Write permissions for the
PropertySetDefinitions folder in the Site Repository for the application
System.PropertySetEditor.

‡For information about application permissions, see Summary of Application Permissions on page 12.

Add Repository Folders
You can add folders to versioned Vault Server repositories.
To add a folder:
1. In theWorkbook client application, expand the Repositories node of the Notebook Explorer

Browse tab.
2. Right-click the versioned repository to which you want to add a subfolder and click New Folder.
3. In New folder dialog, type a name for the folder, and then click Ok.

Rename a Repository
If a repository is renamed, you must run the RequeueVaultObjects utility for all objects in the
repository to display a user's search results correctly in Workbook.
When renaming a repository, use single-byte characters in the name. The following characters in the
repository name can cause problems:

Kanji single-byte and double-byte characters entered using the Input Method Framework.
Extended characters.

Run the RequeueVaultObjects utility on objects with the Processed status. The utility enables the Search
function to work correctly and to display the requested data in Notebook Explorer.
To rename a repository:

Note: Do not rename the Site or Home repositories.

1. From the Start menu, select Vault Administration Console.
2. In the Console Root\Vault Administration\Vault Server, expand the Vault server node,

and login.
3. Expand the Repositories node, right-click the repository to rename and select Properties.
4. In the Properties General tab, in Name type a new name for the repository, and click Apply.
5. Click OK to close respository properties.
6. Log out of the Vault Administration Console.
7. Log in to the Vault Administration Console to verify that the new name is displayed in the Versioned

Repository. Then log out again.
8. Stop Vault services; if load balanced, stop Vault services on each server.
9. Change the name of the Versioned Repository in the vaultvariables.nbx.config file to use in

the future such as when you upgrade BIOVIAWorkbook.

Page 10 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 3: Administering Vault Server Repositories

10. Requeue processed objects using the following command:
RequeueVaultObjects.exe -repository <newRepositoryName> -status Processed

Starting the Vault Services
Use theWindows Server Manager to start the Vault Server services.

Note: The Oracle instance that BIOVIA Vault Server connects to must be started before the Vault
services. If the database is shut down for any reason, stop the Vault services, restart the Oracle
instance, and then restart the Vault services.

To start the Vault services:
1. Open theWindows Server Manager and choose Configuration > Services.
2. Start the following services in this order:

a. World WideWeb Publishing Service
b. Vault Tomcat Server Service
c. Vault Workflow Service
d. Vault Message Processing Service
e. Vault Hub Synchronization Service
f. Vault Client Service

Stopping the Vault Services
IMPORTANT! Before you shut down the Oracle database or start an upgrade, ensure that all users are
logged off, and then stop the Vault services.

To stop the Vault services:
1. Open theWindows Server Manager and choose Configuration > Services.
2. Stop the following services in this order:

a. Vault Client Service
b. Vault Hub Synchronization Service
c. Vault Message Processing Service
d. Vault Workflow Service
e. Vault Tomcat Server Service
f. World WideWeb Publishing Service

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 11

Chapter 4:
Configuring Application Permissions
When you install Workbook and run the Vault Deployment Utility, a core set of DLLs and application
"permission" files provided by Symyx Framework Services is installed.
An application "permission" is a global setting that enables or disables a specific Workbook feature or an
interface fromWorkbook to an external application or service such as BIOVIA Registration, Database
Web Service, the External Data Conversion Service, or Pipeline Pilot.
You use Vault Administration Console to identify Vault Server application permissions and to provide
the configuration details necessary to support each feature or interface that you require. The list of
application permissions in Vault Administration Console varies based on the applications and services
you use.

Note: To control who can actually use a feature that is enabled by an application permission, you edit
the settings of the Vault Server entry in your Foundation Hub > Admin & Settings > Applications.
You can use the Vault Administration Console to view, but not to modify, the permissions for users
and groups.

Summary of Application Permissions
The following table identifies most Vault Server application permissions and the feature supported by
each permission. Permissions flagged by an ‡ character are permissions that are not installed with core
installations; you will see them only if you have installed the application or service that requires them or,
in some cases, only if you manually add them. You might also see permissions that are not listed in this
table, if you have interfaces fromWorkbook to additional applications and services.
To control who can actually use a feature that is enabled by an application permission, you edit the
settings of the Vault Server entry in your Foundation Hub > Admin & Settings > Applications. You can
use the Vault Administration Console to configure an application permission and to view application
permissions, but not to modify the permissions for users and groups.

Note: Ignore the Application or column in the list of permissions. In Foundation Hub, the application
is always listed as Vault.

Vault Application Permission Feature Supported by the Permission

External Data Conversion Service Convert document data from Symyx Process Notebook and
Accelrys Formulations Notebook so that the data can be used in
Workbook.
For information about configuring this service, see Configure
the External Data Conversion Service.

MaterialInfoManager Look up material or inventory using a material information
resolver configured to interface with CISPro, OpenEye, CIMS,
DiscoveryGate, and other external systems.
For information about configuring lookup services, see the
Vault Server Installation Guide.

Page 12 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 4: Configuring Application Permissions

Vault Application Permission Feature Supported by the Permission

Note: To use a lookup service, users must have the
Foundation Hub Assign the LookUp Service

permission.

RunProtocol Run Pipeline Pilot Client protocols.

Note: The Analyze tab in Workbook experiments as well as
the Remove Salts function in parallel chemistry Enumerated
Products sections run Pipeline Pilot protocols. Consequently,
users who require these functions must be in a group or role
that has the RunProtocol permission.

‡SearchExtensions Access non-native custom search functionality developed for
yourWorkbook installation.
For information about developing and configuring such
extensions, see "Search Extensions" in theWorkbook
SDK Developers Guide.

Administrator Access and use the Vault Administration Console, which is
required not only to configureWorkbook application
permissions, but also to administer Vault Server repository
subscriptions and folders, signature policies, and workflows.

Folder.Administrator Add repository folders and move folders and their objects by
using theWorkbook client application's Notebook Explorer.

Note: To add a folder, users must be a member of a group
that has this permission and be a member of the Vault
Global Administrators group. For requirements formoving
vault folders and objects, see Requirements for Moving a
Vault Folder or Object on page 25.

GroupProfile.Administrator Administer group profiles by using theWorkbook client
application's Tools menu. For more information, see the
Workbook client help.

Forms.Editor Create and edit forms.

Note: The create and edit permissions for a specific form or
other Workbook object is controlled directly from the
Workbook client application's Notebook Explorer. For more
information, see theWorkbook client help.

Operation.Editor Create and edit operations to use in Structured Recipe sections.
For more information, see theWorkbook client help.

Recipe.Editor Create, edit, and clone Structured Recipe sections.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 13

Chapter 4: Configuring Application Permissions

Vault Application Permission Feature Supported by the Permission

Note: To edit recipes that are document templates, users
also be a member of a group that has the
PropertySetEditor and TemplateEditor
permissions. (No special permissions are needed to execute
recipes.)

Report.Editor Create, edit, and save report templates.

Template.Editor From Notebook Explorer, generate usage reports for a selection
of templates in a managed source repository to identify which
content objects in the repository use the selected templates.

Note:
To be identified in a template usage report, the content
objects must be visible to the user who is running the report.
Consequently,

The objects must not be new, read-only, hidden, or
system.
The user who runs the report must have either or both of
the following permissions, as well as the
Template.Editor permission: Read Data,
ReadProperties.

TemplateManagementTools Generate template usage reports (see previous row) and add,
remove, and replace template sections.

To add, remove, and replace template sections identified in
a usage report, the following additional permissions are
required: Checkout, UndoCheckout, ReadData,
WriteData, and UpdateProperties.
To update forms identified in a usage report, this additional
permission is required: Symyx.Notebook Forms.Editor.

The content identified in a template usage report varies based
on the permissions of the user generating the report. Users
with more permissions can get more comprehensive reports
that users with fewer permissions.

‡TaskPlanSection Create a Task Plan section and use Task Planner within
Workbook; access the Foundation Hub landing page that
shows your task plans.

SectionReportPipelinePilotProtocol
Path

Execute the Pipeline Pilot protocol that creates a Section
Report.

TransferTemplate Export and import templates by using Notebook Explorer menu
options.

For information about using Notebook Explorer to transfer
templates, see the BIOVIAWorkbook online help.

Page 14 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 4: Configuring Application Permissions

Vault Application Permission Feature Supported by the Permission

For information about using export and import functionality
from the API, see the SDK API Reference >
ImportExportVaultObjects interface in the
Symyx.Notebook.ImportExport namespace.

SectionTemplate.Editor Edit, move, save, save as, and browse section templates.

RunAnalysis Access the Analyze tab in theWorkbook client application's
Notebook Explorer and run Pipeline Pilot Client protocols.

Note: To run a protocol, users must also be a member of a
group that has the RunProtocol permission.

‡DisableUndoMyCheckouts Prevent Workbook users from discarding their own checkouts.
If you need to prevent such discards, you must manually add
this permission to the system by using the Vault
Administration Console and then apply it to appropriate groups
by using Foundation Hub. To add the permission to the system,
see Implementing the DisableUndoMyCheckouts Permission on
page 24. To assign it to groups, see the Foundation Hub
Administration Guide.

Note: This permission has no impact on the separate
UndoCheckout permission. Administrators are typically
granted UndoCheckout so that they can undo the
checkouts of other users' experiments, such as users who
have left the company.

UndoCheckout Undo another user's checkout.
The Undo Checkout action results in the loss of any work that
has not been checked in. Give this permission only to qualified
administrators.

Widget.Administrator Use the following Workbook client application features:
Manage Widgets button, which creates subfolders under
the Site Repository Widgets folder.
Publish icon, which supports publishing widgets and
deleting published widgets.

For more information, see Form Editor Scripting for Validation,
Updating, or Display in the BIOVIAWorkbook Administration
Guide.

Workflow.Administrator Move checked in documents to any stage in the workflow
process by using theWorkbook client application's
AdministrativeMove feature.

Note: An administrativemove can also be done using the
Vault Administration Console, but this requires a separate
administrator permission.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 15

Chapter 4: Configuring Application Permissions

Vault Application Permission Feature Supported by the Permission

NotebookConfiguration Enables users who have the WriteData permission but do
not have the WorkflowTransition permission to edit and
check in documents that are in a workflow.
By default, users must have the WorkflowTransition
permission to edit and check in workflow documents. To
override this behavior, you can use the Vault
Administration Console to change the NotebookConfiguration
permission's
RequireTransitionPermissionToEditDocumentsInWor

kflow property from its default of true to false.

PropertySetEditor Use the Property Set Editor in theWorkbook client application
to create or update property set definitions, which control the
columns and fields that are displayed in table and form
sections. Creating and updating property set definitions also
requires the following:

The Vault/Administrator application permission.
Read, Update, and Write permissions to the Site
repository’s PropertySetDefinition folder.

SymyxRegistration Not used.

NotebookExplorerContextual
ViewerConfiguration

Internal use only. Do not use.

Using the Import/Export Application Permission Utility
You can use the Import/Export Application Permission Utility to review, edit, and copy application
permissions between Vault Server environments. This command-line utility exports all editable
application permission sets into a single XML file. For certain complex permission configurations, it
generates a related text file that is referenced by the XML file. You can easily review and modify the
XML and related text files as needed, and then import them back into the same or into a different Vault
Server.
Reviewing and editing permissions in a single exported XML file and related text files is much easier than
using the Vault Administration Console, which shows only one permission configuration at a time. You
can also create scripted applications that use the utility for mass updates.

How the Utility Works
When you run the export command, the utility creates a file named AppPermissions.xml that
identifies all relevant application permissions and their configurations.
If a permission’s configuration is difficult to represent in the XML file (for example, if the configuration
contains special characters or long data), the utility stores that configuration in a separate numbered
text file such as permissionConfiguration1.txt, PermissionConfiguration2.txt, and so on.
The AppPermissions.xml file uses an externalFile property to reference such external text files.
Representing complex configurations in separate text files simplifies the AppPermissions.xml file
and editing of complex permission configurations. For an example AppPermissions.xml file and

Page 16 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 4: Configuring Application Permissions

some corresponding permissionConfiguration text files referenced by the xml file, see Example
Exported Application Permission Files.
The utility is an add/update utility. It does not delete permissions or configurations. When you import
the exported files into a Vault Server, the permission set for each application that has not yet been
configured on that Vault Server are added, and the permission set for each application that has already
been configured is overwritten to match the imported version.

Notes:
The utility (ImportExportAppPermissionsUtility.exe) and its configuration file
(ImportExportAppPermissionsUtility.exe.config) are installed by default in

C:\Program Files (x86)\Accelrys\Vault\Utilities.
The utility does not export application permissions that are not editable, such as global application
permissions, but it does log them if you set <level value="DEBUG" /> in the <logger
name="BIOVIA"> section of the utility's .config file. Other options are INFO, WARNING, and
ERROR. DEBUG shows everything, INFO shows errors, warnings, and info messages, WARNING shows
errors and warnings, and ERROR shows only errors. To avoid excessive logging, the logging level
should normally be left at its default setting (ERROR).

Running the Export Command
To execute the Export command:
1. 1. On the Vault Server whose applications permissions are to be exported, open a command-line

prompt and change directory to the Vault Utilities directory, by default C:\Program Files

(x86)\Accelrys\Vault\Utilities.
2. Enter the following command:

\ImportExportAppPermissionsUtility.exe <server> <domain>\<administrator-
user> <password> export <exportdirectory>

Where:
<server> is the fully-qualified domain name of the BIOVIA Vault Server from which the permissions
are to be exported.
<domain>\<administrator-user> <password> is the domain, username, and password of that Vault
Server’s Vault Global Administrator account.
<exportdirectory> is the directory to which to export the files, for example C:\temp.

Note: If you run the command with no parameters, with invalid parameters, without a complete set
of parameters, the utility displays a message that explains the required parameters.

For an example AppPermissions.xml file and some PermissionConfiguration text files
referenced by the XML file, see Example Application Permission Files on page 19

Editing and Tokenizing the AppPermissions.xml File (Optional)
After export and prior to import, you can edit the values in the exported XML file to suit the
requirements of the destination Vault Server.
If you need to import the exported application permissions into more than one Vault Server
environment, such as a production server, development server, and QA server, you can tokenize the
values of permission configurations such as URLs that vary between your destination servers. You can
then create a separate tokens text file (or other readable type of file) that provides the appropriate

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 17

Chapter 4: Configuring Application Permissions

values for each server, and specify the appropriate tokens.txt file as an import parameter when you
import the application permissions.
1. To tokenize a value in the AppPermissions.xml file or in a permissionConfiguration text file, enclose

its name between tilde and curly brace characters. For example, to call a token BASEURL, enter ~
{BASEURL}~.

Note: Token names must use only alphabetic characters. Numbers, spaces, and special
characters are not supported.

2. Create a separate tokens.txt file (for example, devtokens.txt, qatokens.txt, and so) on that
contains a complete set of token name/value pairs, such as the following:

BASEURL:http://base-server.testdomain
CIMSURL:http://cims-url.testdomain
DISCOVERYGATE:http://discovery-gate.testdomain
PIPELINEPILOTURL:http://pipline-pilot.testdomain

You can name the token files whatever you like and store them in the same folder as the rest of the
files or in another accessible folder.

Running the Import Command
When you run the Import command, the utility reads and validates the exported XML and any
permissionConfiguration text files. If validation passes, the utility imports the values into the Vault
server. If validation fails, the utility halts and reports the errors.
To import the permissions:
1. On the Vault Server into which the exported application permissions are to be imported, open a

command-line prompt and change directory to the Vault Utilities directory, by default C:\Program
Files (x86)\Accelrys\Vault\Utilities.

2. Execute the following command:
\ImportExportAppPermissionsUtility.exe <server> <domain>\<administrator-
user> <password> import <importdirectory> <C:\temp2\tokens.txt>

Where:
<servername> is the fully-qualified domain name of the BIOVIA Vault Server into which the
permissions are to be imported.
<domain>\<administrator-user> <password> is the domain, username, and password
of the Vault Global Administrator account for that Vault Server
<importdirectory> is the directory in which the exported permission files reside, for
example C:\temp
<C:\temp2\tokens.txt> is the name of a tokens file, if used.

The utility connects to the source Vault Server and imports the permissions described in
C:\temp\AppPermissions.xml, its permissionConfiguration text files (if any), and the
specified tokens.txt file (if any).

Note: If a file contains an incomplete or erroneous permission set for any application, the import
process halts and displays an error message. In this case, you must correct the files, and then re-run
the import process. The utility does not commit added or updated permission sets from the file
unless they are all complete and valid.

Page 18 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 4: Configuring Application Permissions

Example Application Permission Files
The content of the AppPermissions.xml file varies based on which applications you use with Vault
Server. In the following example, some name/value pairs specify a configuration value, some use the
"externalFile" property to identify a permissionConfiguration text file from which to retrieve the
configuration, and others were tokenized after export so that an external environment-specific token file
can be specified when the import command is executed. Example permissionConfiguration files
and an example tokens.txt file follow the example appPermissions.xml file.

Example AppPermissions.xml

Permissions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" metadata="Exported from lp5-rds8-
dsa.dsone.3ds.com by scitegic user on 01/30/2018 14:30:34">
<Permission Application="Compose" Name="RecipeUser">
<config name="ComposeBaseAddress">~{BASEURL}~:9964/</config>
<config name="CaptureBaseAddress">~{BASEURL}~:9964/</config>
<config name="DesignBaseAddress">~{BASEURL}~:9964/</config>
<config name="WorkbookToFoundationMap" externalFile="permissionConfiguration13.txt"

/>
<config name="WorkflowStagesForLocking" />
<config name="NewTestEntry" />

</Permission>
<Permission Application="ExternalDataConversionService" Name="External Data Conversion

Service">
<config name="ExternalDataConversionService"

externalFile="permissionConfiguration4.txt" />
<config name="LJ-AXP" externalFile="permissionConfiguration5.txt" />
<config name="MX-AXP" externalFile="permissionConfiguration6.txt" />
<config name="MX-AXF" externalFile="permissionConfiguration7.txt" />

</Permission>
<Permission Application="LookupService" Name="MaterialInfoManager">
<config name="ResolverXML" externalFile="permissionConfiguration8.txt" />
<config name="Symyx.Framework.MaterialInfoLookup.OpenEye.OpenEyeResolver"

externalFile="permissionConfiguration9.txt" />
<config

name="Symyx.Notebook.DiscoveryGateMaterialInfoLookup.RefDataWebServices.DiscoveryGateWeb
ServiceResolverWithMolName" externalFile="permissionConfiguration10.txt" />

<config name="Accelrys.Notebook.CimsMaterialInfoLookup.CimsMaterialInfoResolver"
externalFile="permissionConfiguration11.txt" />

<config
name="Biovia.Notebook.CisProMaterialInfoLookup.CisProInventoryMaterialInfoResolver"
externalFile="permissionConfiguration12.txt" />
</Permission>
<Permission Application="NotebookExplorerContextualViewerConfiguration"

Name="NotebookExplorerContextualViewerConfiguration">
<config name="ObjectTypesToViewerTypes" externalFile="permissionConfiguration1.txt"

/>
</Permission>
<Permission Application="PipelinePilot" Name="RunProtocol">
<config name="Endpoint">~{PIPELINEPILOTURL}~:9943</config>
<config name="ProtocolRoot">Protocols/Web Services/Workbook/Experiment</config>
<config name="AnalysisProtocolRoot">Protocols/Web

Services/Workbook/Analysis</config>
</Permission>
<Permission Application="RegistrationService" Name="SymyxRegistration">
<config name="ServiceName">MDLRegistration</config>
<config name="ApplicationName">ChemBioAE</config>
<config name="StructurePath">Substance/Compound</config>
<config name="PollingInterval" />

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 19

Chapter 4: Configuring Application Permissions

<config name="IsentrisUrl" />
<config name="DefaultUser" />
<config name="DefaultPassword" />

</Permission>
<Permission Application="SearchExtensionsService" Name="SearchExtensions">
<config name="SearchExtensionTypes" externalFile="permissionConfiguration2.txt" />
<config name="example" externalFile="permissionConfiguration3.txt" />

</Permission>
<Permission Application="Symyx.Notebook" Name="Folder.Administrator" />
<Permission Application="Symyx.Notebook" Name="GroupProfile.Administrator" />
<Permission Application="Symyx.Notebook" Name="Logon" />
<Permission Application="Symyx.Notebook" Name="Operation.Editor" />
<Permission Application="Symyx.Notebook" Name="Recipe.Editor" />
<Permission Application="Symyx.Notebook" Name="Report.Editor" />
<Permission Application="Symyx.Notebook" Name="RunAnalysis" />
<Permission Application="Symyx.Notebook" Name="TaskPlanSection">
<config name="WorkflowStagesForLocking" />

</Permission>
<Permission Application="Symyx.Notebook" Name="TemplateManagementTools">
<config name="TestAdd">Some value</config>

</Permission>
<Permission Application="Symyx.Notebook" Name="Widget.Administrator" />
<Permission Application="Symyx.Notebook" Name="Workflow.Administrator" />
<Permission Application="System" Name="NotebookConfiguration">
<config name="RequireTransitionPermissionToEditDocumentsInWorkflow">false</config>

</Permission>
<Permission Application="TransferTemplatesService" Name="TransferTemplates">
<config

name="ImportExportImplementation">Symyx.Notebook.ImportExport.ImportExportVaultObjects,
Symyx.Notebook.VaultObjectExport, Version=18.1.100.0, Culture=neutral,
PublicKeyToken=fb4b5791c48b7e8a</config>
</Permission>

</Permissions>

Example permissionConfiguration Files
Example 1 – XML Only

<?xml version="1.0" encoding="utf-16"?>
<ExternalDataConversionService>
<SourceDataType name="LJ-AXP">
<aka>LJ-AXP v5.1</aka>
<aka>LJ-AXP v5.2.3</aka>

</SourceDataType>
<SourceDataType name="MX-AXP">
<aka>MX-AXP v5.1</aka>
<aka>MX-AXP v5.2.3</aka>

</SourceDataType>
<SourceDataType name="MX-AXF">
<aka>MX-AXF v5.1</aka>
<aka>MX-AXF v5.2.3</aka>

</SourceDataType>
</ExternalDataConversionService>

Example 2 – XML with MOL Script
<?xml version="1.0" encoding="utf-16"?>
<SourceDataType name="LJ-AXP">

<Template vaultpath="Site\ExternalDocumentConversionTemplates67\LabJournal
Experiment" />

<SectionMappings>
<Converter

Page 20 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 4: Configuring Application Permissions

class="Symyx.Notebook.LegacyDocumentConversion2.LegacyFormConverter,
Symyx.Notebook.LegacyDocumentConversion2, Version=18.1.100.2931,
Culture=neutral, PublicKeyToken=fb4b5791c48b7e8a">

<ConverterConfiguration>
<InputDataSections>

<IntermediaryDataSection>Background
Information</IntermediaryDataSection>

</InputDataSections>
<OutputSections>

<Section insertIfNotFound="False"
isDynamicSection="False">Background Information</Section>

</OutputSections>
</ConverterConfiguration>

</Converter>
<Converter

class="Symyx.Notebook.LegacyDocumentConversion2.LegacyTextConverter,
Symyx.Notebook.LegacyDocumentConversion2, Version=18.1.100.2931,
Culture=neutral, PublicKeyToken=fb4b5791c48b7e8a">

<ConverterConfiguration>
<InputDataSections>

<IntermediaryDataSection>Background
Description</IntermediaryDataSection>

</InputDataSections>
<OutputSections>

<Section insertIfNotFound="False"
isDynamicSection="False">Background Description</Section>

</OutputSections>
</ConverterConfiguration>

</Converter>
<Converter

class="Symyx.Notebook.LegacyDocumentConversion2.LegacyTextConverter,
Symyx.Notebook.LegacyDocumentConversion2, Version=18.1.100.2931,
Culture=neutral, PublicKeyToken=fb4b5791c48b7e8a">

<ConverterConfiguration>
<InputDataSections>

<IntermediaryDataSection>Procedure</IntermediaryDataSection>
</InputDataSections>
<OutputSections>

<Section insertIfNotFound="False" isDynamicSection="False">Record
Procedure</Section>

</OutputSections>
</ConverterConfiguration>

</Converter>
<Converter

class="Symyx.Notebook.LegacyDocumentConversion2.LegacyTextConverter,
Symyx.Notebook.LegacyDocumentConversion2, Version=18.1.100.2931,
Culture=neutral, PublicKeyToken=fb4b5791c48b7e8a">

<ConverterConfiguration>
<InputDataSections>

<IntermediaryDataSection>Results and
Conclusions</IntermediaryDataSection>

</InputDataSections>
<OutputSections>

<Section insertIfNotFound="False" isDynamicSection="False">Results

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 21

Chapter 4: Configuring Application Permissions

and Conclusions</Section>
</OutputSections>

</ConverterConfiguration>
</Converter>
<Converter

class="Symyx.Notebook.LegacyDocumentConversion2.LegacyExternalFileConverter,
Symyx.Notebook.LegacyDocumentConversion2, Version=18.1.100.2931,
Culture=neutral, PublicKeyToken=fb4b5791c48b7e8a">

<ConverterConfiguration>
<InputDataSections>

<IntermediaryDataSection>Embedded Reports</IntermediaryDataSection>
</InputDataSections>
<OutputSections>

<Section insertIfNotFound="True" isDynamicSection="False">Embedded
Reports</Section>

</OutputSections>
</ConverterConfiguration>

</Converter>
<Converter

class="Symyx.Notebook.LegacyDocumentConversion2.LegacyExternalFileConverter,
Symyx.Notebook.LegacyDocumentConversion2, Version=18.1.100.2931,
Culture=neutral, PublicKeyToken=fb4b5791c48b7e8a">

<ConverterConfiguration>
<InputDataSections>

<IntermediaryDataSection>Material
Characterizations</IntermediaryDataSection>

</InputDataSections>
<OutputSections>

<Section insertIfNotFound="True" isDynamicSection="False">Material
Characterizations</Section>

</OutputSections>
</ConverterConfiguration>

</Converter>
<Converter

class="Symyx.Notebook.LegacyDocumentConversion2.LegacyMaterialListConverter,
Symyx.Notebook.LegacyDocumentConversion2, Version=18.1.100.2931,
Culture=neutral, PublicKeyToken=fb4b5791c48b7e8a">

<ConverterConfiguration>
<InputDataSections>

<IntermediaryDataSection>Materials</IntermediaryDataSection>
</InputDataSections>
<OutputSections>

<Section insertIfNotFound="True">Material Amounts</Section>
</OutputSections>
<SpecificToConverter>

<Mappings>
<Map column="MaterialName" property="Material.Name" />
<Map column="MolecularFormula" property="Material.MF" />
<Map column="MolFile" property="Material.Structure" />
<Map column="Role" property="Material.Role" />
<Map column="StoichiometricCoefficient"

property="ReactionMaterial.StoichiometricCoefficient" />
<Map column="Purity"

Page 22 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 4: Configuring Application Permissions

property="ReactionMaterial.PurityConcentration" />
<Map column="Density" property="Material.Density" />
<Map column="Comments" property="Material.Comments" />
<Map column="PlannedAmount" property="PlannedAmount.Amount" />
<Map column="ActualAmount" property="ActualAmount.Amount" />
<Map column="LimitingReagent"

property="ReactionMaterial.LimitingReagent" />
<Map column="MolecularWeight" property="Material.MW" />
<Map column="CAS" property="Material.CASNumber" />
<Map column="IsActualAmountPure"

property="ReactionMaterial.AdjForPureLR_SYS" />
</Mappings>
<MolScripts>

<InitialMolScript>SpecialHConverter.SetHPlusUnattachedType('H+');
// convert unattached H+'s to the 'H+' (uncharged) pseudoatom
// NOTE: requires H+ in ptable

SpecialHConverter.SetH2Type('H2'); // convert H-H fragments to the 'H2'
pseudoatom
// NOTE: requires H2 in ptable
</InitialMolScript>

<CleanMolScript>
// fix errant (H0) query values
Find(A_QHCOUNT,A_QHCOUNT_ZERO).Set(A_QHCOUNT,A_QHCOUNT_OFF);

// convert any problematic H atoms
SpecialHConverter.Convert (UNDEFINED) ; // convert the Target structure
</CleanMolScript>

</MolScripts>
</SpecificToConverter>

</ConverterConfiguration>
</Converter>

</SectionMappings>
</SourceDataType>

Sample Application
You can also write standalone applications that use the utility’s assemblies. Themost relevant assembly
is "BIOVIA.ImportExportAppPermissions.dll." You can create separate applications for export and
import, or one application that does both.
The general steps for writing such a program are:
1. Define any variables needed for processing, such as Vault server address, username, password, and

so on.
2. Authenticate into Vault.
3. Create a method to handle the Export function.

a. Create an instance of the PermissionExporter class.
b. Call Export on the instance of the class.
c. Handle any errors that came back from the Export process.

Example:
Expand source
var exporter = PermissionExporter.GetInstance();

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 23

Chapter 4: Configuring Application Permissions

var statusExport = exporter.Export(directory, fileName);
if (!statusExport.Success)
{
throw new Exception("Export was not successful: " +
statusExport.StatusMessage, new Exception(statusExport.ExceptionText));
}

4. Create a method to handle the Import function:
a. Create an instance of the PermissionImporter class.
b. Call Import on the instance of the class.
c. Handle any errors that come back from the Import process.
Example:
Expand source
var importer = PermissionImporter.GetInstance();
var statusImport = importer.Import(exportFile, directory, tokenFile);
if (!statusImport.Success)
{

throw new Exception(string.Format(CultureInfo.InvariantCulture,
"Export was not successful: {0}", statusImport.StatusMessage));
}

5. Confirm the results by logging in to the Vault Administration Console and viewing the added and
updated permissions.

If desired, you can chain functions together into a single application that performs the following main
steps:
1. Authenticate into Vault.
2. Export from Vault.
3. Modify the exported files if needed. For example, update data, add token keys, or read values from

token files.
4. Import into Vault.
5. Validate exit state and/or confirm changes.
6. To repeat for another Vault, authenticate on that Vault, and then repeat step 1 and steps 3-5.

Implementing the DisableUndoMyCheckouts Permission
Tip: To use a command-line utility to add or update permission configurations for services and
applications, see Using the Import/Export Application Permission Utility. The command-line utility
enables you to easily export all editable application permissions, edit them using a text editor,
tokenize them for use on more than one Vault Server if needed, and then re-import them into the
same or a different Vault Server.

To implement the DisableUndoMyCheckouts permission, which prevents users from undoing their
own checkouts, add the permission using the Vault Administration Console, and then use Foundation
Hub to apply it to the user groups to whom it should apply:
1. Open the Vault Administration Console and log on to Vault Server as a member of the Vault Global

Administrators group.
2. Expand the Vault Server node and select Application Permissions.
3. In the Actions pane, click Add.

Page 24 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 4: Configuring Application Permissions

4. In theNew Permission dialog, in the Application field, type Symyx.Notebook, in the Permission
field, type DisableUndoMyCheckouts, and then click OK.

5. Use Foundation Hub to apply the permission to groups whosemembers are not allowed to undo
their own checkouts:
a. Log on to Foundation Hub and access Admin and Settings > Security > Groups.
b. Open the group whose checkouts you need to disable and select Edit.
c. From the Permissions list, select DisableUndoMyCheckouts and click Assign.

Note: You can delete this permission from both the Vault Administration Console and Foundation
Hub by clicking theDelete button in the Actions pane of the Vault Administration Console.

Requirements for Moving a Vault Folder or Object
To move a folder:

The folder must be checked in to a repository with version control.
The user must belong to a group that has the Folder.Administrator permission.

To move an object:
The object must be checked in.
The following object permissions must be Allowed:

Read Data
Read Properties
Update Properties
Write data

Pipeline Pilot Configuration Keys
To run Pipeline Pilot Client, users must have the PipelinePilot.RunProtocol application
permission. You must configure settings in to enable BIOVIAWorkbook and Pipeline Pilot Client to work
together. The configuration keys, you must set are:

Endpoint

Endpoint is the fully qualified path to the Pipeline Pilot Server that BIOVIAWorkbook should use the
fully-qualified domain name, https://<fully-qualified domain to the Pipeline Pilot

Server>:9943.
ProtocolRoot

The ProtocolRoot key sets the Pipeline Pilot folder that displays in the Template Editor when
setting up toolbar buttons that access Pipeline Pilot Client protocols. The default value is
Protocols/Web Services/Workbook/Experiment.
AnalysisProtocolRoot

The AnalysisProtocolRoot key sets the Pipeline Pilot Client folder that displays in the Notebook
Explorer Analyze tab. The default value is Protocols/Web Services/Workbook/Analysis.

To configure the settings for users with permission to run Pipeline Pilot Client protocols, see Configure
Pipeline Pilot RunProtocol Settings.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 25

Chapter 4: Configuring Application Permissions

Configuring Pipeline Pilot RunProtocol Settings (New Installs Only)
To enableWorkbook users to run standard and customer-specific Pipeline Pilot protocols, you must
configure the RunProtocol application permission.

Tip: To use a command-line utility to add or update permission configurations for services and
applications, see Using the Import/Export Application Permission Utility. The command-line utility
enables you to easily export all editable application permissions, edit them using a text editor,
tokenize them for use on more than one Vault Server if needed, and then re-import them into the
same or a different Vault Server.

To use the Vault Administration Console Console to configure the Pipeline Pilot Client RunProtocol
settings, perform the following steps:
1. Open the Vault Administration Console and log on to Vault Server as a member of the Vault Global

Administrators group.
2. Expand the Vault Server node and select Application Permissions.
3. In Application Permissions, select the PipelinePilot.RunProtocol permission, and click

Properties.
4. In the PipelinePilot.RunProtocol dialog, select the Configuration tab.
5. For the Value of the Endpoint, type the HTTPS URL for the fully-qualified domain name for the

Pipeline Pilot server, for example: https://<fully-qualified PipelinePilot_server_

name>:9943.

Compound Registration
BIOVIAWorkbook provides user-initiated compound registration from the Synthetic Chemistry section.
Users can register one or more compounds per request. The process returns the SubstanceID and
BatchID for each compound and displays the values in the experiment's Synthetic Chemistry section.
Compound registration is implemented as a Symyx Framework service. BIOVIAWorkbook does not
require configuration to support Registration. To implement an alternative registration system, contact
Dassault Systèmes Customer Support.
To use Registration features fromWorkbook:

BIOVIA Isentris 4.x or higher must be installed and running on a server on your network.
Registration service 1.5 SP4 or higher must be installed and running on the same server as Isentris.
BIOVIA Isentris 4.x or higher application framework must be installed each Workbook client
computer.

BIOVIAWorkbook and BIOVIA Vault Server support the versions of BIOVIA Isentris and BIOVIA
Registration identified inWorkbook 2021 Client System Requirements. For information about installing
and administering Isentris and Registration applications, see the Isentris Installation and Configuration
Guide, the BIOVIA Isentris Administration Guide, and the BIOVIA Registration Installation and
Administration Guide.

Page 26 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 4: Configuring Application Permissions

Modify Registration Service Properties
Tip: To use a command-line utility to add or update permission configurations for services and
applications, see Using the Import/Export Application Permission Utility. The command-line utility
enables you to easily export all editable application permissions, edit them using a text editor,
tokenize them for use on more than one Vault Server if needed, and then re-import them into the
same or a different Vault Server.

To use the Vault Administration Console to modify Registration Service properties, perform the
following steps:
1. Open the Vault Administration Console and log on to Vault Server as a member of the Vault Global

Administrators group.
2. Expand the Vault Server node and select Application Permissions.
3. In the Application Permissions pane, and double-click RegistrationService.
4. In the Registration Properties dialog, select the Configuration tab.
5. Select the property to modify, enter your changes, and click OK.

See also:
Registration Service Permission Parameters

Registration Service Permission Parameters
Only the ServiceName, ApplicationName, StructurePath, and PollingInterval configuration parameters
are used in the current release. The other parameters are reserved for possible future use. For more
information, see Configuration parameters of the RegistrationService permission.

Parameter Description

ServiceName Specifies the name of the Isentris registration service. You only need to change
this if your Isentris administrator changes it from the default of
MDLRegistration.

ApplicationName Specifies the application name of the registration service. Previous releases of
BIOVIA Registration offered two configurations: Default and ChemBioAE. Only
ChemBioAE is supported with BIOVIA Registration 1.5 SP3; the version
supported for use with BIOVIAWorkbook 2021. Customers can create their own
configurations. The ApplicationName parameter enables adapting the notebook
implementation to user needs.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 27

Chapter 4: Configuring Application Permissions

Parameter Description

StructurePath The registration service uses a hierarchical object model to package registration
requests. The root of the hierarchy is the Batch object. Depending on the
service configuration, the location of the primary structure to register in the
object hierarchy can vary. This parameter allows you to specify themapping
from the structure property in thematerials section to the registration object
tree.
The structure path string implicitly begins at the Batch object and each element
in the path is separated by a forward slash character (/).
The ChemBioAE configuration requires the structure to appear as a property of
the Batch/Substance/Compound object. Therefore, the default
StructurePath configuration is Substance/Compound. Because the root object,
Batch, is implied it does not appear in the configuration string.
The older Default application profile required the structure to appear as a
property of Batch/Substance/Fragment/Fragment_
Molecule/RegMolecule. If you are using the older Default configuration, you
need to set StructurePath to Batch/Substance/Fragment/Fragment_
Molecule/RegMolecule.
If you have a custom profile, then you must provide a custom structure path.

PollingInterval The registration service does not send a notification when an operation
completes. BIOVIAWorkbook polls at regular intervals to check for a completed
operation.
This parameter is the interval in milliseconds between polls. If the property is
empty, the default of 250milliseconds is used.
You can adjust this value to balance application responsiveness against the load
on the server.

Database Web Service and Material Property Lookup Service
You can auto-populate the property data for materials in the Synthetic Chemistry section in the Vault
Administration Console. For example, entering a compound name or structure into the Synthetic
Chemistry section can result in the density, CAS Registry Number, and other data for thematerial being
displayed automatically. Thematerial property lookup is implemented as a Framework service.
BIOVIAWorkbook supports the OpenEye chemical name to structure converter, and supports the
DatabaseWeb service that provides access to BIOVIA-hosted content sources such as the Available
Chemicals Directory (ACD).
To add alternative or additional resolvers to theMaterial Lookup service, and for more about licensing
and configuring the DatabaseWeb Service, contact Dassault Systèmes Customer Support.
For more information, see "DatabaseWeb Service" in the BIOVIA Vault Server Installation Guide.

Locking Recipe Sections at Specific Workflow Stages
You can lock Recipes sections in experiments to prevent them from being edited when they reach
configurable, specific stages in a workflow definition. Identify which stages must be locked in the
WorkflowStagesForLocking property.

Page 28 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 4: Configuring Application Permissions

To identify recipe stages to lock:
1. In the Vault Administration Console, open the Recipe Users application permission.
2. Set the value of the property whose name is WorkflowStagesForLocking to a comma-

separated list of stages. Example:
Approved, Abandoned, UnderReview

Note: If the WorklowStagesForLocking row is not listed, add it manually.

Locking the Task Plan at Specific Workflow Stages
You can useWorkflowDesigner to configure workflows that "lock" task plans when they reach certain
stages (typically released or abandoned) to prevent further changes to task plans that have reached
those stages. Foundation Hub marks a task plan that has reached such a stage as read-only. (Do not
confuse this type of workflow-based "locking" with the locking that a user can apply to aWorkbook
section.)
To identify these read-only stages, you use the Vault Administration Console.
To identify task plan stages to lock:
1. In the Vault Administration Console, open the Symyx.Notebook|TaskPlanSection application

permission.
2. Click the Configuration tab.
3. Set the value of WorkflowStagesForLocking to a comma-separated list of stages. Example:

Approved, Abandoned, UnderReview

Note: If the WorkflowStagesForLocking row is not listed, add it manually.

4. (Important) If your Vault Server and Foundation Hub are installed on separate computers, edit the
following configuration files to circumvent a defect that prevents Foundation Hub from receiving
Workbook messages that instruct it to treat a task plan as read-only.

WindowsServices\Accelrys.Vault.IsolationChamber.exe.config

WindowsServices\Symyx.Vault.Message.Processing.Service.exe.config

a. Navigate to <install_path>\BIOVIA\Vault\Utilities and open the following file,
which already has the correct authentication section, in a text editor:

Symyx.Vault.Database.Utility.exe.config

b. Select and copy (Ctrl+C) the authentication-related lines to the clipboard. Example:
<section name "authentication"
type="accelrys.AEP.Authentication.Configuration, ... >
</configSections>
<authentication defaultAuthenticationProvideForSigning="AEP">

<uri>http://your-server:9954>
<cache-time>00:00:30</cache-time>

</authentication>

c. Navigate to <install_path>\WindowsServices\MessageHandlers\VaultQueue and
open the following file in a text editor:

Accelrys.Vault.IsolationChamber.exe.config

d. Select the following line in the file and replace it (Ctrl+V) with clipboard content shown under

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 29

Chapter 4: Configuring Application Permissions

Step 4b, then save and close the file:
</configSections>

e. Open the Symyx.Vault.Message.Processing.Service.exe.config and repeat Step 4d.

External Structures Conversion
BIOVIA Vault Server cannot index the documents for searching in structures and documents with hidden
attributes such as those found in structures available in ChemSeek and in version 5 documents. When
you run the External Conversion Service, all structures are automatically modified with a Cheshire script
to mitigate the search problem. The structure cleaning is automatic. BIOVIA does not recommend
modifying the Cheshire script available in the configuration, as shown below:
<MolScripts>

<InitialMolScript>SpecialHConverter.SetHPlusUnattachedType('H+');

// convert unattached Ha's to the 'H+' (uncharged) pseudoatom

// requires H+ in ptable

SpecialHConverter.SetH2Type('H2');
// convert H-H fragments to the 'H2' pseudoatom

// Requires H2 in ptable
</InitialMolScript>

<CleanMolScript>

// fix errant (H0) query values

Find(A_QHCOUNT,A_QHCOUNT_ZERO).Set(A_QHCOUNT,A_QHCOUNT_OFF);

// convert any problematic H atoms

SpecialHConverter.Convert (UNDEFINED);

// convert the Target structure

</CleanMolScript>

</MolScripts>

The InitialMolScript is run once against the Cheshire engine. The CleanMolScript is run for each
molecule target.

See also
Configure the External Data Conversion Service

Configure the External Data Conversion Service
BIOVIA Vault Server installs a set of templates that enable the user to convert data from Symyx Process
Notebook version 5.6 and Symyx Formulations Notebook version 5.6 into the templates. These
templates are in the ExternalDataConversionTemplates.voexp file. BIOVIA recommends that

Page 30 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 4: Configuring Application Permissions

you publish the voexp file to a managed repository instead of to the Site Repository so that you can
access the templates to make necessary edits in the BIOVIAWorkbook client.

Tip: To use a command-line utility to add or update permission configurations for services and
applications, see Using the Import/Export Application Permission Utility. The command-line utility
enables you to easily export all editable application permissions, edit them using a text editor,
tokenize them for use on more than one Vault Server if needed, and then re-import them into the
same or a different Vault Server.

To use the Vault Administration Console Console to configure the external data conversion service,
perform the following steps:
1. Open the Vault Administration Console and log on to Vault Server as a member of the Vault Global

Administrators group.
2. Expand the Vault Server node and select Application Permissions.
3. In Application Permissions, double-click ExternalDataConversionService.
4. In the ExternalConversionService | External Conversion Service Properties dialog, click the

Configuration tab.
The following table lists the converter file names.

Name Description

LJ-AXP Lab Journal and Sketch converter

MX-AXP Matrix (Process Notebook) converter

MX-AXF Matrix (Formulations Notebook) converter

File names in Matrix v5 are the output section names for MX-AXP and MX-AXF converters. If files are not
assigned names, the application uses the output section name assigned in Matrix Process Converter or
theMatrix Formulations converter.
The Formulation matrix converter does not convert material amount information.

Specify Document Conversion Template
Modify the template vaultpath attribute of any converter to change the attribute on initial setup of
the converters, after publishing the ExternalDataConversionTemplates.vozip file.
If you are converting two document templates with the same template vaultpath, the first template is
used.
To specify the document conversion template:
1. Select the appropriate converter, for example, use LJ-AXP for Lab Journal documents.
2. Copy the configuration file into a text editor, and then click OK to close the Configuration panel.
3. In the text editor, enter the vaultpath to the template you want to use in the following section.

<?xml version="1.0" encoding="utf-16"?>
<SourceDataType name="LJ-AXP">
<Template

vaultpath="Site\ExternalDocumentConversionTemplate65\LabJournal
Experiment />

4. Save the file.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 31

Chapter 4: Configuring Application Permissions

5. Copy themodified XML file.
6. In the Vault Administration Console
7. Click the down arrow at the end of the LJ-AXP row.
8. Select all of the text that displays.
9. Right-click and select Delete.
10. Right-click and select Paste to enter the file you copied in step 2.
11. Click OK and exit the Console.

Modify Section Settings in Document Conversion
You can change the sections that external data is converted into by modifying the converter XML. The
following example applies to theMaterial Amounts section.
Replace theMaterials Characterizations namewith a name of your choosing in the following section. The
variable is shown in italics.

</InputDataSections>

<IntermediaryDataSection>Materials</IntermediaryDataSection>

</InputDataSections>

<OutputSections>

<Section insertIfNotFound="True">Materials Amounts</Section>

</OutputSections>

You can change the insertIfNotFound attribute in theMaterials section. When set to True and a
section named Materials Amounts is not found in the document, a newMaterials section is inserted
into the document, renamed to Materials Amounts, and the data is inserted in the new section. When
the insertIfNotFound attribute is set to False and it is not found, the conversion does not takes
place on that data section. However, other sections are converted.
For a Matrix document conversion, you can change the isDynamic attribute used when the source
document might contain a number of sections of the same type. When the isDynamic attribute is set
to True, additional sections of the same type in the source document prompt the creation of new
sections in the new document. When the isDynamic attribute is set to False, additional sections of the
same type overwrite the last converted section.
1. Save the file.
2. Copy themodified XML file.
3. In the Vault Administration Console return to the ExternalConversionService > External Conversion

Service Properties > Configuration dialog:
4. Click the down arrow at the end of the LJ-AXP row.
5. Select all of the text that displays.
6. Right-click and select Delete.
7. Right-click and select Paste to enter the file you copied in step 2.
8. Click OK.

Page 32 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 5:
Developing Signature Policies
2021 provides administrators with the ability to design custom signing policies. The Vault Administrator
creates custom signature policies in the Vault Administration Console. The policies are then referenced
by name in theWorkflowDesigner, the Vault Administration Console console, and the notebook
Experiment Editor. The available signature policies are listed in the application that is used to select the
Signature Policy.
Design signature policies so that they are widely reused. You can create a signature policy for a specific
type of signing action, but it is best practice to design them more generally. A signature policy is a set of
rules for how to create a signature. For example, does you policy allow comments allowed, define how
signatures are authenticated, or define how the logged in user provides the signature? With the
exception ofmeanings and reasons, it is not possible to customize them extensively.

Signature Policy Events
Entering an incorrect password while attempting a Signature is recorded as a signature policy event. The
user is prevented from performing any other actions when an incorrect password is used.
The following list contains events in which you might want to define in your signature policy:

Rollback
AdministrativeMove
Check In
A check-in signature is in effect only when an experiment is not enrolled in workflow.
Workflow transition
Locking or unlocking sections
Overriding a value in a section
Entering or modifying values in a section
Entering or confirming values of Property Data Set (PDS) properties
Delete a section

In workflow transitions, signatures are associated with specific workflow actions, and the actor who
performs the action must also provide the signature. The actor or user who performs check in, rollback,
and administrativemove events must also provide the required signatures.
Other client actions associated with signatures such as signing in forms, signing in tables, and signing for
section locking or unlocking, have two properties. The two properties are the signature policy to use for
the action, and an explicit list of users or groups that are allowed to perform the signature.
You cannot delete signature policies. You must enforce a signature on an administrativemove by
creating a signature policy with the name, Administrative Move, to make the administrativemove
option available in the client. Creating a signature policy with the rollback event is optional.

Create a Signature Policy
Before you create a signature policy, you should check the names of the existing policies so you only
create a policy with a unique name.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 33

Chapter 5: Developing Signature Policies

If a signature policy does not exist, you cannot complete an administrativemove, and the
administrativemove action fails without a warning. Ensure that a signature policy exists before
proceeding with an administrativemove.
You must havemembership in the Vault Global Administrators group to modify properties using the
Vault Administration Console.
To create a signature policy:
1. From the Start menu, select Vault Administration Console.
2. In the Console Root\Vault Administration\Vault Server, expand the Vault Server node, and login.
3. Expand the Signature Policies node, and select a signature policy to update, and click Properties.
4. In the Selected Item Properties dialog, on the Signature Policy Editor tab, type a name for the

signature policy in Name.
5. Define the reason or meanings for the signature policy. For more information, see Set Meanings or

Reasons and Signature Policy Properties Reference.
6. (Optional) In Description, type a description for themeaning or reason.
7. (Optiona) In Authentication Provider, specify the code or tool used to validate the signature.
8. (Optional) In Credential Input Control, the user interface control used to obtain the user's

credentials.
9. (Optional) In Signature Provider, specify code used to sign the request.
10. In Allowed Signers, select the allowed signators.
11. Click Apply and OK.
An audit history entry is created for this action. For more information, see Audit Trail Actions.

Set Meanings or Reasons
Signing meanings address the regulatory compliance requirements for experiments in some industries.
An example of a signaturemeaning is read and understood, a common phrase for witnessing and
action. You can set the signing meanings or reasons for change in a signature policy. A signature policy
cannot have both signing meaning and reason.

Meanings
Signing meanings are used for document-level signatures such as those attached to workflow
transitions. Reasons are used for electronic signatures such as those attached to form fields or table
cells.

Signing meanings are always a list from which the user makes a selection. The signer cannot create a
signing meaning.
If Signing meanings are present, they are required.

Reasons
Reasons address the digital signature, and represent the reason for the change such as to correct an
error or re-measured a material. Reasons are selected from a list, or represent the user entered
information as to the reason for the change.
If a reason list exists, the user must choose a reason from the list.

When the reason list is empty, and reasons are allowed, the user can type in a reason.
If Reasons are allowed, the Required check box determines whether the user must enter or select a
reason.

Page 34 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 5: Developing Signature Policies

To set meanings or reasons:
1. In the Vault Administration Console, expand the Vault server node.
2. Expand the Signature Policies node, and select a signature policy to update, and click Properties.
3. In the Selected Item Properties dialog, on the Signature Policy Editor tab, type a name for the

signature policy in Name.
4. Click add (+) in theMeanings or Reason group, and type a meaning or reason to use with the

signature such as an FDA policy number used by the team or other relevant phrase or code.
5. When defining reasons, select Allowed or Required as the property for the reason.

The default value is Allowed.
6. (Optional) Select the additional attributes to apply to theMeaning or Reason.

(Optional) In Description, type a description for themeaning or reason.
(Optiona) In Authentication Provider, specify the code or tool used to validate the signature.
(Optional) In Credential Input Control, the user interface control used to obtain the user's
credentials.
(Optional) In Signature Provider, specify code used to sign the request.

For more information, see Signature Policy Properties Reference.
7. In Allowed Signers, select the users allowed to add digital signatures.
8. Click Apply and OK.

Modify Signature Policies
Membership in the Vault Global Administrators group is required to modify properties using the Vault
Administration Console.
To modify a signature policy:
1. From the Start menu, select Vault Administration Console.
2. In the Console Root\Vault Administration\Vault Server, expand the Vault Server node, and login.
3. Expand the Signature Policies node, and select a signature policy to update, and click Properties.
4. In the Selected Item Properties dialog on the Signature Policy Editor tab, enter your changes and

click OK.

Signature Policy Properties Reference
The following table describes the option that you can set while defining signature policies.

Option Values Description

Reasons Allowed or Required Default is Allowed.
If Required, the usemust provide a reason for the request.

Comments
Allowed

Yes or No Default is Yes.
If checked, you can add comments to the signature policy
request.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 35

Chapter 5: Developing Signature Policies

Option Values Description

Require Single
Object Signing

Yes or No Default is No.
If Yes, the user must sign each document individually, no
batch signing.

Require Open
Object

Yes or No Default is No.
If Yes, the user must open the object to sign it.

Force User to
Re-
Authenticate

Yes or No Default is No.
If yes, the user must enter their Workbook account password
at the time of signing.

Unrestricted Yes or No Default is Yes. Any valid Workbook user can sign.
If No, select another Allow user options.

Require
Current User

Yes or No Default is No.
If Yes, only the currently logged in user is allowed to sign.

Require
Different User

Yes or No Default is No.
If Yes, the currently logged in user is not allowed to sign.
Another valid Workbook user must sign. This different user
must enter their user name and password on the computer of
the user who triggered the signature policy.

Description Optional Allows entering a description of the signature policy request.

Authentication
Provider

Default is Windows
authentication

Specifies the code used to authenticate the signature request.

Credential
Input Control

Default is
username/password

Specifies the UI control that displays in the signature dialog to
gather the credentials for the signature.

Signature
Provider

Default is SHA-256 Specifies the code library used to sign the request.

Document Template Management Tools Signature Policy
You can define a signature policy for the Document TemplateManagement tools that enable users with
TemplateManagementTools permissions to update form, section and document templates. Name
the custom signature policy Document Template Update to enable BIOVIAWorkbookto find the policy
when a user tries to update templates. You must also assign TemplateManagementTools permissions to
individual users who need to update templates.
The Document Template Update Signature Policy is an optional signature policy, added in the Vault
Administration Console console under the Signature Policies node. When a user selects Update, after
running the Usage Report, they get a signing dialog to complete. The user’s signature applies to the
entire update but if the user cancels the signing dialog the update does not occur.
Set the following options for the Document Template Update Signature Policy:

Comments, require single object signing, require open object, force user to re-authenticate
Allowed signatory
Other: reason - allowed, required

Page 36 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 6:
Defining Workflows
You can use BIOVIAWorkflowDesigner to design custom workflows for your experiments. These
workflows identify workflow actor types and roles for the different stages of a workflow and activities to
perform at the different stages. They can also identify signatory requirements for stage transitions that
require digital signatures.
When you publish a workflow definition fromWorkflowDesigner, it becomes available in your Vault
Server. You use the Vault Administration Console in Vault Server to associate the actor roles you set up
for workflow stages with actual Foundation Hub users and groups.
The following workflow activities require specific actor types:

Add experiments to the Inbox of BIOVIAWorkbook users
Send email
Allow transitions
Set experiment-level permissions

Other activities that can be triggered by workflow definitions include the following:
Removal of comments and Inbox entries
Responses to experiment-level review data
Responses to events based on a predefined time-out period

Workflow actors are the set of roles that you can assign to users and groups. For example, the
administrator can assign theWitness role to a user or a group. Defining a workflow actor role creates a
new group called, Actor Role for User. Add individual users to groups. In BIOVIAWorkbook, workflow
actor groups are not displayed.
Aworkflow actor type is the name designation assigned to the relationship between users that the
workflow service can interact with to perform instructions in a workflow definition. The relationships are
defined in theWorkflow Actors tab of the property dialog. You can only define workflow actor types for
users. For example, a workflow definition can include an instruction such as "give the supervisor
WriteData permissions". The definition determines the system group for the supervisor and applies
the WriteData permission to it. If the supervisor role has not been defined for the author, no system
group exists, the definition does not perform that task.

Workbook Activities from Workflows
AWorkflow definition can trigger several types ofWorkbook activities:

Initialization activities, which execute when an object enters a stage.
Finalization activities, which execute when an object exits a stage.
Transition-time and EventDriven activities, which when an object is transitioned from one stage to
another.

Staged transitions
Staged transitions identify the actors types that are allowed to move an object from its current stage to
another stage. Review and If Else activity allows the workflow definition to determine activities to
execute based on an experiment’s Review Results display.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 37

Chapter 6: Defining Workflows

For example, if the following activities do not apply such as UnableToReview, HasErrors, and
HasWarnings, the workflow can automatically use the PassedReview activity.
If SafetyReview fails, the object transitions to InProgress, but if the SafetyReview activity succeeds, the
object transitions to SafetyApproved.

Parallel activities
Parallel activities are activities that can be in progress at the same time. For example,
PrintExperimentReport and AssignTaskToWitness can execute in parallel.

Security activities
Security activities are activities that require particular workflow actor roles and permissions. For
example, a user with a witness role might not have the permission to open or check out an object, and
an author might not have the permission to roll back an object.

Timed activities
Timed activities are activities that execute after a specified period has elapsed. For example, the
WorkflowDefinition could trigger the sending of an email or apply permissions to an experiment if an
experiment is not transitioned for a period of six months. Timed activities cannot trigger transitions.

Email activities
Email activities use SMPT to send a message to one or more actors. For example, the transition of an
experiment into the SafetyApproved stagemight cause an email to be sent to a quality assurance
manager.

Task activities
Task activities appear in the Notebook Explorer Inbox to alert actors of an assignment such as a witness
duty.

Remove Comment activities
Remove comment activities remove all messages, comments, and workflow-generated tasks from an
experiment. Such activities usually occur right before an experiment is put into its archive or final state.
Remove Comments removes all Annotations, which includes Comments, Tasks, and Messages. Remove
Task is a subset of Remove Comments, so it is not necessary to do both.

Workflow Design Best Practices
To design aWorkflowDefinition that is well-suited to the business rules of your organization, consider:
Document the business rules of your organization.
What is the sequence of stages? Howdo responsibilities change from person to person in the lifecycle of
the experiment?
Who are the actors? What are the permissions such as read, write, update, rollback, delete of the
various actors at the various stages?
What are the transitions, that is, all the possible routes between stages?
Can any two actors be consolidated into a single actor? For example, is it possible for the Reviewer and
Approver to be the same person?
Can any person be in the role ofmore than one actor? For example, can a supervisor also be a witness?
Which activities such as sending an email need to occur when an object is transitioned to another state?

Page 38 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 6: Defining Workflows

What is the signature policy? Which actors sign off at which stage? Are all signatures digital? How does a
signing event affect the stage of the document?
To design aWorkflowAssociation that is well-suited to the business rules of your organization, consider:
What should trigger a document getting associated to aWorkflowDefinition?
It might be helpful to write a textual description of the workflow and also make a visual flow chart to
diagram the various stages, actors, activities, and signature events. Careful planning to understand and
communicate the organizational requirements increases the likelihood that the design is stable and
successful. Consider asking all the stakeholders to review your documentation of the business rules,
getting their feedback and approval while you are still in the planning phase.

Build the actors and signature policies by using the Administration Console or PowerShell.
Build the workflow definition by using the BIOVIAWorkflowDesigner graphical user interface.
Publish the workflow definition.
Compile and publish directly to Vaul.t
Compile to a VOZIP package and publish by using the Administration Console.
Activate the workflow by creating a workflow association that specifies the type of object to manage
and its path. Design the association so only one workflow is applied to any given object.
Test the workflow as a prototype and refine if necessary. The Administration Console can disable an
association.

Workflow Examples
TheWorkflow SDK allows creating a custom activity to you can use to:

Integrate a BIOVIAWorkbook workflowwith an external system.
Enforce standard operating procedures at your organization that are not yet covered by the
activities that BIOVIA provides.

Examples:
Prevent an author from being the author’s own witness
Prevent any actor from modifying an archived experiment
Send a PDF report to an external system

Building a custom activity requires the following tasks:
Using ExampleActivity template that is installed with the BIOVIA Framework SDK, and using the
Dependency properties to expose configuration parameters to theWorkflowDesigner.
Implementing the custom activity, including logging for debugging to help administrators
troubleshoot any problems later.
Signing your assembly using Visual Studio Project Settings so that the Assembly Cache can fulfill the
request for your assembly.

Workflow SDK
TheWorkflow SDK allows an SDK developer to create a custom activity, which can be useful for:

Integrating a BIOVIAWorkbook workflowwith a system that is external to BIOVIAWorkbook.
Enforcing standard operating procedures at your organization that are not yet covered by the
activities that provides.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 39

Chapter 6: Defining Workflows

Prevent an author from being the author's own witness
Prevent any actor from modifying an archived experiment
Send a PDF report to an external system

To build a custom activity:
1. Start from the ExampleActivity template that is installed with the BIOVIA Framework SDK, and

use Dependency Properties to expose configuration parameters to theWorkflowDesigner.
2. Implement the custom activity. Include logging for debugging and to help administrators

troubleshoot any problems later.
3. Sign your assembly, using VisualStudio Project Settings, so that the Assembly Cache can fulfill

the request for your assembly.

Archive Using a Workflow
BIOVIAWorkbook integrates with Enterprise Content Management (ECM) systems such as
Documentum and Iron Mountain for long-term record retention.
For example, a Vault Workflow can:

Print a Completed experiment to PDF.
Transfer the PDF and metadata to the ECM.
Invalidate the ECM record if the experiment is reverted.
Republish to ECM if the experiment is signed off again.

Create Vault Workflow Actors
Note: Do not assign theWorkflowActor role to the Global.Administrators group, and do not include
the Global.Administrators group in any permission setting done by aWorkflow. The
VaultAdministrator user or a user in the Global Administrator group needs to retain the permissions
necessary to perform administrator functions.

Aworkflow can modify the permissions for experiments for any one or group assigned to the specific
actor role.
You should not rename (change the Title) the workflow Author actor. The name change prevents the
Vault Administration Console from displaying any workflow actor and causes the BIOVIAWorkbook
client and WorkflowDesigner to experience an unexpected error when attempting to retrieve Vault
objects.
Membership in the Vault Global Administrators group is required in order to modify properties using the
Vault Administration Console.
To create workflow actors:
1. In the Vault Administration Console, expand the Vault Server node, and expand theWorkflows

node.
2. Right-click theWorkflow Actors node, and select Add.
3. In theNew Workflow Actor dialog, in Description, type a brief description of the role.
4. In Title, type the name for the workflow actor role, and click OK.

Note: Do not use a hyphen (-) within the name of the workflow actor role.

Page 40 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 6: Defining Workflows

You can view the newly defined actor in theWorkflowActors pane.
An audit history entry is created for this action. For more information, see Audit Trail Actions.

Add Workflow Definitions
You create a workflow definition using theWorkflowDesigner that ships with BIOVIA Vault Server. After
you create the workflow definition, you add it to the Vault database.
You must havemembership in the Vault Global Administrators group to modify properties using the
Vault Administration Console.
To add a workflow definition:
1. In theWorkflowDesigner, you must publish the workflow to a .vozip package.

The .vozip is a Vault Object .zip file.
2. Copy the .vozip file onto the computer on which the Vault Administration Console is installed.
3. In the Vault Administration Console, expand the Repositories node.
4. Right-click the Site folder and select Publish to folder.

A window opens that allows you to select a .vozip file.
5. Select the .vozip package that you created in WorkflowDesigner.
6. When publishing is complete, the new folder, WorkflowActivityAssemblies is listed under the

Site folder.
7. Expand theWorkflows node and selectWorkflow Associations. You need to generate a workflow

association for the newworkflow definition.
For more information, see Create Vault WorkflowActors and Generate aWorkflowAssociation.
An audit history entry is created for this action. For more information, see Audit Trail Actions.

Removing a Workflow Definition
You can remove workflow definitions. The workflow definition continues to exist in the Vault repository
to support documents that are associated with the workflow definition. When a workflow definition is
removed, it is marked as hidden using the Flags property.
Any workflow associations that references a removed workflow definition are deleted, and the workflow
definition is renamed. None of the existing instances of the workflow definition are affected.
You can rollback to the removed workflow definition. However, you cannot activate new documents in
the workflow because the workflow associations were deleted.
You must havemembership in the Vault Global Administrators group to modify properties using the
Vault Administration Console.
To remove a workflow definition
1. In the Vault Administration Console, expand the Vault Server, and expand theWorkflows node,

and selectWorkflow Definitions.
2. In theWorkflow Definitions pane, right-click the workflow definition, and select Remove.
3. Click OK.
An audit history entry is created for this action. For more information, see Audit Trail Actions.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 41

Chapter 6: Defining Workflows

Move Experiments or Objects Between Workflow Stages
The BIOVIAWorkbook WorkflowTransition permission allows an administrator to manage the
Workflow process. If a repository workflow has been set up for experiments and objects, whenever a
user checks in an experiment or object, a dialog appears that allows the user to select a workflow
transition to execute. At times it might be necessary for an administrator to perform a transition that
does not follow the normal workflow. This is called an administrative workflow transition. You can use
the Vault Administration Console to perform an administrative workflow transition. For more
information, see Transition Workbook Items in the BIOVIAWorkbook online help.
To support administrative workflow transitions, you must have a signature policy with the title
Administrative Move, or the option will not be available in theWorkbook client application. For
more information, see Create a Signature Policy.
To move an experiment or object between workflow stages:
1. From the Start menu, select Vault Administration Console.
2. In the Console Root\Vault Administration\Vault Server, expand the Vault Server node and log in as

a member of the Vault Global Administrator's group.
3. Expand the Repositories node.
4. Navigate to the folder that contains the experiment to be transitioned.
5. In the Actions panel, selectWorkflow Instances.
6. Select the appropriate experiment row from themiddle pane, right-click, and selectMove to Stage.

The ID in Notebook Explorer translates to the Object ID in this grid. You can find the ID of an object
in Notebook Explorer by viewing its properties.

7. InMove WorkflowInstance to Stage, select a value from the Stage list, and select another stage
from the list to transition the experiment to that stage.

8. Click OK.

Generate a Workflow Association
When a Vault object is checked in, the workflow engine evaluates all enabled workflow associations. If
any are returned true, the Vault object is associated to the workflow definition to which the association
belongs.
Use a unique workflow association name. Do not insert a period in the name. The association fails to
compile if the period character is in the Name field.

Note: To determine the repository or folder for any workflow association, right-click the name of the
association and select Properties. In the Properties dialog, click the Code parameter.

To generate a workflow association:
1. In the Vault Administration Console, expand the Vault server, and expand theWorkflows node.
2. Right-click theWorkflow Associations node and select Generate.
3. In theGenerate Workflow Association dialog, type a unique name for the workflow association in

theName field.
4. Click Choose to select the workflow definition for the association.
5. (Optional) Click Use parameters to add parameters to the association.
6. (Optional)When using parameters, in the Parameters group, select the VaultObjectType.

Page 42 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 6: Defining Workflows

7. (Optional) Type a string in VaultPath to prefix the association.
For example in the VaultPath, type Analytical for a workflow association with a repository named,
Analytical.

8. (Optional) Click Use source to add source code to use during the association generation.
If theUse source radio button is selected, theUse parameters button is disabled, and the Compile
button at the bottom of the dialog becomes active.

9. Click Generate. The source code displays in the Source Code area of theGenerate Workflow
Association dialog.

10. Click Compile. The compilation results display in the Compiler results window.
11. Click Publish.

The newworkflow association should display in theWorkflow Associations node after you click
Refresh. If workflow associations does not display, you need to index new or modified Vault
objects. For more information, see Running the Vault Indexing Utility in the BIOVIA Vault Server
Administration Guide.

An audit history entry is created for this action. For more information, see Audit Trail Actions.

See also:
Get VaultID for Generating a WorkflowAssociation
GenerateWorkflowAssociation Code Example

Generate Workflow Association Code Example
You can use source code to assist in generating a workflow association. Your codemust return true or
false. When true is returned, the object is associated with the workflow that determines all future
actions. When false is returned, the object is not associated with the workflow and the workflow steps
do not apply to that object.
For example, if you want to run the workflow only when the object description is set to a specific value,
you can use the following code:
// BEGIN Code section generated by
Symyx.Framework.Workflow.WorkflowAssociationGenerator

// Need to check the description string is not null or empty, as well
// as check that the description contains the specific value
if (!string.IsNullOrEmpty(obj.Description) &&

obj.Description.ToUpperInvariant().Contains("Your description to check"))
{

return true;
}
else
{

return false;
}
// END Code section generated by
Symyx.Framework.Workflow.WorkflowAssociationGenerator

The next code example returns true if the Unified Resource Identifier (URI) for the object document
templatematches the Vault ID of 381b40a8-8a1e-4106-a806-97c1359604ee, you change the Vault ID in
the next step, the code returns false.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 43

Chapter 6: Defining Workflows

The workflow is run if the object has a specific template. Add the PropertyInfo block to your source code
to use this example.
// BEGIN Code section generated by
Symyx.Framework.Workflow.WorkflowAssociationGenerator
if (obj.ObjectType == VaultObjectType.Document)
{

PropertyInfo templateUriProperty =
obj.GetType().GetProperty("TemplateUri");

VaultUri templateUri = templateUriProperty.GetValue(obj, null)
as VaultUri;

// return true when the object's template URI Vault ID is equal to a
// specific value
return templateUri.VaultId.ToString().Equals(

"DocumentTemplate.381b40a8-8a1e-4106-a806-97c1359604ee");
}
else
{

return false;
}
// END Code section generated by
Symyx.Framework.Workflow.WorkflowAssociationGenerator

See also:
Generate aWorkflowAssociation
Get VaultID for WorkflowAssociation

Get VaultID for Generating a Workflow Association
In your source code used in the generate a workflow association, change the Vault ID of the template to
an ID stored in the Vault repository.

To get a document template Vault ID:
1. Start Oracle SQL*Plus and log in as the owner of the Site schema.
2. Run the following commands in SQL*Plus:

column GUID format a45

column name format a25

Select the GUID name from the vaultobject where objecttype is similar to 'DocumentTemplate';
If you have templates in Vault, your output should look similar to the following example:
GUID NAME

--- ------------------

DocumentTemplate.103ddca5-c662-44bc-acb4-b7db Blank Experiment
2f320973

3. In the source code window of the GenerateWorkflowAssociation dialog, set the document
template Vault ID to the value in the GUID column returned by SQL*Plus.
For example, change DocumentTemplate.381b40a8-8a1e-4106-a806-97c1359604ee in the source
code to DocumentTemplate.103ddca5-c662-44bc-acb4-b7db2f320973.

Page 44 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 6: Defining Workflows

See also:
Generate aWorkflowAssociation
GenerateWorkflowAssociation Code Example

Enable Workflow Associations
An Enable column and filter were added to theWorkflowAssociations grid display in BIOVIAWorkbook.
You must have Vault Administrator permission to modify a workflow association.
1. In the Vault Administration Console, expand the Vault Server node, and expand theWorkflows

node.
2. SelectWorkflow Associations.
3. In theWorkflow Associations pane, select the workflow association, and click Enabled.

Yes displays in the workflow association row.
An audit history entry is created when you inactivate a user. For more information, see Audit Trail
Actions.

See also:
Generate aWorkflowAssociation

Removing Workflow Associations
You must havemembership in the Vault Global Administrators group to modify properties using the
Vault Administration Console. .
To remove a workflow association:
1. In the Vault Administration Console, expand the Vault Server, and selectWorkflows.
2. In theWorkflows node, selectWorkflow Associations.
3. In theWorkflow Associations pane, right-click the workflow association to remove, and then select

Remove.
4. Click OK.

The workflow association is deleted from Vault Server.
An audit history entry is created for this action. For more information, see Audit Trail Actions.

See also:
Generate aWorkflowAssociation

Disabling Workflow Associations
You must havemembership in the Vault Global Administrators group to modify properties using the
Vault Administration Console.
1. In the Vault Administration Console, expand the Vault server, and expandWorkflows.
2. SelectWorkflow Associations, in theWorkflow Association pane, right-click the workflow

association and select Disable.
An audit history entry is created when you inactivate a user. For more information, see Audit Trail
Actions.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 45

Chapter 6: Defining Workflows

See also:
Generate aWorkflowAssociation

Placeholder Formats
A Vault object has various properties. A placeholder allows you to get the value of a Vault object
property. You also can get a Vault actor.
You can only use placeholders in a SymyxSendMailActivityworkflow activity.
Placeholders use the following format:

%actor%

Actor is a Vault actor. For example, %Supervisor%, this returns the Supervisor actor.
%property%

Property is a Vault object property. For example, %VaultPath%, this returns the full path to the
current Vault document being processed by a workflow.

Always place the Vault actor or Vault object property between % characters.

Placeholder Examples
Use placeholders to include data in emails sent from a workflow. The following example shows how to
use placeholders in an email’s destination address, sent from address, and body:
To: %Supervisor%; %primary.witness%
From: %System.Transitioner%
Body: The document %VaultPath% is ready for your review.
The email’s destination and sent from addresses contain actors (Supervisor, primary.witness, and
System.Transistioner). The email body contains a Vault object property, VaultPath.
The actors used in the email example are:

Actor Description

Supervisor Represents a recipient of the email. The Supervisor actor is not a standard
actor; you must create the Supervisor actor to use this value.

primary.witness Represents another recipient of the email.

System.Transitioner Represents the actor who started the workflow transition. This actor is the
user checking a document into Vault. As part of the check in, a workflow
transition is run and the user checking in the document is recorded in
System.Transitioner.

There are limitations to where you can use Vault actors and Vault object properties:
You can only use Vault actors in an email address.
You can only use Vault object properties in an email subject and body.
You can use %System.DefaultFrom%and %System.DefaultTo% for the email addresses, which
are the values defined in theWorkflowEmailSection of the configuration file on themiddle-tier server
where BIOVIA Vault Server is installed, for example, C:\Program Files

(x86)\symyx\Symyx.Vault.PrivateService\web.config.

Page 46 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Chapter 6: Defining Workflows

If you use %System.Transistioner% in an email address, but there is no email address defined
for that actor, then the email address for %System.DefaultFrom% is used for the From address of the
email, and %System.DefaultTo% is used for the To email address.

The following example shows the use of other placeholders.
To: %Author%

Subject: Your document %Title% has entered workflow
%Author% is the creator of the Vault document.
%Title% is the name of the Vault document.
You can use any Vault object property in the subject and body of an email. For example, VaultPath is the
folder path to the Vault document.
For a list of core properties, see the data model in the BIOVIA Vault Server Installation Guide.
You can use any property in any property set assigned to a Vault object.
If there is a duplicate name in two different property sets for a Vault object, then there is no guarantee
which one is retrieved.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 47

Appendix A:
Administering Vault using PowerShell Scripts
PowerShell is a command-line shell and scripting language for task and configuration management.
BIOVIA Vault Server is deployed with scripts that create functions that you can call from PowerShell. The
Vault Server installer includes PowerShell 3.0.
The code in the PowerShell Vault scripts is subject to change.
If you copy sample code from this PDF document and paste it into a text editor, the text might change
from the original. To ensure that the text is valid and usable, you might need to restore indents, remove
extra spaces, and retype characters for single and double quotes.

PowerShell Prerequisites
Install the required security certificate on the computer on which you will run PowerShell.
To install Vault Administration Console, you must first run the Vault Deployment Utility, and
download and run the VaultAdministrationConsoleInstaller.exe.
Use the Vault Administration Console version that matches the version of the BIOVIA Vault Server. If
the versions numbers are not the same, you need to upgrade the administrative tools console.
The PowerShell scripts are installed at:
<installation_directory>\Program Files (x86)\BIOVIA\Vault
Administration\Powershell

The Vault Server installer includes PowerShell 3.0.
You must modify the system environment variable PATH and change the setting for PowerShell so
that it will start the 32-bit version not the 64-bit version. Change:
%SYSTEMROOT%\System32\WindowsPowerShell\v1.0 to
%SYSTEMROOT%\SysWOW64\WindowsPowerShell\v1.0

Initial PowerShell Commands
Note: Foundation Hub manages vocabularies, so there are no related Powershell commands. Refer
to Foundation Hub 2021 Administration Guide for more information.

You can adapt the PowerShell example code for your own use.
If you copy sample code and paste it into a text editor, the text might change from the original. To
ensure that the text is valid and usable, you might need to restore indents, remove extra spaces, and
retype characters for single and double quotes.
Before running any PowerShell commands, perform the following steps in PowerShell:
1. Choose Start > Programs >Windows PowerShell 1.0 >Windows PowerShell.
2. Set the execution policy to unrestricted:

set-executionpolicy unrestricted

3. On a client computer in the directory <installation_directory>\Program
Files\BIOVIA\Vault Administration\Powershell add the directory to your path.

Page 48 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

if($env:path -notlike "*Administrative Tools*")

{

Only set the path if it doesn't already exist

$global:savePath = $env:path;

$env:path = $env:path + ";

"installation_directory\Program Files\BIOVIA\Vault
Administration\Powershell";

}

4. Change directories to C:\Program Files\BIOVIA\Vault Administration\Powershell
cd "C:\Program Files\BIOVIA\Vault Administration\Powershell"

5. Run the PowerShell scripts to load the assemblies and create the required functions:
. .\Load-Assemblies.ps1

. .\Add-Association.ps1

. .\Add-User.ps1

. .\Connect-Server.ps1

. .\Create-WorkflowActor.ps1

. .\Create-WorkflowAssociation.ps1

. .\Get-VaultId.ps1

. .\Get-VaultObject.ps1

. .\Publish-WorkflowActorAssociation.ps1

. .\Save-VaultObject.ps1

. .\Set-DefaultTemplate.ps1

. .\Set-Permissions.ps1

6. Connect to Vault from PowerShell; set the Server, UserName, and Password parameters in the
following line and run it:
> $ws = Connect-Server -Server "XXXX" -UserName "vault.admin" -Password
"XXXX";

The command calls Connect-Server and stores the returned workspace in an object called ws.
7. Verify that you are authenticated:

> $ws.IsAuthenticated

True

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 49

Appendix A: Administering Vault using PowerShell Scripts

If you are authenticated, the command returns True. If False is returned, verify that you set the
correct Server, User Name, and Password parameters in the previous step.

You can use psbase to display all the properties for an object. The following example uses ws.psbase
to display all of the ws properties:
$ws.psbase

ActiveVaultServer : Symyx.Framework.Vault.VaultServer
ActiveServer : Symyx.Framework.Vault.VaultServer
HasActiveServer : True
SiteRepository : {Repository.ab732e9a-a793-d437-5b04-2165cf8214c6}
UserRepository : {}

VaultRepositories : {Repository.d8eb6c52-2f10-243e-e906-5ea1a00b7d74}
CurrentUser : SYMYX-IC\vault.admin

HomeRepository : {}
Repositories : {Repository.d8eb6c52-2f10-243e-e906-5ea1a00b7d74}
IsAuthenticated : True

AuthenticationState : Yes
IsOnline : True
Comparer : System.Collections.Generic.GenericEqualityComparer`1

[System.String]
Count : 1
Keys : {Server1}
Values : {Symyx.Framework.Vault.VaultServer}

Vault Identifiers
Vault identifiers (IDs) are strings that uniquely reference objects in the BIOVIA Vault Server database. For
example, User.628ecafc-c1d8-84de-0876-47e3924171d1 references a Vault user object.
Many of the scripts contain example usage lines that illustrate how to call the function that the script
creates. Some of the usage lines contain Vault IDs that reference fictitious objects. For example, the
Add-Association.ps1 contains the following line in the usage section that shows how to get a user
object from Vault:
$User = Get-VaultObject -VaultId "User.628ecafc-c1d8-84de-0876-47e3924171d1"
-Workspace $ws -Repository $ws.SiteRepository;

The Get-VaultObject function returns the Vault object with the ID specified in the VaultId
parameter. Get-VaultObject returns the specified user and stores it in the User object.
Before running the example code in your system, you must retrieve the Vault ID for a user object that
actually exists in your Vault installation.
To get an Vault ID, you can use the Get-VaultId function, created by the Get-VaultId.ps1
script, or Oracle SQL*Plus.

Retrieve a Vault ID with Get-VaultId
To retrieve a Vault ID using the Get-VaultId function, use the following steps:
1. Open PowerShell, set the Name parameter in the following line to a user that exists in your Vault

installation and then run the line:
$id = Get-VaultId -Name "Supervisor" -Type "User" -Workspace $ws;

Page 50 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

The Name and Type parameters specify the name and type of the object whose ID you want to
retrieve from Vault. The Workspace parameter specifies the workspace object you created when
calling the Connect-Server function to connect to Vault.

2. To display the id:
$id
Prefix Guid
User f51f77e4-5a71-4d52-a058-39a40ee5a7e5

The Guid column in the output contains the Vault ID you need when calling Get-VaultObject.
You can then call Get-VaultObject to retrieve the actual object from BIOVIA Vault Server:
$User = Get-VaultObject -VaultId "User.f51f77e4-5a71-4d52-a058-
39a40ee5a7e5" -Workspace $ws -Repository $ws.SiteRepository;

Retrieve a Vault ID with Oracle SQL*Plus
To retrieve a Vault ID using SQL*Plus:
1. Start SQL*Plus and log in to Oracle as the owner of the Site schema.
2. Run the following commands in SQL*Plus:

column GUID format a45

column name format a25

select GUID, name from vaultobject where name like '%Supervisor%';

If the object exists, you see output similar to the following example:
GUID NAME

User.0a6598c0-0162-7449-9a7c-5103346a30fc symyx-ic\Supervisor

The GUID column contains the Vault ID you need to use when calling Get-VaultObject.
3. From PowerShell, you can call Get-VaultObject to get the object from Vault, using the following:

$User = Get-VaultObject -VaultId "User.0a6598c0-0162-7449-9a7c-
5103346a30fc" -Workspace $ws -Repository $ws.SiteRepository;

4. To see all the users and their Vault IDs, run the following query in SQL*Plus:
select GUID, name from vaultobject where objecttype='User';

5. To see all the groups and their Vault IDs, run the following query in SQL*Plus:
select GUID, name from vaultobject where objecttype='Group';

6. To see all the object types, run the following query in SQL*Plus:
select unique objecttype from vaultobject;

PowerShell Scripts
The BIOVIA Vault Server PowerShell scripts are located in C:\Program Files (x86)\BIOVIA\Vault

Administration\Powershell on the computer where you install the Vault Administration Console.
The following table lists the available scripts.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 51

Appendix A: Administering Vault using PowerShell Scripts

Script filename Function created by the script
allows you to

add-Association.ps1 Adds a workflow association.

Add-BalanceIntegration-Dictionary.ps1 Sets up balance integration.

add-User.ps1 Adds a user.

BalanceIntegration.ps1 Sets up balance integration.

change-WorkflowAssociationEnabled-AddHistory.ps1 Enables, disables, and removes
WorkflowAssociations.

connect-Server.ps1 Connects to Vault.

Create-Section.ps1 Creates a document with a text
section.

Create-SectionTemplate.ps1 Creates a document section
template based in the text
section.

Create-Template.ps1 Creates a new document
template.

create-WorkflowActor.ps1 Creates a workflow actor.

create-WorkflowAssociation.ps1 Creates theWorkflow
Association for a specified
WorkflowDefinition.

Get-AllByType.ps1 Gets all objects from the Site
repository of a specific type

get-VaultId.ps1 Gets the ID of a Vault object.

get-VaultObject.ps1 Gets a Vault object.

Import-Forms.ps1 Imports all form files from a
specified local folder

Index-VaultObject.ps1 Sends a specified object to the
message processing queue for
indexing.

LegacyConverter-Setup.ps1 Sets up legacy conversion

load-Assemblies.ps1 Loads the Framework
assemblies.

MaterialInfoManager-Setup.ps1 Sets up material info

publish-WorkflowActorAssociation.ps1 Publishes an association
between a workflow and an
actor.

Page 52 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

Script filename Function created by the script
allows you to

save-VaultObject.ps1 Saves a Vault object.

set-DefaultTemplate.ps1 Sets the default experiment
template.

set-Permissions.ps1 Sets the permissions for an
object.

Update-BalanceIntegration-Dictionary.ps1 Changes the balance server URL

VerifyFolderTitleChangeInSystemHistory.ps1 Example used internally for
system verification. Verifies
that renaming folder titles will
be recorded in Audit history.

VerifySectionTemplateTitleChangeInSystemHistory.ps1 Example used internally for
system verification. Verifies
that renaming folder titles will
be recorded in Audit history.

VerifySectionTitleChangeInSystemHistory.ps1 Example used internally for
system verification. Verifies
that renaming section titles will
be recorded in Audit history.

VerifyTemplateTitleChangeInSystemHistory.ps1 Example used internally for
system verification. Verifies
that renaming template titles is
recorded in Audit history.

Add-Association.ps1 Script
The Add-Association.ps1 script contains a function called Add-Association that adds aWorkflow
actor association to a user record in BIOVIA Vault Server. The script is the PowerShell version of the
operation to add an actor role and a group that assigns role to a user record on theWorkflow tab in the
User properties of the Vault Administration Console. The script contains code similar to the following
listing:
$usage = @'

. .\Load-Assemblies.ps1
. .\Connect-Server.ps1
. .\Create-WorkflowActor.ps1

. .\Add-Association.ps1
. .\Save-VaultObject.ps1
. .\Get-VaultObject.ps1
. .\Get-VaultId.ps1
$ws = Connect-Server -Server "XXXX" -UserName "vault.admin" -

Password "XXXX";
$actor = Create-WorkflowActor -Name "PrimaryWitness";
Save-VaultObject -VaultObject $actor -Workspace $ws;

Alternatively if it already exists:

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 53

Appendix A: Administering Vault using PowerShell Scripts

$actorId = Get-VaultId -Name "PrimaryWitness" -Type
"WorkflowActor" -Workspace $ws;

$actor = Get-VaultObject -VaultId $actorId -Workspace $ws -
Repository $ws.SiteRepository;

$user = Get-VaultObject -VaultId "User.628ecafc-c1d8-84de-0876-
47e3924171d1" -Workspace $ws -Repository $ws.SiteRepository;

$target = Get-VaultObject -VaultId "Group.c5f785d4-4c6e-f445-e87d-
c6ee4853e423" -Workspace $ws -Repository $ws.SiteRepository;

$association = New-Object
Symyx.Framework.Workflow.WorkflowActorAssociation $target, $actor;

Add-Association -User $user -Association $association;
Save-VaultObject -VaultObject $user -Workspace $ws;
'@;

function Add-Association {
param (

[Symyx.Framework.Vault.User]$User=$(throw "must specify -
User"),

[Symyx.Framework.Vault.Association]$Association=$(throw "must
specify -Association")

)

begin {
$User.Associations.Add($Association);

}

process {
No process of pipeline

}

end {
No end activity

}
}

The usage section of the script shows sample PowerShell commands. For example:
To create a workflow actor, call Create-WorkflowActor:
$actor = Create-WorkflowActor -Name "PrimaryWitness";

To save the new actor, call Save-VaultObject:
Save-VaultObject -VaultObject $actor -Workspace $ws;

If you have already have an actor you want to use, set the actor name and type in the following line and
execute:
$actorId = Get-VaultId -Name "PrimaryWitness" -Type "WorkflowActor" -

Workspace $ws;

$actor = Get-VaultObject -VaultId $actorId -Workspace $ws -Repository

$ws.SiteRepository;

To set the user and target group, modify the Vault IDs in the following lines and execute:
$user = Get-VaultObject -VaultId "User.628ecafc-c1d8-84de-0876-47e3924171d1"

-Workspace $ws -Repository $ws.SiteRepository;

Page 54 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

$target = Get-VaultObject -VaultId "Group.c5f785d4-4c6e-f445-e87d-

c6ee4853e423" -Workspace $ws -Repository $ws.SiteRepository;

To create an association and then save it, execute:
$association = New-Object Symyx.Framework.Workflow.WorkflowActorAssociation

$target, $actor;

Add-Association -User $user -Association $association;

Save-VaultObject -VaultObject $user -Workspace $ws;

Change-WorkflowAssociationEnable-AddHistory.ps1 Script
With BIOVIA Vault Server, administrators can enable, disable, and remove workflow associations using
the Vault Administration Console or API calls. When using API calls, BIOVIA recommends using the
following script, so the audit data gets generated for these events. You can use a single API call to make
any of these changes, critical system data changes occur without generating audit data. The Vault
Administration Console generates the same audit data.
Run the Change-WorkflowAssociationEnabled-AddHistory.ps1 PowerShell script to
enable, disable, and remove workflow associations and generate audit data.
1. Open theMicrosoft PowerShell application:

Start > All Programs > Accessories > Windows PowerShell >Windows PowerShell (x86)
2. Navigate to the PowerShell folder, for example, on a 32-bit client computer:

cd C:\Program Files (x86)\BIOVIA\Vault Administration\Powershell or on a 64-
bit client computer
cd C:\Program Files (x86)\BIOVIA\Vault Administration\Powershell

3. Run the Load-Assemblies.ps1 and Connect-Server.ps1 scripts.
For example:
. .\set-execution

unrestricted; . .\Load-Assemblies.ps1; . .\Connect-Server.ps1;
$server = server_name; $ws = Connect-Server

-Server $server - UserName DOMAIN\user_name -Password password

The server_name is the fully qualified server name of your Vault server.
DOMAIN\user_name is a Vault administrator user.

4. Run the Change-WorkflowAssociationEnabled-AddHistory.ps1 script, type .

.\Change-WorkflowAssociationEnabled-AddHistory.ps1; or . .\Change-
WorkflowAssociationEnabled-AddHistory.ps1;

Query the Audit History table in the database to access the audit data generated by the Change-
WorkflowAssociationEnabled-AddHistory.ps1 .

Enable or disable workflow association and audit history
To enable or disable a workflow association and generate an audit history, type the following:

. .\ Change-WorkflowAssociationEnabled-AddHistory -Workspace $ws -Name

"WTA-Title" -EnableState $value; or . .\Change-WorkflowAssociationEnabled-
AddHistory -Workspace $ws -Name "WTA-Title" -EnableState $value;

The variables in the command are as follows:
". .\Change-WorkflowAssociationEnabled-AddHistory.ps1" loads the PowerShell script.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 55

Appendix A: Administering Vault using PowerShell Scripts

Change-WorkflowAssociationEnabled-AddHistory -Workspace $ws -Name "WTA-
Title" -EnableState
$true;
Change-WorkflowAssociationEnabled-AddHistory -Workspace $ws -Name "WTA-
Title" -EnableState
$false;

calls the Change-WorkflowAssociationEnabled-AddHistorymethod or the from the
PowerShell script with Delete-WorkflowAssociationEnabled-AddHistorymethod
Workspace, Name, and EnableState as arguments.

The EnableState argument values are:
true to enable workflow associations
false to disable workflow associations

Remove workflow association
To remove a workflow association and generate an audit history to call the Delete-
WorkflowAssociation-AddHistorymethod from the PowerShell script with Workspace and Name
as arguments, use the following:
. .\ Delete-WorkflowAssociation-AddHistory -Workspace $ws -Name "WTA-Title";

or
. .\Delete-WorkflowAssociation-AddHistory -Workspace $ws -Name "WTA-Title";

Connect-Server.ps1 Script
The Connect-Server.ps1 script contains a function called Connect-Server that connects to an instance of
Vault Server. The script contains code similar to the following listing:
function LoadAssemblies {

$a = @{
"Symyx.Framework" = [System.Reflection.Assembly]::LoadWithPartialName

("Symyx.Framework");
}
return (,$a);

}

function Connect-Server {
param (
[System.String]$Server=$(throw "must specify -Server"),
[System.String]$UserName=$(throw "must specify -UserName"),
[System.String]$Password=$null

)

begin {
if(-not $Password) {

$Password = read-host -Prompt Password;
}
$NSVaultWorkspace = [Symyx.Framework.Vault.VaultWorkspace];
$NSWorkspaceLoginManager = [Symyx.Framework.Vault.WorkspaceLoginManager];
$ws = new-object $NSVaultWorkspace $Server;
$wslm = new-object $NSWorkspaceLoginManager $ws;
$wslm.Login($Server, $Username, $Password, $false);
$ws.Clear();

Page 56 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

$wslm.AddServerToWorkspace();
$ws.MakeCurrentWorkspace();
return (,$ws);

}

process {
Don't process anything from the pipeline
}

end {
Nothing to do at end

}
}

$null = LoadAssemblies;

To execute in PowerShell, you set the Server, User Name, and Password parameters in the following line
and then execute it:
$ws = Connect-Server -Server "XXXX" -UserName "vault.admin" -Password "XXXX";

Create-WorkflowActor.ps1 Script
The Create-WorkflowActor.ps1 script contains a function called, Create-WorkflowActor, that
creates a Workflow actor. The script contains code similar to the following listing:
$usage = @'

. .\Load-Assemblies.ps1

. .\Connect-Server.ps1

. .\Create-WorkflowActor.ps1

. .\Save-VaultObject.ps1
$ws = Connect-Server -Server "XXXX" -UserName "vault.admin" -Password

"XXXX";
$wa = Create-WorkflowActor -Name "Supervisor";

Save-VaultObject -VaultObject $wa -Workspace $ws;
'@;

function Create-WorkflowActor {
param (

[System.String]$Name=$(throw "must specify -Name")
)
begin {

$actor = New-Object Symyx.Framework.Workflow.WorkflowActor $Name;
}

process {
No process of pipeline

}

end {
return (,$actor);

}
}

The following example creates two workflow actors and saves them to Vault:
$wa1 = Create-WorkflowActor -Name "Supervisor";

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 57

Appendix A: Administering Vault using PowerShell Scripts

Save-VaultObject -VaultObject $wa1 -Workspace $ws;

$wa2 = Create-WorkflowActor -Name "Primary Witness";

Save-VaultObject -VaultObject $wa2 -Workspace $ws;

Create-WorkflowAssociation.ps1 Script
The Create-WorkflowAssociation.ps1 script contains a function called, Create-
WorkflowAssociation that creates a Workflow association. The script contains code similar to the
following listing:
PS path> . .\Load-Assemblies
PS path> . .\Connect-Server
PS path> . .\Get-VaultObject
PS path> . .\Create-WorkflowAssociation
PS path> . .\Save-VaultObject
PS path> $ws = Connect-Server -Server "XXXX" -UserName "vault.admin" -
Password "XXXX";
PS path> $wd = Get-VaultObject -VaultId "WorkflowDef.bf2c0d51-d9b5-4024-
ad17-c857817b6573" -Workspace $ws;
PS path> $documentType =
[Symyx.Framework.Vault.VaultObjectType]::Document;
PS path> $wa = Create-WorkflowAssociation -Workspace $ws -Name
"MyAssociation" -VaultObjectType $documentType -Definition $wd;
PS path> Save-VaultObject -VaultObject $wa -Workspace $ws;

function Create-WorkflowAssociation {
param (

[Symyx.Framework.Vault.VaultWorkspace] $Workspace=$(throw "must
specify -Workspace"),

[System.String] $Name=$(throw "must specify -Name"),
[Symyx.Framework.Workflow.WorkflowDefinition] $Definition=$(throw

"must specify -Definition"),
[Symyx.Framework.Vault.VaultObjectType] $VaultObjectType=

[Symyx.Framework.Vault.VaultObjectType]::All,
[System.String] $Path
)

begin {
$wag = [Symyx.Framework.Workflow.WorkflowAssociationGenerator]::Create

($Name, $VaultObjectType, $Path);
$assembly = $wag.Assembly;
$null = [Symyx.Framework.Extensibility.AssemblyCache]::Publish

($assembly);
$wao = New-Object Symyx.Workflow.Custom.$Name;
$wao.Title = $Name;
$wa = New-Object Symyx.Framework.Vault.Association

([Symyx.Framework.Vault.AssociationTypes]::Dependency, $Definition, $false,
"Workflow definition");

$wao.Associations.Add($wa);
return (,$wao);

}

process {

Page 58 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

}

end {
}
}

The start of the script shows sample PowerShell commands. For example:
Modify the Vault ID in the following line and call Get-VaultObject to retrieve an existing workflow
definition:
$wd = Get-VaultObject -VaultId "WorkflowDef.bf2c0d51-d9b5-4024-ad17-

c857817b6573" -Workspace $ws;

Set the document type:
$documentType = [Symyx.Framework.Vault.VaultObjectType]::Document;

Call Create-WorkflowAssociation to create the workflow association and then save it using Save-
VaultObject:
$wa = Create-WorkflowAssociation -Workspace $ws -Name "MyAssociation" -VaultObjectType
$documentType -Definition $wd;
Save-VaultObject -VaultObject $wa -Workspace $ws;

Get-VaultId.ps1 Script
The Get-VaultId.ps1 script contains a function called, Get-VaultId that returns the ID of a Vault
object. The script contains code similar to the following listing:
$usage =@'
. .\Load-Assemblies
. .\Connect-Server
. .\Get-VaultId
. .\Get-VaultObject
$ws = Connect-Server -Server XXXX -UserName "vault.admin" -Password XXXX;
$id = Get-VaultId -Name "Supervisor" -Type "WorkflowActor" -Workspace $ws;
$supervisor = Get-VaultObject -VaultId $id -Workspace $ws;
'@;
function Get-VaultId (
[System.String] $Name,
[System.String] $Type,
[Symyx.Framework.Vault.VaultWorkspace] $Workspace
) {
begin {
$NSCoreProperty = [Symyx.Framework.Properties.CoreProperty];
$NSCondition = [Symyx.Framework.CorePropertyQueryCondition];
$NSQuery = [Symyx.Framework.Query];
$titleProperty = $NSCoreProperty::Title;
$typeProperty = $NSCoreProperty::Type;

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 59

Appendix A: Administering Vault using PowerShell Scripts

$equalTo = [Symyx.Framework.QueryComparisonOperator+QueryComparisonOperators]::EqualTo;
$titleCondition = New-Object $NSCondition $titleProperty, $equalTo, $Name;
$typeCondition = New-Object $NSCondition $typeProperty, $equalTo, $Type;
$condition = [Symyx.Framework.CorePropertyQueryCondition]::op_BitwiseAnd($titleCondition,
$typeCondition);
$query = New-Object $NSQuery $condition;
$list = $Workspace.FindVaultIds($query);
return (,$list)[0];
}
process {
No processing of pipeline
}
end {
}
}
The usage section of the script shows sample PowerShell commands. For example:
Call Get-VaultId to get the ID of an existing workflow actor named Supervisor:
> $id = Get-VaultId -Name "Supervisor" -Type "WorkflowActor" -Workspace $ws;
Call Get-VaultObject to get the actual Supervisor object:
> $supervisor = Get-VaultObject -VaultId $id -Workspace $ws;

Get-VaultObject.ps1 Script
The Get-VaultObject.ps1 script contains a function called Get-VaultObject that returns a Vault
object. The script contains code similar to the following listing:
$usage = @'

. .\Load-Assemblies

. .\Connect-Server

. .\Get-VaultObject

$ws = Connect-Server -Server XXXX -UserName vault.admin -Password XXXX;

$folder = Get-VaultObject -VaultId "Folder.1e7cc73a-0da4-4826-a827-
625e7625c8ea" -Workspace $ws -Repository $ws.HomeRepository;

$folder.Description;

'@;

function get (

[System.String] $VaultId,

Page 60 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

[Symyx.Framework.Vault.VaultWorkspace] $Workspace,

[Symyx.Framework.Vault.VaultRepository] $Repository =
$Workspace.SiteRepository

) {

[Symyx.Framework.Vault.VaultId] $id = New-Object
Symyx.Framework.Vault.VaultId $VaultId;

[Symyx.Framework.Vault.DataScope] $scope =
[Symyx.Framework.Vault.DataScope]::All;

$signature = "TVaultObject Get\[TVaultObject\]\
(Symyx.Framework.Vault.VaultId, Symyx.Framework.Vault.DataScope\)";

$m = @($Repository.GetType().GetMethods() | ?{"%{$_}" -match
"$signature"})[-1];

[type[]] $types = @([Symyx.Framework.Vault.VaultObject]);

$generic = $m.MakeGenericMethod($types);

$object = $generic.Invoke($Repository, @($id, $scope));

return (,$object);

}

function Get-VaultObject (

[System.String] $VaultId,

[Symyx.Framework.Vault.VaultWorkspace] $Workspace,

[Symyx.Framework.Vault.VaultRepository] $Repository =
$Workspace.SiteRepository

) {

begin {

if($VaultId -ne $null) {

$object = get $VaultId $Workspace $Repository;

return (,$object);

}

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 61

Appendix A: Administering Vault using PowerShell Scripts

}

process {

if($_ -ne $null) {

$object = get $_ $Workspace $Repository;

Write-Output (,$object);

}

}

end {

}

}

The usage section of the script shows sample PowerShell commands. For example:
Modify the Vault ID in the following line and then CallGet-VaultObjec to retrieve an existing folder:
$folder = Get-VaultObject -VaultId "Folder.1e7cc73a-0da4-4826-a827-
625e7625c8ea" -Workspace $ws -Repository $ws.HomeRepository;

To display the folder description:
$folder.Description;

The Publish-WorkflowActorAssociation.ps1 script contains a function called Publish-
WorkflowActorAssociation that publishes a workflow actor association. The script contains code similar
to the following listing:
$usage =@'
. .\Load-Assemblies.ps1
. .\Connect-Server.ps1
. .\Create-WorkflowActor.ps1
. .\Add-Association.ps1
. .\Save-VaultObject.ps1
. .\Get-VaultObject.ps1
. .\Get-VaultId.ps1
. .\Publish-WorkflowActorAssociation.ps1
$ws = Connect-Server -Server "XXXX" -UserName "vault.admin" -Password "XXXX";
$granteeId = Get-VaultId -Name "symyx-ic\vault.admin" -Type "User" -Workspace $ws;
$grantee = Get-VaultObject -VaultId $granteeId -Workspace $ws -Repository $ws.SiteRepository;
$targetId = Get-VaultId -Name "Global Administrators" -Type "Group" -Workspace $ws;
$target = Get-VaultObject -VaultId $targetId -Workspace $ws -Repository $ws.SiteRepository;

Page 62 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

Publish-WorkflowActorAssociation -ServerWorkspace $ws -UserGrantee $grantee -Actor "Supervisor" -
GroupTarget $target;
'@;
function Publish-WorkflowActorAssociation {
param (
[Symyx.Framework.Vault.VaultWorkspace] $ServerWorkspace=$(throw "must specify -
ServerWorkspace"),
[Symyx.Framework.Vault.User] $UserGrantee=$(throw "must specify -User"),
[System.String] $Actor=$(throw "must specify -Actor"),
[Symyx.Framework.Vault.Group] $GroupTarget=$(throw "must specify -GroupTarget")
)
begin {
$actorId = Get-VaultId -Name $Actor -Type "WorkflowActor" -Workspace $ServerWorkspace;
$actor = Get-VaultObject -VaultId $actorId -Workspace $ServerWorkspace -Repository
$ws.SiteRepository;
$association = New-Object Symyx.Framework.Workflow.WorkflowActorAssociation $GroupTarget,
$actor;
Add-Association -User $UserGrantee -Association $association;
Save-VaultObject -VaultObject $UserGrantee -Workspace $ServerWorkspace;
}
process {
No process of pipeline
}
end {
No end activity
}
}
The usage section of the script shows sample PowerShell commands. For example:
Get the grantee Vault ID:
> $granteeId = Get-VaultId -Name "vault.admin" -Type "User" -Workspace $ws;
Get the grantee:
> $grantee = Get-VaultObject -VaultId $granteeId -Workspace $ws -Repository $ws.SiteRepository;
Get the target ID:
> $targetId = Get-VaultId -Name "Global Administrators" -Type "Group" -Workspace $ws;
Get the target:
> $target = Get-VaultObject -VaultId $targetId -Workspace $ws -Repository $ws.SiteRepository;
Publish the workflow actor association:
> Publish-WorkflowActorAssociation -ServerWorkspace $ws -UserGrantee $grantee -Actor "Supervisor" -
GroupTarget $target;

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 63

Appendix A: Administering Vault using PowerShell Scripts

Load-Assemblies.ps1 Script
The Load-Assemblies.ps1 script loads the Framework assemblies. The script is similar to the following:
$script:framework = [System.Reflection.Assembly]::LoadWithPartialName

("Symyx.Framework");

To execute in PowerShell:
. .\Load-Assemblies.ps1

Publish-WorkflowActorAssociation.ps1 Script
The Publish-WorkflowActorAssociation.ps1 script contains a function called, Publish-
WorkflowActorAssociation that publishes a workflow actor association. The script contains code
similar to the following listing:
$usage = @'

. .\Load-Assemblies.ps1

. .\Connect-Server.ps1

. .\Create-WorkflowActor.ps1

. .\Add-Association.ps1

. .\Save-VaultObject.ps1

. .\Get-VaultObject.ps1

. .\Get-VaultId.ps1

. .\Publish-WorkflowActorAssociation.ps1

$ws = Connect-Server -Server "XXXX" -UserName "vault.admin" -Password
"XXXX";

$granteeId = Get-VaultId -Name "symyx-ic\vault.admin" -Type "User" -
Workspace $ws;

$grantee = Get-VaultObject -VaultId $granteeId -Workspace $ws -Repository
$ws.SiteRepository;

$targetId = Get-VaultId -Name "Global Administrators" -Type "Group" -
Workspace $ws;

$target = Get-VaultObject -VaultId $targetId -Workspace $ws -Repository
$ws.SiteRepository;

Publish-WorkflowActorAssociation -ServerWorkspace $ws -UserGrantee $grantee
-Actor "Supervisor" -GroupTarget $target;

'@;

Page 64 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

function Publish-WorkflowActorAssociation {

param (

[Symyx.Framework.Vault.VaultWorkspace] $ServerWorkspace=$(throw "must
specify -ServerWorkspace"),

[Symyx.Framework.Vault.User] $UserGrantee=$(throw "must specify -User"),

[System.String] $Actor=$(throw "must specify -Actor"),

[Symyx.Framework.Vault.Group] $GroupTarget=$(throw "must specify -
GroupTarget")

)

begin {

$actorId = Get-VaultId -Name $Actor -Type "WorkflowActor" -Workspace
$ServerWorkspace;

$actor = Get-VaultObject -VaultId $actorId -Workspace $ServerWorkspace -
Repository $ws.SiteRepository;

$association = New-Object
Symyx.Framework.Workflow.WorkflowActorAssociation $GroupTarget, $actor;

Add-Association -User $UserGrantee -Association $association;

Save-VaultObject -VaultObject $UserGrantee -Workspace $ServerWorkspace;

}

process {

No process of pipeline

}

end {

No end activity

}

}

The usage section of the script shows sample PowerShell commands. For example:
To get the grantee Vault ID:
$granteeId = Get-VaultId -Name "vault.admin" -Type "User" -Workspace $ws;

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 65

Appendix A: Administering Vault using PowerShell Scripts

To get the grantee:
$grantee = Get-VaultObject -VaultId $granteeId -Workspace $ws -Repository
$ws.SiteRepository;

To get the target ID:
$targetId = Get-VaultId -Name "Global Administrators" -Type "Group" -
Workspace $ws;

To get the target:
$target = Get-VaultObject -VaultId $targetId -Workspace $ws -Repository
$ws.SiteRepository;

To publish the workflow actor association:
Publish-WorkflowActorAssociation -ServerWorkspace $ws -UserGrantee $grantee -
Actor "Supervisor" -GroupTarget $target;

Save-VaultObject.ps1 Script
TheSave-VaultObject.ps1 script contains a function called Save-VaultObject that saves an object to
BIOVIA Vault Server. The script contains code similar to the following listing:
function LoadAssemblies {

$a = @{"Symyx.Framework" = [System.Reflection.Assembly]::LoadWithPartialName
("Symyx.Framework");

}

return (,$a);

}

function save ([Symyx.Framework.Vault.VaultObject] $object,
[Symyx.Framwork.Vault.Folder] $folder){

if($object -ne $null) {

We have an object specified
$repository = $object.SourceRepository -as

[Symyx.Framework.Vault.Repository];

#if($repository -ne $null) {

if($object.IsManaged) {

Existing object, so update

$repository.Update($object);

} else {

New object so add

$repository = $folder.SourceRepository -as
[Symyx.Framework.Vault.Repository];

Page 66 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

$repository.Add($object, $folder);

}

}

}

function Save-VaultObject ([Symyx.Framework.Vault.VaultWorkspace]
$Workspace,

[Symyx.Framework.Vault.VaultObject] $VaultObject,

[Symyx.Framework.Vault.Folder] $Folder) {

begin {

#Write-Host "VaultObject is" $VaultObject.GetType().
FullName;

if($Folder -eq $null) {

#Folder is not supplied so use site repository root from
$Workspace

$Folder = $Workspace.SiteRepository -as [Symyx.Framework.Vault.Folder];

}

save $VaultObject $Folder;

}

process {

if($_ -ne $null) {

save $_ $Folder;

}

}

end {

return;

}

}

$a = LoadAssemblies;

For example, you call Create-Vocabulary and then save the vocabulary using Save-VaultObject:

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 67

Appendix A: Administering Vault using PowerShell Scripts

> $myVocabulary = Create-Vocabulary -Name "MyVocabulary";

> Save-VaultObject -VaultObject $myVocabulary -Workspace $ws;

Set-DefaultTemplate.ps1 Script
The Set-DefaultTemplate.ps1 script contains a function that assigns the default experiment template for
a specific user. The script contains code similar to the following listing:
$usage = @'

. .\Load-Assemblies

. .\Connect-Server

. .\Get-VaultObject

. .\Set-DefaultTemplate

$ws = Connect-Server -Server XXXX -UserName vault.admin -Password XXXX;

$user = Get-VaultObject -VaultId "User.4849a892-2919-c4d8-c835-
108dfde8b5a1" -Workspace $ws;

$template = Get-VaultObject -VaultId "DocumentTemplate.f2beb97a-1e08-4b63-
9e01-08144653843f" -Workspace $ws;

$templateUri = $template.VaultUri.ToString();

Set-DefaultTemplate $templateUri $user;

'@;

function Set-DefaultTemplate (

[System.String] $TemplateVaultUri,

[Symyx.Framework.Vault.User] $User

) {

begin {

$key = "DefaultExperimentTemplate";

$User.Profile.Load();

$profile = $User.Profile;

$signature = "void SetValue\[T\]\(System.String, T\)";

$dictionary = New-Object Symyx.Framework.Vault.VaultDictionary;

Page 68 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

$dictionary.Title = $key;

$m = @($dictionary.GetType().GetMethods() | ?{"%{$_}" -match
"$signature"})[-1];

[type[]] $types = @([System.String]);

$generic = $m.MakeGenericMethod($types);

$generic.Invoke($dictionary, @($key, $TemplateVaultUri));

$profile.Add($dictionary);

$profile.Save($key);

return (,$profile);

}

process {

}

end {

}

}

The usage section of the script shows sample PowerShell commands. For example:
Modify the Vault ID in the following line and then call Get-VaultObject to get a user:
$user = Get-VaultObject -VaultId "User.4849a892-2919-c4d8-c835-108dfde8b5a1"

-Workspace $ws;

Modify the Vault ID in the following line and then callGet-VaultObject to get a template:
$template = Get-VaultObject -VaultId "DocumentTemplate.f2beb97a-1e08-4b63-

9e01-08144653843f" -Workspace $ws;

Get the template URI:
$templateUri = $template.VaultUri.ToString();

Set the default template:
Set-DefaultTemplate $templateUri $user;

Set-Permissions.ps1 Script
The Set-Permissions.ps1 script assigns the permissions for an object. The script contains code
similar to the following listing:
function Set-Permissions {

param (

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 69

Appendix A: Administering Vault using PowerShell Scripts

[Symyx.Framework.Vault.VaultServer]$Server=$(throw "must specify -
Server"),

[System.String]$User=$(throw "must specify VaultId string for -User"),

[System.String]$Object=$(throw "must specify VaultId string for -Object"),

[System.Int32]$Allow=0,

[System.Int32]$Deny=0

)

begin {

Set namespaces

$NSPermissions = [Symyx.Framework.Vault.Security.Permissions];

$NSVaultId = [Symyx.Framework.Vault.VaultId];

VaultId of to user or group you want to give the permissions to

$actorId = New-Object -TypeName $NSVaultId -ArgumentList $User;

VaultId of the object to set the permissions for

$subjectId = New-Object -TypeName $NSVaultId -ArgumentList $Object;

I would like to see if these are really still needed;

it does not seem to me that anyone would want to keep track of them

$Server.RemoveExplicitPermissions($actorId, $subjectId,
"Administration");

$Server.RemoveExplicitPermissions($actorId, $subjectId, "bootstrap");

$Server.SetExplicitPermissions($actorId, $subjectId, "Administration",

$allow, $deny);

Print info

"Allow:";

Page 70 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

$allow;

"Deny:";

$deny;

"User:";

$actorIdString;

"Object:";

$subjectIdString;

}

process {

Don't process anything from the pipeline

}

end {

Nothing to do at end

}

}

Create Print Audit History Script
You can use following example to create a Print-History.ps1 script and adapt the Print History function
for your own use.
#$ws = Connect-Server $server $user $password

$usage = @'

. .\Load-Assemblies

. .\Connect-Server

. .\Print-History.ps1

$ws = Connect-Server -Server XXXX -UserName vault.admin -Password XXXX;

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 71

Appendix A: Administering Vault using PowerShell Scripts

$ws "User" "domain\username"

or

$ws (New-Object Symyx.Framework.Vault.VaultId $VaultIdString)

$null =[System.Reflection.Assembly]::LoadWithPartialName
("Symyx.Framework");

function Print-History

(

[Symyx.Framework.Vault.VaultWorkspace] $Workspace,

[String] $Type,

[String] $Title,

[Symyx.Framework.Vault.VaultId] $VaultId =
[Symyx.Framework.Vault.VaultId]::Empty

)

{

if ($VaultId -eq [Symyx.Framework.Vault.VaultId]::Empty){

$list = $Workspace.Get([Symyx.Framework.Vault.VaultObjectTypes]::$Type,
[Symyx.Framework.Vault.DataScope]::Minimal)

if (-not ($list.Contains($Title))){ throw "No object of type $Type found
with Title $Title" }

else {$VaultId = $list.FindByTitle($Title).VaultId}

}

Write-Host "Getting history for $VaultId"

$history = $Workspace.GetHistory($VaultId)

Format-Table -Property "HistoryType", "UserName", "Description",
"Context", "ServerTimeStamp", "Version", "ObjectId", "ParticipantId" -
InputObject $history.AllHistory -AutoSize

}

Create Signature Policy Examples
You can create signature policies using the examples shown below.

Page 72 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

In-progress Signature Policy Example
Create a signature policy and set its attributes
$policy1 = new-object Symyx.Framework.Vault.Signing.SignaturePolicy;
$policy1.Title = "In Progress signature";
$policy1.Description = "No authentication required";
$policy1.AreCommentsAllowed = $FALSE;
$policy1.ForceUserToReauthenticate = $FALSE;
$policy1.IsObjectOpenRequired = $FALSE;
#$policy1.MeaningChoices.Add("")
#$policy1.DefaultMeaning
#$policy1.ReasonChoices.Add("")
#$policy1.DefaultReason
$policy1.IsReasonAllowed = $FALSE;
$policy1.IsReasonRequired = $FALSE;
$policy1.RequireSingleObjectSigning = $FALSE;

Add the signature policy to Vault

Write-Host "Adding signature policy $($policy1.Title) to Vault";
$ws.Add($policy1,$ws.SiteRepository);

Completed Signature Policy Example
Create a signature policy and set its attributes

$policy2 = new-object Symyx.Framework.Vault.Signing.SignaturePolicy;
$policy2.Title = "Completed signature";
$policy2.Description = "Used to ";
$policy2.AreCommentsAllowed = $FALSE;
$policy2.ForceUserToReauthenticate = $TRUE;
$policy2.IsObjectOpenRequired = $FALSE;
$policy2.MeaningChoices.Add("Completed; Ready for counter-signature")
$policy2.DefaultMeaning
#$policy2.ReasonChoices.Add("")
#$policy2.DefaultReason
$policy2.IsReasonAllowed = $FALSE;
$policy2.IsReasonRequired = $FALSE;
$policy2.RequireSingleObjectSigning = $FALSE;

Add the signature policy to Vault

Write-Host "Adding signature policy $($policy2.Title) to Vault";
$ws.Add($policy2,$ws.SiteRepository);

Returned signature policy
Create a signature policy and set its attributes
$policy3 = new-object Symyx.Framework.Vault.Signing.SignaturePolicy;
$policy3.Title = "Return to author signature";
$policy3.Description = "Used for sending documents back to authors for
further editing";
$policy3.AreCommentsAllowed = $FALSE;
$policy3.ForceUserToReauthenticate = $TRUE;
$policy3.IsObjectOpenRequired = $FALSE;
$policy3.MeaningChoices.Add("Edits required by author")

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 73

Appendix A: Administering Vault using PowerShell Scripts

$policy3.DefaultMeaning
#$policy3.ReasonChoices.Add("")
#$policy3.DefaultReason
$policy3.IsReasonAllowed = $FALSE;
$policy3.IsReasonRequired = $FALSE;
$policy3.RequireSingleObjectSigning = $FALSE;

Add the signature policy to Vault

Write-Host "Adding signature policy $($policy3.Title) to Vault";
$ws.Add($policy3,$ws.SiteRepository);

Standard signature policy
The following snippet shows how to create a “standard” signature policy:
Create a signature policy and set its attributes
$policy4 = new-object Symyx.Framework.Vault.Signing.SignaturePolicy;
$policy4.Title = "Standard signature";
$policy4.Description = "Comments and reasons are allowed";
$policy4.AreCommentsAllowed = $FALSE;
$policy4.ForceUserToReauthenticate = $TRUE;
$policy4.IsObjectOpenRequired = $FALSE;
#$policy4.MeaningChoices.Add("")
#$policy4.DefaultMeaning
#$policy4.ReasonChoices.Add("")
#$policy4.DefaultReason
$policy4.IsReasonAllowed = $TRUE;
$policy4.IsReasonRequired = $FALSE;
$policy4.RequireSingleObjectSigning = $FALSE;

Add the signature policy to Vault

Write-Host "Adding signature policy $($policy4.Title) to Vault";
$ws.Add($policy4,$ws.SiteRepository);

Write-Host "Adding signature policy $($policy4.Title) to Vault";
$ws.Add($policy4,$ws.SiteRepository);

Countersign signature policy
Create a signature policy and set its attributes
$policy5 = new-object Symyx.Framework.Vault.Signing.SignaturePolicy;
$policy5.Title = "Countersign";
$policy5.Description = "Used to countersign an experiment";
$policy5.AreCommentsAllowed = $FALSE;
$policy5.ForceUserToReauthenticate = $TRUE;
$policy5.IsObjectOpenRequired = $FALSE;
$policy5.MeaningChoices.Add("Read and Understood");
$policy5.MeaningChoices.Add("Observed");
#$policy5.DefaultMeaning;
#$policy5.ReasonChoices.Add("");
#$policy5.DefaultReason;
$policy5.IsReasonAllowed = $FALSE;
$policy5.IsReasonRequired = $FALSE;

Page 74 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

$policy5.RequireSingleObjectSigning = $TRUE;

Add the signature policy to Vault

Write-Host "Adding signature policy $($policy5.Title) to Vault";
$ws.Add($policy5,$ws.SiteRepository);

Message Queuing Function Example
The QueueMessage function example illustrates how to add a message to a queue. You can adapt this
function for your own use.
The function accepts three parameters:

Workspace
Target Vault ID
Queue name, the default is vaultqueue.

function QueueMessage {
param (
[Symyx.Framework.Vault.VaultWorkspace] $workspace = $(throw "must specify

-workspace"),
[Symyx.Framework.Vault.VaultId] $targetVaultId = $(throw "must specify -

targetVaultId"),
[System.String] $queueName = "vaultqueue"

)

begin
{
#Create a message sender on the queue

$messageSender = [Symyx.Framwork.Vault.Messaging.MessageSender]::Create
($queueName);

If the message sender was successfully created (i.e. not null), do...
if ($messageSender -ne $null)

{
Create a properties collection
$properties = new-object Symyx.Framework.Properties.PropertyCollection;

Set the signature
$signature = "Void SetValue\[T\]\(System.Enum, T\)";

Get the methods from the properties collection
$m1 = $properties.GetType().GetMethods();

Get the signature method from the properties collection
$m = @($properties.GetType().GetMethods() | ?{"%{$_}" -match

"$signature"})[-1];

Get the types
[type[]] $types = @([Symyx.Framework.Vault.VaultId]);

Make a generic method
$generic = $m.MakeGenericMethod($types);

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 75

Appendix A: Administering Vault using PowerShell Scripts

Invoke the generic method and get the object back
$object = $generic.Invoke($properties, @

([Symyx.Framework.Properties.CoreProperty]::Identifier, $targetVaultId));

Set the message subject
$subject =

[Symyx.Framework.Vault.Messaging.MessageSubject]::Vault.ToString();

Set the message action
$action =

[Symyx.Framework.Vault.Messaging.VaultAction]::ObjectSaved.ToString();

Send the message
$messageSender.Send($subject, $action, $workspace.CurrentUser.VaultId,

$properties);
}

return $null;
}

process {}
end {}

}

Manage Workbook Folders
You can manageWorkbook folders using PowerShell. You must log in as an administrator and create a
workspace named $ws. For more information, see Initial PowerShell Commands.

Create a Folder
To create a folder, the user account must have the CreateFolder permission on the parent folder. A
repository has a default root folder that stores all top-level folders.
The following example creates a folder called,My New Folder, in the default root folder of an example
repository called BIOVIA. You replace the repository with a repository that exists in your
implementation:
#Get the parent folder

$parentId = Get-VaultID -Name "My New Folder" -Type "Folder" -Workspace
$ws;

$parentFolder = Get-VaultObject -VaultId $parentId.toString() -Workspace
$ws;

Get the repository
$repository = $ws.GetRepository("");

Create the sub-folder
$newFolder = New-Object Symyx.Framework.Vault.Folder;
$newFolder.Title = "My Sub Folder";

Add new folder to the repository
$repository.Add($newFolder, $parentFolder);

Page 76 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

To examine the folder using the Vault Administration Console, expand the tree Console Root > Vault
Administration > Vault Server > Repositories.
The next example creates a sub-folder titled My Sub Folder within My New Folder:

Get the parent folde

Vault does not enforce folder name uniqueness. Before adding objects to a folder, verify that you are
using the correct folder. For more information, see Retrieve Folders with the Same Name.

Retrieve a Folder Using the Folder Name
The PowerShell code example finds the ID of a folder with the name, My New Folder:
$folderId = Get-VaultId -Name "My New Folder" -Type "Folder" -Workspace $ws;

If multiple folders have the same name, a list of folder IDs is returned. You need to iterate through the
list, retrieve each folder, and check the folder VaultPath. For more information, see Retrieve Folders with
the Same Name.
The following example retrieves the folder whose Vault ID was retrieved in the previous example:
$folder = Get-VaultObject -VaultId $folderId.toString() -Workspace $ws;

To ensure the folder was retrieved correctly, check the folder’s VaultPath attribute:
$folder.VaultPath;

MyCompany\My New Folder

VaultPath contains the repository and the full path to the folder.

Retrieve Folders with the Same Name
Vault does not enforce uniqueness on folder names. If multiple folders share the same name, you must
check the VaultPath for each folder. For example, assume there are two folders with the titleMy New
Folder, the code below shows how to get the first folder and the folder VaultPath:
$folder = Get-VaultObject -VaultId $id[0].toString() -Workspace $ws;

$folder.VaultPath;

The following code shows how to get the second folder and the folder VaultPath.
$folder = Get-VaultObject -VaultId $id[1].toString() -Workspace $ws;

$folder.VaultPath;

Before adding objects to a folder, verify that the VaultPath matches your expected repository and folder
locations. The following code checks that VaultPath is MyCompany\My New Folder:
if ($folder.VaultPath –eq "MyCompany\My New Folder")

{
... code to add objects to the folder

}

Manage Workbook Permissions
Objects have permissions that allow a user or group, the grantee, to perform specific actions on that
object such as allow JoeUser to read an object. Each object has a set of permissions for each grantee
that allows or denies an action.
To view the permissions for another user, you must have ReadPermissions. To modify the
permissions for another user, the administrator must have UpdatePermissions. You must log in as
the administrator and create a workspace named $ws. For more information, see Initial PowerShell
Commands.

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 77

Appendix A: Administering Vault using PowerShell Scripts

Permissions
Permissions are stored in the C# enumeration Symyx.Framework.Vault.Security.Permissions.
For more information about the Symyx.Framework.Vault.Security namespace, see the
Framework API documentation.
To reference the permissions in PowerShell, load the permissions enumeration:
$NSPermissions = [Symyx.Framework.Vault.Security.Permissions];

The following example displays $NSPermissions:
$NSPermissions

IsPublic IsSerial Name BaseType

True True Permissions System.Enum

The following example displays the Checkout permission,the double colon indicates Checkout is a static
property.
$NSPermissions::Checkout

Checkout

Retrieve Folder Permissions
You can use the GetObjectExplicitPermissionsmethod to retrieve an object’s permissions. The
following example retrieves My New Folder and the folder permissions:
$folderId = Get-VaultID -Name "My New Folder" -Type "Folder" -Workspace $ws;

$permissions = $ws.ActiveVaultServer.GetObjectExplicitPermissions($folderId);

The table shows themembers of the ExplicitObjectPermissions class:

Attribute Description

AllowPermissions List of permissions that are explicitly allowed on the object does not include
inherited permissions.

ContextName Indicates whether the permission was set by Workflow or Administration.
You should not removeWorkflow permissions. They aremanaged by the
workflow definition and removing them could impact users’ ability to work
with the object.

DenyPermissions Lists the permissions that are explicitly denied from the object.

GranteeGuid Indicates the recipient, user or group, of the permission grant.

VaultId Indicates the ID of the object.

The following example shows the contents of the permissions object:
$permissions
GranteeGuid: User.2bf33dfa-2c02-4a9b-9e81-774fa3f260fb
VaultId: Folder.21f48830-6d06-4562-8f93-f9b5ccf320e4
ContextName: Administration
AllowPermissions: CreateFolder, Delete, Checkout
DenyPermissions: NoPermission

In the example above, the original folder that the permissions object references was explicitly granted
CreateFolder, Delete, and Checkout permissions using the Vault Administration Console.

Page 78 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix A: Administering Vault using PowerShell Scripts

To examine an object's permissions by using the Vault Administration Console:
Right-click the object in the tree, select Properties, and click Permissions.

Create Read Permissions
In PowerShell, setting permissions on an object is done by:

Creating a permissions object that stores the set of permissions that are allowed or denied.
Applying the permissions to the grantee and the target object. This allows or denies the grantee the
ability to perform the specific actions on the target object.

The following example loads the permissions and creates a permissions object named
readPermissions, that contains the ReadData and ReadProperties permissions:
$NSPermissions = [Symyx.Framework.Vault.Security.Permissions];

$readPermissions = $NSPermissions::ReadData -bor
$NSPermissions::ReadProperties;

PowerShell binary operators work differently than C# binary operators. The binary OR operator (-bor)
sets the value. The binary XOR operator (-bxor) toggles the current value:
0 is set to 1, 1 is set to 0; true is set to false, false is set to true

Create Write Permissions
The following example creates a permissions object named writePermissions that contains the
UpdateProperties and
WriteData permissions:
> $writePermissions = $NSPermissions::UpdateProperties -bor
$NSPermissions::WriteData;

Allow Read and Deny Permissions
Permissions are granted using the SetExplicitPermissionsmethod of the ActiveVaultServer
object. The following example shows how to allow a user to read from a folder, but deny the user from
writing to the folder:
Set the "allow" permission to read

$newAllowPermission = $readPermissions;
Set the "deny" permission to write

$newDenyPermission = $writePermissions;
Set the permission context to "Administration" (this allows changes to be
made using theVault Administration Console)

$contextName = "Administration";
Set the Vault ID of the grantee (the user or group to get the permissions)

$GranteeVaultId = "User.2bf33dfa-2c02-4a9b-9e81-774fa3f260fb";
Retrieve the folder on which the permissions are set

$folderId = Get-VaultID -Name "My New Folder" -Type "Folder" -Workspace
$ws;

$folder = Get-VaultObject -VaultId $folderId.toString() -Workspace $ws;
Set the folder permissions (this allows the user read access to the
folder, but denies write access)

$ws.ActiveVaultServer.SetExplicitPermissions($GranteeVaultId,
$folder.VaultId,

$folder.SourceRepositoryId, $contextName, $newAllowPermission,
$newDenyPermission);

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 79

Appendix A: Administering Vault using PowerShell Scripts

Store Variables Using CSV files
You can import comma separated values (CSV) files in PowerShell and create a CSV file with the list of
variables folders, users, groups, and permissions that you want to manage. You can import the CSV file
and reference the variables in your PowerShell scripts. With the CSV files as the source, you can write
generic PowerShell scripts that do not contain hard-coded values. The following table illustrates a
possible CSV layout to manage folders and permissions:

Column Description Example

FolderTitle Title of the folder to be processed. 123456-2009

ParentFolderTitle Title of the parent folder. MyParentFolder

RepositoryTitle Title of the repository for the
folder.

MyFolder

ParentFolderVaultPath Full path of the parent folder. Mycompany\Mycompanyfolder\123456-
2009

SetPermission Flag to indicate whether
permissions are to be set on the
folder (Yes/No).

Yes

AllowPermissionToSet List of allowed permissions. read

DenyPermissionToSet List of denied permissions. write

UserName User ID of grantee in the form
domain\user name.

vm-vault65\S.Smith

GroupName Group title of grantee. MyGroup

You can import a CSV file using the Import-Csv command. For more information on importing CSV
files, in the PowerShell window, enter get-help Import-Csv.

Page 80 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix B:
Audit Trail Actions
The following tables lists the actions that result in the creation of an audit trail.
See Audit trail actions in the Site repository lists of actions taken within the Vault
Administration Console. These actions do not display in an Audit History report created within BIOVIA
Workbook.

Type of Action Actions

Site repository System repository that manages your intellectual property

Users Add Vault users
Make a user inactive
Add a permission to a user
Remove a permission from a user
Deny permission to a user
Add a user to a group
Remove a user from a group
Assign aWorkflow actor to a user
Remove aWorkflow actor from a user
Subscribe a user to a repository
Unsubscribe a user from a repository
Assign repository permissions to a user

Groups Add permissions to a group
Remove permissions from a group
Deny permissions to a group
Add a group to another group
Remove a group from another group
Add members to a group
Removemembers from a group
Subscribe a group to a repository
Unsubscribe a group from a repository

Objects Modify permissions on a Vault object
Assign repository folder permissions to a user or group

Applications Assign application permissions to a user or group

Workflow Create aWorkflow actor
Add a newWorkflow definition to Vault
Remove aWorkflow definition

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 81

Appendix B: Audit Trail Actions

Type of Action Actions

Generate aWorkflow association
Disable a Workflow association
Remove aWorkflow association

Action Types
The following table contains a list of action types. For each action type, there aremultiple auditable
actions, for example, for a Content type the actions include add, change, delete, and save.

Type of Action Actions

Versioned Repository-related Versioned repositories contain your intellectual property

Document Document-related actions that create an audit history entry

Experiment Title Data:name

Experiment Properties Notebook
Association Target
Associations
Auto Name
References
Check-In Signature Policies
Availability
Class (Initial)
Class (Current)
Creation Date
Size
Content Writer
Contributors
Scope
Created By
Descriptions
Flags
ID
Language
Permissions
Preview
Published By
Related To
Rights
Initial Check-In Date

Page 82 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix B: Audit Trail Actions

Type of Action Actions

Source
Subject
Synchronization Revision
Name
Total Content Size
Type
Vault Path
Version Comment
Version Creation Date
Version Created By
Current Version
Workflow Stages
Scripts

Container Membership Scope
Version
Modified On
Modified By
Content
Description

History -History Scope
Version
Modified On
Modified By
Content
Description

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 83

Appendix B: Audit Trail Actions

Type of Action Actions

Signature History Scope
Version
Modified On
Modified By
Content
Description
Meaning
Reason
Comment
Signature Source
Transition

Version History Scope
Version
Modified On
Modified By
Content
CheckOut
UndoCheckout
Description

WorkflowHistory Scope
Version
Modified On
Modified By
Content
Description
Stage

Combined History Scope
Version
Modified On
Modified By
Content
Description
Entry Type

Page 84 | BIOVIA Workbook 2021 • Vault Server Administration Tools Guide

Appendix B: Audit Trail Actions

Type of Action Actions

System History Scope
Version
Modified On
Modified By
Content
Description

References Reference
Description
Last Modified By
Last Modified On
Type
Applies To
Vault Path
Autoname

BIOVIA Workbook 2021 • Vault Server Administration Tools Guide | Page 85

	Chapter 1: About This Guide
	Vault Server Setup Checklist
	Logging in to the Vault Administration Console
	Managing Vault Server Objects

	Chapter 2: Assigning Default Templates and Workflow Actor Roles
	Assign a Default Template to a User
	Assign Users and Groups to Workflow Actor Roles
	Remove Workflow Actors from Users

	Chapter 3: Administering Vault Server Repositories
	Manage Repository Subscriptions
	Subscribing Users and Groups to Repositories
	Unsubscribe a User or Group from a Repository

	Manage Access to Vault Objects
	Summary of Vault Object Permissions
	Add Repository Folders
	Rename a Repository
	Starting the Vault Services
	Stopping the Vault Services

	Chapter 4: Configuring Application Permissions
	Summary of Application Permissions
	Using the Import/Export Application Permission Utility
	How the Utility Works
	Running the Export Command
	Editing and Tokenizing the AppPermissions.xml File (Optional)
	Running the Import Command
	Example Application Permission Files
	Example AppPermissions.xml
	Example permissionConfiguration Files

	Sample Application

	Implementing the DisableUndoMyCheckouts Permission
	Requirements for Moving a Vault Folder or Object
	Pipeline Pilot Configuration Keys
	Configuring Pipeline Pilot RunProtocol Settings (New Installs Only)

	Compound Registration
	Modify Registration Service Properties

	Registration Service Permission Parameters
	Database Web Service and Material Property Lookup Service
	Locking Recipe Sections at Specific Workflow Stages
	Locking the Task Plan at Specific Workflow Stages
	External Structures Conversion
	Configure the External Data Conversion Service
	Specify Document Conversion Template
	Modify Section Settings in Document Conversion

	Chapter 5: Developing Signature Policies
	Signature Policy Events
	Create a Signature Policy
	Set Meanings or Reasons
	Modify Signature Policies
	Signature Policy Properties Reference
	Document Template Management Tools Signature Policy

	Chapter 6: Defining Workflows
	Workbook Activities from Workflows
	Workflow Design Best Practices
	Workflow Examples
	Workflow SDK
	Archive Using a Workflow
	Create Vault Workflow Actors
	Add Workflow Definitions
	Removing a Workflow Definition
	Move Experiments or Objects Between Workflow Stages
	Generate a Workflow Association
	Generate Workflow Association Code Example
	Get VaultID for Generating a Workflow Association

	Enable Workflow Associations
	Removing Workflow Associations
	Disabling Workflow Associations
	Placeholder Formats

	Appendix A: Administering Vault using PowerShell Scripts
	PowerShell Prerequisites
	Initial PowerShell Commands
	Vault Identifiers
	Retrieve a Vault ID with Get-VaultId
	Retrieve a Vault ID with Oracle SQL*Plus

	PowerShell Scripts
	Add-Association.ps1 Script
	Change-WorkflowAssociationEnable-AddHistory.ps1 Script
	Connect-Server.ps1 Script
	Create-WorkflowActor.ps1 Script
	Create-WorkflowAssociation.ps1 Script
	Get-VaultId.ps1 Script
	Get-VaultObject.ps1 Script
	Load-Assemblies.ps1 Script
	Publish-WorkflowActorAssociation.ps1 Script
	Save-VaultObject.ps1 Script
	Set-DefaultTemplate.ps1 Script
	Set-Permissions.ps1 Script
	Create Print Audit History Script
	Create Signature Policy Examples
	Standard signature policy
	Countersign signature policy
	Message Queuing Function Example
	Manage Workbook Folders
	Create a Folder
	Retrieve a Folder Using the Folder Name
	Retrieve Folders with the Same Name

	Manage Workbook Permissions
	Permissions
	Retrieve Folder Permissions
	Create Read Permissions
	Create Write Permissions
	Allow Read and Deny Permissions
	Store Variables Using CSV files

	Appendix B: Audit Trail Actions
	Action Types

