
SDK DEVELOPERS GUIDE
BIOVIA WORKBOOK 2021

Copyright Notice

©2020 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo,
CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3DVIA, 3DSWYM, BIOVIA,
NETVIBES, IFWE and 3DEXCITE, are commercial trademarks or registered trademarks of Dassault
Systèmes, a French "société européenne" (Versailles Commercial Register # B 322 306 440), or its
subsidiaries in the U.S. and/or other countries. All other trademarks are owned by their respective
owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written
approval.

Acknowledgments and References

To print photographs or files of computational results (figures and/or data) obtained by using Dassault
Systèmes software, acknowledge the source in an appropriate format. For example:

"Computational results were obtained by using Dassault Systèmes BIOVIA software programs.
BIOVIAWorkbook was used to perform the calculations and to generate the graphical results."

Dassault Systèmes may grant permission to republish or reprint its copyrighted materials. Requests
should be submitted to Dassault Systèmes Customer Support, either by visiting
https://www.3ds.com/support/ and clicking Call us or Submit a request, or by writing to:

Dassault Systèmes Customer Support
10, RueMarcel Dassault
78140 Vélizy-Villacoublay
FRANCE

https://www.3ds.com/support/

Contents
Chapter 1: BIOVIA Workbook SDK 1

BIOVIAWorkbook and Vault Server Architecture 2

Framework Applications Overview 2

Symyx Framework Class Libraries 3

Chapter 2: BIOVIA Vault Server 5

Accessing Vault 5

VaultWorkspace Class 6

VaultServer Class 6

Connecting to a Vault Server Endpoint 7

Verifying that Vault Services are Running 7

Authentication and Logging in to Vault 7

Security Permissions 8

Log in to Vault Example 9

VaultRepository Class 11

User Repository 11

Folders 11

Retrieve Vault Users List Example 12

Vault Objects 13

Vault Object Base Classes 14

Vault Object Flags Property 15

Vault Object Core Properties 15

Set Properties in VaultObject.ExtendedProperties 25

Use Data Scope to Set Information 25

Retrieve Vault Users Example 27

Retrieve a Vault Object using Vault ID or Vault URI 28

Create a Batch For Identity Requests 28

Retrieve and Cast a Vault Object 29

Identity Requests Scope 29

Retrieve Vault Objects by Object Type 29

Search for a Vault User Example 30

Retrieve Vault Assemblies 30

Use GetMembers For Context Retrieval 30

Retrieve Vault Folders 31

BIOVIA Workbook 2021 • SDK Developers Guide | Page i

Contents

Retrieve Hierarchy of Vault Folders Example 33

Use Vault Query Service to Get Vault IDs 33

Convert Vault IDs 35

Vault Object References and Associations 36

Vault URIs 37

Scheme 37

Authority 37

Path 38

Query 39

Fragment 39

Vault Object Annotations 39

Add and Remove an Annotation 40

Create and Delete Vault Objects 41

Package Vault Objects in VOZIP Files 41

Create a Vault Object Package Example 42

Add an Object to a Vault Object Package 42

List Objects in a Vault Object Package 43

Publish Using a VOZIP File 43

Delete an Object From a Vault Object Package 44

Read and Write to a Vault Object 45

Display DLL Assembly Dependencies 45

Chapter 3: Users and Security 48

Classes Supporting Users Settings and Preferences 48

Access User Profiles 48

Permissions 48

Explicit Permissions 49

Implicit Permissions 50

Application Permissions 50

Chapter 4: Properties 51

Property Set Editor 51

Property Set Definitions 51

Property Event Handlers 52

Property and Vault Object Variables 53

Property Class and PropertySetDefinition Variables 53

Variable Aliases 53

Page ii | BIOVIA Workbook 2021 • SDK Developers Guide

Contents

Validation Script Variables for Value Changing Handlers 53

CalculateValueHandler Script Variables 54

ValueSelectionsProvider Script Variables 55

Property Dictionaries 55

Dictionary Providers Types 55

Dictionary Scripts Examples 56

ValueSelectionsProvider Script Variables 57

Chapter 5: Materials 59

Material Classes and Interfaces 59

Material Class 59

Material Properties 59

Material as a Mixture 60

DensityCalculation Class 61

Materials Calculations 62

Conversions 63

Calculating Molecular Weight Example 64

Materials Sections C# Example 65

Measurement Class 66

Validate a Measurement 66

Convert Amounts 67

Container Class 69

Preparation Class 69

Chapter 6: Documents 71

Find a Template Example 72

Create a Document from a Template 72

Get a Document 73

Adding, Inserting, and Removing Document Sections 73

Insert a Section Between Other Sections 74

Remove a Section 74

Text Sections Example 74

Add Text Sections and Set Plain Text 75

Add Data to a Text Section 76

Check the Section Type 78

Scale an Image 78

Chapter 7: Query Service for Searching 79

BIOVIA Workbook 2021 • SDK Developers Guide | Page iii

Contents

RAS Data Schema 80

Query Form Data 82

Search Results 83

Create a Custom Query Builder Using Metadata 83

Custom Vault Objects Indexing 84

Full-text Search Indexing 84

IIndexableText Implementation Example 85

Custom Indexing 85

Creating a New Search Type 85

SampleIDSearchExtension 86

Build Queries 86

Search Extension Development Best Practices 89

Search Extension Configuration 90

Chapter 8: Scripting in BIOVIA Workbook 92

Workbook Objects 92

Python Scripting 92

Script Performance Profile 93

Document Toolbar Scripting 93

Optimize Scripts 93

Form Editor Scripting 94

FormSection Events 94

FormSection Script Variables 95

FormSection Events Script Variables 96

Access Widgets 98

OnReview Script Example 99

OnValidate Script Example 100

Add Scripts to an Experiment Template 101

Experiment Editor Events 101

Experiment Editor Event Scripts 104

Experiment Editor Events Script Variables 105

Get the Active Section 106

Access Menu Items 106

Menu Item Property Changes 106

Menu Item Names 107

Access Workbook Toolbar Items 110

Page iv | BIOVIA Workbook 2021 • SDK Developers Guide

Contents

Section Toolbars and Toolbar Items 110

Access Workbook Toolstrips 113

Check User Permissions and Disable a Section Example 113

Remove the Active Section 114

Rename the Active Section 114

Add a Button to a Toolstrip 115

Custom Toolbar Scripting 115

Custom ToolStripButton Example 115

Assign a Script to a Toolbar Button 116

Interaction Between Scripts 117

Insert an Excel File 117

Add a Section to an Experiment 118

Error Handling in Scripts 119

Cancel an Action 119

Raising an Exception 120

sys.exit 120

Generate Unique IDs 120

Sequence Name for Unique IDs 120

ID Formatting 121

Generate SampleID Example 121

List Variables in Scope 122

Add a Dictionary to a Recipe Section 122

Content History for a Control 122

Form Control Content History 123

ELN Assembly Cache 124

ReleaseMemory 126

Omit Vault Object Content Compression 127

Prevent Concurrent Updates 127

Debug the Framework 127

Debug a Remote Service 127

WCF Tracing for Vault Diagnostics 127

Script From External Assemblies 128

Use an External .NET Assembly 128

CreateInstanceFromLatestAssembly Method 129

Create Custom .NET Assembly 129

BIOVIA Workbook 2021 • SDK Developers Guide | Page v

Contents

Create a .NET project 130

Sign Your Assembly 130

Writing Classes and Methods 130

Naming Conventions 130

Adding references to Workbook assemblies 131

Define a Class 131

Define a Method 132

Chapter 9: Sections 133

Clone an Experiment to the Latest Template Version 135

Sections in a NewDocument 135

Forms and Tables 136

Insert Forms 136

Import Forms 136

Populate Form Controls 137

Populate a List Using Vault Vocabulary 138

Form Examples 138

PopulateWidgets in Forms 139

References 140

Property Set Definitions 140

Clone to Latest Limitations 141

File Sections 141

Add and Remove Files 142

Visualizations 143

Required Software for Visualizations Utility 143

Create File Section with Table Rows 144

List the Property Set Definitions for a Table 144

List Values from a Table 145

Invoke a Form and Add Rows 145

Set Values in a Table 146

Add a Property Set Definition 146

Insert Rows 147

TableSection Script Variables 147

Script with Table Section Properties 148

Access a Table and its Rows 149

Import and Export Data 149

Page vi | BIOVIA Workbook 2021 • SDK Developers Guide

Contents

Import Summary Data 150

ImportExportData to Update Data 151

Lock Imported Rows 152

Prevent the Removal of Locked Rows 152

Export or Import All Table Rows 152

Request Column Dictionary Event 153

Table Section Script Events 153

Table Section Event Variables 155

Table Section Script Examples 156

Material Section Script Variables 158

Material Property Set Definitions 159

Nullable for Primitive Types 162

Material Section Script Examples 162

Access theMaterial Structure 163

Create a ReviewMessage 163

Scripting Material Import 164

BeforeImportMaterials Event Script Example 164

AfterImportMaterials Event Script Example 165

Testing Examples 165

Script Variables for Experiment and Common Section Events 165

Script Variables for Events 166

Workbook Sections 168

Materials Section Event Script Variables 169

Sample Preparation Section Script Variables 170

Export Preparation Section Data 174

Data Exported as CSV File 179

Change the Scale Used In Calculations 179

Script for Custom Scale 180

Change the Scale of Calculated Values for a Formulation 181

Unit Types 181

DataCreation Example 182

CreateDocument Method 183

Reaction Scheme C# Examples 183

Locate the Reaction Scheme Section 184

Locate a Reaction Step 185

BIOVIA Workbook 2021 • SDK Developers Guide | Page vii

Contents

Add a Reaction Step 185

Add a Reaction From a File 185

Link Corresponding Materials Section 186

Add aMaterial Using AddRow 186

Modify a Material 186

Chapter 10: Build and Debug a Custom .NET Assembly 187

IronPython Script For Calling a Custom Assembly Example 187

C# Code for Importing Custom Data 190

Publish a Custom .NET Assembly 191

Call an External Assembly with IronPython 191

AssemblyCache.Publish Method 192

List Assemblies in Vault 194

Publishing Referenced .NET Assemblies 194

Publish a NewVersion of a .NET Assembly 195

Unpublish an Assembly 195

List of Assemblies in Vault 195

In Visual Basic .NET 195

In C# 195

Chapter 11: Workflow Designer 196

Vault objects 196

CustomWorkflowActivities 196

Prerequisites 196

Create a CustomWorkflowActivity 197

Configure the Build Location for Your DLL 198

Custom Activity OnExecuteMethod 198

ConfigureWorkflowDesigner to Use a Custom Activity 200

Add a Custom Activity to a Workflow 200

CustomWorkflowActivity Example 201

Compile and Publish a Workflow 202

Change the Vault Logging Level 202

Appendix A: Potentially Breaking API Changes in Workbook 2018 204

Namespace Replacements 206

Changes to Menu Item List Creation 206

GridViewMethods Require Additional Parameters 206

Deprecated Events and Methods 207

Page viii | BIOVIA Workbook 2021 • SDK Developers Guide

Contents

EditorContainer.RepositoryItems Renamed as ExternalRepository 207

RepositoryItemCheckedComboBoxEdit.ShowAllItemCaption Renamed as
SelectAllItemCaption 207

tree.OptionsBehaviour.DragNodes Renamed and Changed to Boolean 207

Exceptions Sometimes Thrown when Operating on non-UI Thread 207

Some Grid Methods NowClear Status Data 207

BIOVIA Workbook 2021 • SDK Developers Guide | Page ix

Chapter 1:
BIOVIA Workbook SDK
TheWorkbook SDK is a set of class libraries ("Framework") for creating applications that extend
Workbook capabilities and integrateWorkbook with other applications. Software developers can use
the Framework to create applications that access or capitalize on the following Workbook services and
features:

Object persistence, versioning, and history
Data warehousing and search
Workflowmanagement
Security and signing
Object properties and content
Common dialogs and controls
Reports
Base objects like materials, units and conversions, and quantities

The Framework can be used to create client and server applications. Several of its namespaces facilitate
client-side interaction with BIOVIA Vault Server.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 1

Chapter 1: BIOVIA Workbook SDK

BIOVIA Workbook and Vault Server Architecture

Framework Applications Overview
To develop a Framework application using Visual Studio, you should create a project to implement your
customizations. The type of project depends on what you are building. You can:

Add references to the appropriate Framework assemblies, that are located in the lib folder of the SDK
installation.

Page 2 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 1: BIOVIA Workbook SDK

Add a reference to Symyx.Framework.dll; this has the component name of Symyx Framework:
Core.
Add references to theMicrosoft's assemblies, System and System.Core.

If you need to use theWindows Forms controls, add references to the following assemblies:
Symyx.Framework.Controls.dll

Symyx.Windows.dll

If you need to use theMaterials object model, add references to the following assemblies:
Symyx.Framework.Materials.dll

Symyx.Framework.Quantity.dll

In your application code, define your class to implement the required interfaces and extend the classes
in the Framework API.

Symyx Framework Class Libraries
The table shows the class libraries that are included when you install Symyx Framework. The class
libraries are located in the Symyx Framework lib folder.

Assembly Namespaces

Symyx.Framework.dll Symyx.Framework
Symyx.Framework.ApplicationManagement
Symyx.Framework.Cache
Symyx.Framework.Chemistry
Symyx.Framework.Collections
Symyx.Framework.Extensibility
Symyx.Framework.History
Symyx.Framework.IO
Symyx.Framework.Logging
Symyx.Framework.Properties
Symyx.Framework.Properties.ImportExport
Symyx.Framework.RAS
Symyx.Framework.Scripting
Symyx.Framework.TabularData
Symyx.Framework.User
Symyx.Framework.Vault
Symyx.Framework.Vault.Exceptions
Symyx.Framework.Vault.Packaging
Symyx.Framework.Vault.Security
Symyx.Framework.Vault.Signing
Symyx.Framework.Workflow

Symyx.Framework.Controls.dll Symyx.Framework.Controls
Symyx.Framework.Controls.Dialogs
Symyx.Framework.Controls.Events

Symyx.Framework.Quantity.dll Symyx.Framework.Quantity, Unit, Value

BIOVIA Workbook 2021 • SDK Developers Guide | Page 3

Chapter 1: BIOVIA Workbook SDK

Assembly Namespaces

Symyx.Framework.Reporting.dll Symyx.Framework.Reporting

Symyx.Framework.Materials.dll Symyx.Framework.Materials

Symyx.Windows.dll Symyx.Windows
Symyx.Windows.ApplicationManagement
Symyx.Windows.ToolStripManagement
Symyx.Windows.ToolWindowManagement

The Symyx Framework lib folder also contains third-party class libraries that are used and bundled with
Symyx Framework and Workbook.

Page 4 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2:
BIOVIA Vault Server
BIOVIA Vault Server is an object management system that supports BIOVIAWorkbook. Vault Server
provides:

A searchable database of research and development data.
Integrated lab device data acquisition with Workbook data.
Analytical capabilities through on-demand data warehousing in batch or real-time.
Workflow capabilities for streamlining the document approval process.
Enterprise level security and auditing.
Versioned object data management.

Vault uses a site repository to store the common data among the versioned repositories. The common
data includes information about the system security, federation tables, theWorkbook assembly cache,
and directory service.
Vault supports user repositories that store Vault objects relevant to an application, user, or group. Each
repository exposes endpoints that clients use to send requests to the repository. Multiple repositories
can share endpoints.

Accessing Vault
You use the classes and interfaces in the Symyx.Framework.Vault namespace to access Vault. The
Symyx.Framework.Vault namespace provides client-side classes for interacting with Vault. The
following diagram shows the relationships between the classes in the Vault API object model:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 5

Chapter 2: BIOVIA Vault Server

VaultWorkspace Class
Aworkspace is the top-level abstraction through which client programs access Vault. The workspace
allows clients to log in to a Vault server to perform data persistence and retrieval operations.
The Symyx.Framework.Vault.VaultWorkspace class contains methods that:

Authenticate and log in a user to Vault
For examples of how to log in to a Vault workspace, see Authentication and Logging into Vault.
Manage objects or object collections in Vault such as methods that get, add, delete, move, update,
and get the history of Vault objects.

VaultServer Class
A Vault server is themiddle-tier engine that services client requests to access the Vault system. A Vault
server can access multiple repositories. The Symyx.Framework.Vault.VaultServer class contains
properties and methods that:

Log in and authenticate a user.
Set permissions, workflow security, and the signature on Vault objects.
Initialize and access a file system repository, local storage folder, or roaming repository for the user.
Manage objects or object collections in Vault, such as methods that get, add, delete, move, update,
and get the history of Vault objects.

Page 6 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

Connecting to a Vault Server Endpoint
Vault uses theWindows Communication Foundation (WCF) service to enable a client application to
connect to the Vault server endpoint. An endpoint is wheremessages are sent or received between
clients and servers. An endpoint defines all of the information required for themessage exchange, and
consists of the:

Location wheremessages are sent to; the URI that represents the address of the service.
Binding that specifies themessage communication protocol such as BasicHttpBinding,
WsHttpBinding, NetNamedPipeBinding, NetMsmqBinding.
Specification for themessages that can send the service contract.

To connect to a Vault server endpoint, you specify the endpoint when you invoke a VaultServer or
VaultWorkspace constructor. If the specified endpoint does not haveWCF binding information in the
.NET configuration file, the Symyx Framework creates a default endpoint for the caller. The Vault server
uses basic HTTP binding, which means that the only thing that the caller needs to do is to pass the
endpoint into the workspace when invoking the VaultServer or VaultWorkspace constructor.

Verifying that Vault Services are Running
To ensure the Vault services are running:
1. Log in to the computer on which Vault is running as a Windows administrator.
2. Choose Start > All Programs > Administrative Tools > Services.
3. Click Services.
4. Verify that the following services are running:

Vault Message Processing Service
Workflow Service

Authentication and Logging in to Vault
The Symyx Framework supports the following types of authentication:

The Symyx.Framework.Vault.UsernameCredentials class represents the
username/password credentials.
Extensible binary authentication such as Public Key Infrastructure (PKI) and biometrics. To
implement binary authentication, use or derive from the
System.Framework.Vault.BinaryCredentials class.

A user can log into Vault through a workspace. The Symyx.Framework.Vault.VaultWorkspace
class provides Loginmethods enable the user to log in to Vault.
The following C# example shows the simplest way to log in:
// create a Vault workspace
VaultWorkspace workspace = new VaultWorkspace("myVaultServer");

// attempt to log in workspace.Login(@"myDomain\myUser", "myPassword");
Console.WriteLine("Login to server {0}", workspace.IsAuthenticated ?
"Succeeded": "Failed");

BIOVIA Workbook 2021 • SDK Developers Guide | Page 7

Chapter 2: BIOVIA Vault Server

In the code example, the myVaultServer parameter is the same Vault server name for which the SSL
certificate is issued. In the call to the Loginmethod, the username is combined with the domain to
form myDomain\myUser.
To connect to the server, you do not need to set up Windows Communication Foundation (WCF)
configuration. You can use configuration information in the current app.config or web.config
file, however, the Symyx Framework uses a set of default bindings.
Most Workbook users have oneWorkspace that is encapsulated in the VaultWorkspace.Current
property. If a workspace is instantiated and there is no current workspace, it will assign itself as the
Current workspace.
You also can log in using an object of one the following classes that derive from
Symyx.Framework.Vault.SecurityCredentials:

UsernameCredentials represents username and password credentials.
BinaryCredentials represents binary security credentials to encapsulate generic user tokens
such as PKI.

The following C# example shows the UsernameCredentials object:
// create a Vault workspace
VaultWorkspace workspace = new VaultWorkspace("myVaultServer");

// attempt to log in to the workspace
workspace.Login(new UsernameCredentials

("myDomain", "myUser", "myPassword"));
Console.WriteLine("Login {0}", VaultWorkspace.Current.IsAuthenticated ?
"Succeeded" : "Failed");

Security Permissions
The Symyx.Framework.Vault.Security namespace contains classes that encapsulate the
permissions that users and groups have on Vault objects. The Permissions property of the
Symyx.Framework.Vault.VaultObject class returns the
Symyx.Framework.Vault.Security.ObjectPermissions for that Vault object. The permissions
enumeration contains the different types of permissions for low-level operations that you can grant to a
Vault object. Multiple low-level permissions are aggregated into higher level privileges that are
encapsulated in the Privilege class.
The following C# example returns false if a Vault object does not have the specified permissions:
if (vaultObject.Permissions != null)
{

// Must have the checkout permission.
if (!vaultObject.Permissions.HasPermission

(Permissions.Checkout))
{ return false; }

// Must have the write data permission.
if (!vaultObject.Permissions.HasPermission

(Permissions.WriteData))
{ return false; }

// Must have the write properties permission.
if (!vaultObject.Permissions.HasPermission

(Permissions.UpdateProperties))
{ return false; }

// Must have the transition permission.

Page 8 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

if (!vaultObject.Permissions.HasPermission
(Permissions.WorkflowTransition))

{ return false; }
}

Log in to Vault Example
This section shows a complete C# example program that you can compile and run. The program
demonstrates how to log into a Vault server.
// Do not run this example in a production environment.

using System;
using Symyx.Framework.Vault;
namespace Symyx.SDK.Framework.Examples
{

class LogInToVault
{

static void Main(string[] args)
{
// declare strings to store the Vault server name, domain, username, and

password
string endpoint; string

domain; string user;
string password;

if (args.Length == 4)
{
// if the Vault server name, domain, username, and password are

entered on the command line,
// use those entries
endpoint = args[0];
domain = args[1];
user = args[2];
password = args[3];
}
else
{
// otherwise, prompt the user to enter the Vault server name, domain,

username, and password
endpoint = GetConsoleValue("Server");
domain = GetConsoleValue("Domain");
user = GetConsoleValue("User");
password = GetConsoleValue("Password");
}

// attempt to log in to the Vault server
Console.WriteLine("Attempting to log in to Vault server {0}...",

endpoint);
VaultWorkspace workspace = new VaultWorkspace(endpoint);
workspace.Login(new DomainUsernameCredentials(domain, user, password));
// check the user workspace is authenticated if

(workspace.IsAuthenticated)
{
Console.WriteLine(string.Format("Logged in to the Vault server"));
Console.WriteLine(workspace.IsOnline ? "Server is online" : "Running

BIOVIA Workbook 2021 • SDK Developers Guide | Page 9

Chapter 2: BIOVIA Vault Server

in offline mode");
Console.WriteLine("Hello user " + workspace.CurrentUser);
}
else
{
Console.WriteLine(string.Format("Could not log in to the Vault

server"));
}

}
// prompt the user to enter a string

private static string GetConsoleValue(string name)
{
Console.Write("{0}: ", name); return Console.ReadLine();
}

}
}

Before compiling, add a reference to Symyx Framework, Core, the Symyx.Framework.dll.
To run the example use the following statement:
LogInToVault myVaultServer myDomain myUser myPassword

Log in toWorkspace Example
The following C# example shows a more complex example of how to log in and add the Vault server to
the workspace. The example checks the endpoint string and exits the loop if the endpoint is blank. The
example shows the use of the VaultWorkspace CreateServer method, which creates a server endpoint
object:
// create a Vault workspace
VaultWorkspace workspace = new VaultWorkspace();

// while the workspace does not have an active server set...
while (!workspace.HasActiveServer)
{

// prompt the user to enter a Vault server name string
endpoint = GetConsoleValue("Server");

// if the string is null or empty, break from the loop
if (string.IsNullOrEmpty(endpoint)) { break; }

// create a server object
IServer server = workspace.CreateServer(endpoint);

// prompt the user to enter the domain string
domain = GetConsoleValue("Domain");

// prompt the user to enter the Vault username and password string
user = GetConsoleValue("User");
string password = GetConsoleValue("Password");

// attempt to log in to Vault
Console.WriteLine("Attempting login to server {0}...", endpoint);

Page 10 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

server.Login(new DomainUsernameCredentials(domain, user, password));

// if authenticated, add the server to the workspace
if(server.IsAuthenticated)

{workspace.Add(server);}
}

//Assume the example GetConsoleValue method prompts the user to enter a
string:
// prompt the user to enter a string
private static string GetConsoleValue(string name)
{

Console.Write("{0}:", name); return Console.ReadLine();
}
Repositories

The Symyx Framework provides two types of repositories for documents and objects:
Vault repository
User repository

VaultRepository Class
The Vault repository is a centralized repository managed by the Vault server. The
Symyx.Framework.Vault.VaultRepository class provides the abstraction for the repository.
There are several types of repositories managed by Vault. You can determine the type of repository by
getting the VaultRepository.RepositoryType.Name property. The RepositoryBehaviors
property describes the behavior of each repository.
Vault provides versioning capabilities and provides control over object updates. The
VaultRepository class provides methods that enable you to add, modify, copy, move, delete, and
get objects from the repository. You can also soft-delete an object to mark an object as deleted but is
not removed from the repository.

User Repository
The user repository contains user-specific data and documents. This is similar to the C:\Documents
and Settings\Username folder in Microsoft Windows.
User profiles are similar to the contents of C:\Documents and Settings\Username\Application

Data. User storage is similar to C:\Documents and Settings\Username\My Documents.
The user repository allows access from multiple clients to the same document.
For example, a user creates a document on their office computer, saves the document to the repository.
The same user can access that document from a different computer.
In Vault, the user repository provides access to the repository from any connected computer using a
roaming repository profile. The objects stored in the user repository are not saved with version control.
A user can delete the contents in their user repository.

Folders
Users can organize documents and objects in a repository by grouping them in folders. A folder is
synonymous with a directory. Repository folders provide a thin layer of organization such as requesting
and grouping around objects in a repository. Properties and methods in the

BIOVIA Workbook 2021 • SDK Developers Guide | Page 11

Chapter 2: BIOVIA Vault Server

Symyx.Framework.Vault.Folder class allow navigation of the folder hierarchy and enumeration of
documents within a folder. Object operations are performed in the VaultRepository or UserRepository,
rather than the folder.

Retrieve Vault Users List Example
The following example shows a complete C# application that you can compile and run. The program
demonstrates how to retrieve the list of users from Vault.
using System;using Symyx.Framework.Vault;
namespace Symyx.SDK.Framework.Examples
{

class DisplayUsers
{

static void Main(string[] args)
{

// declare strings to store the Vault server name, domain, user
// name, and password
string endpoint; string domain; string user; string password;
if (args.Length == 4)

{
// if the Vault server name, domain, username, and password
// are entered on the command line, use those entries
endpoint = args[0];
domain = args[1];
user = args[2];
password = args[3];

}
else

{
// otherwise, prompt the user to enter the Vault server name,
// domain, username, and password
endpoint = GetConsoleValue("Server");
domain = GetConsoleValue("Domain");
user = GetConsoleValue("User");
password = GetConsoleValue("Password");

}
// attempt to connect to the Vault server
VaultWorkspace workspace = new VaultWorkspace(endpoint);
workspace.Login(new DomainUsernameCredentials

(domain, user, password));
// check that the user workspace is authenticated
if (workspace.IsAuthenticated)

{
Console.WriteLine("List of Vault users:");
// Get the list of Vault users with
// Symyx.Framework.Vault.VaultObjectTypes.User. Note that
// Symyx.Framework.Vault.VaultObjectType.User creates
// a new instance of type User.
VaultObjectList users =

VaultWorkspace.Current.SiteRepository.Get
(VaultObjectTypes.User,
DataScope.Properties,
RetrievalOptions.None);

Page 12 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

// for each user, display some of the user properties
foreach (User vaultUser in users)
{
Console.WriteLine("User ID: " + vaultUser.VaultId);
Console.WriteLine("Title: " + vaultUser.Title);
Console.WriteLine("Path: " + vaultUser.VaultPath);
Console.WriteLine("Type: " + vaultUser.Type);

}
}

else
{
Console.WriteLine(string.Format("Could not log in to Vault"));

}
}
// prompt the user to enter a string
private static string GetConsoleValue(string name)
{
Console.Write("{0}: ", name); return Console.ReadLine();

}
}

}

Example output
List of Vault users:
User ID: User.005c4ccd-71d8-4a56-91d0-1e595ab07ec2
User name: vm-vault64\Dara.Ward
Path: Site\vm-vault64\Dara.Ward
Object type: User
User ID: User.01875c4c-0ef1-4636-9b4e-18c78d57c031
User name: vm-vault64\Rebecca.Jones
Path: Site\vm-vault64\Rebecca.Jones
Object type: User
...

Vault Objects
You can do the following with a Vault object:

Address the object independently with URL-style references
Maintain a history of its changes
Secure the object
Participate in workflows
Maintain a series of flags to indicate the object status such as system, hidden, or remove from the
table without deleting from the database (soft delete)

Vault objects are serialized in XML-format and stored in repositories. Framework also allows for
customized serialization. Some repositories allow the deletion of objects stored in them, others allow
soft deletion only.
The Symyx.Framework.Vault.VaultObject class is a base class for Vault objects. Actual Vault
objects have a specific type that is specified using Symyx.Framework.Vault.VaultObjectType

BIOVIA Workbook 2021 • SDK Developers Guide | Page 13

Chapter 2: BIOVIA Vault Server

such as User, Folder, Form, Document. The VaultObjectType exposes a number ofmethods and
properties that allow programs to use the specific Vault object types.
The parts of a Vault object are:

Vault object properties
The Vault object properties are name/value pairs, represented by the Framework classes Property
and Property<T>, where T is any value that is serialized by the NetDataContractSerializer.
Properties are grouped together into a PropertyCollection.
VaultObjectProperty extends Property by adding additional attributes that indicate:

If the property is hidden.
Who assigns the property; influences ability to edit the property.
Whether the property is searchable.
Adaptations to use the CoreProperty enumeration to access the core properties.

Vault object content
The Vault object content is a set of bytes defined by each specific Vault object implementation. A
Vault object is not required to have content. The content bytes are compressed by default when
saved.
When saving to a managed repository, saving content creates a new version of the Vault object. In
the User Repository, because only one instance of a Vault object exists at a time, saving content
updates the content of the single version in the repository.
Vault object preview image
Every version of the Vault object can have an associated preview image. There is a one-to-one
relationship between a preview image and the content. The preview is accessible via the Preview core
property.
Vault object members
A Vault object can have a membership in another Vault object. A Vault object can havemembers.
The Vault container type has an elevated strong relationship to its members.

Themain distinction between properties and content is that the non-server assigned properties are not
versioned. There is one and only one copy of the properties. The properties apply to every version of
the vault object, even if a particular property did not exist or was different when that earlier version of
the vault object was created. There are server properties that are supplied when retrieving a Vault
object that are possibly specific to a particular version, but these are not editable and are provided by
the server at retrieval time.

Vault Object Base Classes
There are three base classes that are derived from the VaultObject class:

VaultElement

A Vault element is an object of the VaultElement class. A Vault element is a leaf object (file) that
cannot contain any other Vault objects. The VaultElement class describes a non-container Vault
object.
VaultObjectCollection

A Vault collection is an object of the VaultObjectCollection class. A Vault collection represents a
collection of objects and provides a hierarchy in a Vault repository. The objects in a collection need
not have a common type and they may belong to multiple collections. An example is a list of a user’s
favorite Vault folders.

Page 14 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

VaultObjectContainerBase

A Vault container is an object of the VaultObjectContainerBase class. A Vault container knows
about the versions of the objects it contains, while a Vault collection does not know about the
versions of the object that it contains. An example of a container is a Vault document. A Vault object
in a container cannot be included in any other container, that is, a container owns all of its contained
objects. However, you can include an object in one container, the only one, and in one or more
collections. The Vault container represents a relationship between a parent object and its children.
The children do not generally make sense outside of the context of their parent, although they may
be operated on in isolation. Updating a child object causes the parent object to increment its
version.

The VaultContainer class, derived from VaultObject, is an ordered or unordered collection of other
Vault objects. The VaultContainerTypes enumeration lists the different types of Vault containers.
The retrieval of a Vault object is controlled by two parameters:

RetrievalOptions

Specifies how the retrieval should be performed. For example, it specifies whether or not an
exception is thrown if an object is not found. For details, see the enumeration
Symyx.Framework.Vault.RetrievalOptions.
DataScope

Specifies howmuch or which part of the data to retrieve. For example, it specifies whether to retrieve
only the properties but not the contents of an object. For details, see the enumeration
Symyx.Framework.Vault.DataScope.

Vault Object Flags Property
The VaultObject.Flags property contains the VaultObjectFlags enumeration that contains the
complete set of flags assigned to the object. To set the value of a core property of a VaultObject, you
use the VaultWorkspace.UpdateFlagsmethod that takes as parameters, a VaultObject and the
VaultObjectFlags.
The following C# example sets the ReadOnly flag of a Vault object:
workspace.UpdateFlags

(vaultObject, vaultObject.Flags | VaultObjectFlags.ReadOnly);

Vault Object Core Properties
A Vault object has metadata consisting of core properties that describe the basic properties of a Vault
object. The core properties are based on standards set by the Dublin CoreMetadata Initiative. Core
properties are assigned by the Framework, the repository, a client application, or an end-user. Some
core properties are read-only.
The VaultObject.CoreProperties property contains instances of the core properties. Each
property is represented by the Symyx.Framework.Properties.Property class that is also the base
class for all other Vault object property classes. The property keys are defined in
Symyx.Framework.CoreProperty.
The following C# example gets the Title core property of a Vault object:
string title = vaultObject.CoreProperties.GetValue<string>

(CoreProperty.Title);

or

BIOVIA Workbook 2021 • SDK Developers Guide | Page 15

http://dublincore.org/

Chapter 2: BIOVIA Vault Server

Symyx.Framework.Properties.Property
titleProperty = vaultObject.CoreProperties[CoreProperty.Title];

To get the Title core property as a string, use:
string title = vaultObject.Title;

The following C# example sets the Title core property of a Vault object:
vaultObject.CoreProperties.SetValue(CoreProperty.Title, "New Title");

Or
vaultObject.CoreProperties[CoreProperty.Title].Value = "New Title";

Page 16 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

BIOVIA Workbook 2021 • SDK Developers Guide | Page 17

Display Name Property Key Value Data Type
Data Type

Description Usage

Associations Associations Associations The associations
assigned to the
object.

Assigned by the Framework.

Association Target AssociationTarget Boolean True if the object
can be the target
of a user-defined
association

Assigned by user

Auto Name Autoname String The auto name
string mask

Assigned by a client application. The
string mask is used to generate a
corporate identifier on Vault.

Check-in Signature
Policy

CheckInSignaturePolicy CheckInSignaturePolicies The signature
policies that apply
when the object is
checked in.

Assigned by a client application.

Availability CheckoutState CheckoutState Check-out state of
the object at the
time it was
retrieved from the
server. Read-only.

Assigned by Vault managed repository.
Includes state (New, Available,
ExclusivelyCheckedOut, NotAvailable),
user name, user ID, and timestamp.
Populated by the server at the time that
the object is retrieved from the server;
might not necessarily reflect the current
checkout state. Set to
CheckoutState.New prior to the object’s
first check-in.

Creation Date ClientCreationDate DateTimeOffset A point or period
of time associated
with an event in
the lifecycle of the
resource. Read-

Assigned by the Framework. The date and
time that the object was originally created
on the client, in UTC. Populated by the
VaultObject constructor

Chapter 2: BIOVIA Vault Server

Page 18 | BIOVIA Workbook 2021 • SDK Developers Guide

Display Name Property Key Value Data Type
Data Type

Description Usage

only.

Size ContentSize Integer Size of the object
data. Read-only

Assigned by the source repository. The
size of the object’s content stream, as
computed by Vault. For experiments, this
is the size of the document object itself as
stored in the database, excluding the
sections within the experiment, which are
stored as separate objects in the
database.

Contributor(s) Contributor String An entity
responsible for
making
contributions to
the resource.

Assigned by user. User description of
others contributing to the object’s
content, for example, technicians and
investigators.

Scope Coverage String The spatial or
temporal topic of
the resource, the
spatial
applicability of the
resource, or the
jurisdiction under
which the
resource is
relevant.

Assigned by user. User description of the
scope of the object.

Created By Creator VaultId An entity primarily
responsible for
making the
resource. Read-
only.

Assigned by Vault managed repository.
The ID of the user making the first Vault
check-in of the object. Assigned by the
server; empty for objects that have not
been checked into Vault.

Chapter 2: BIOVIA Vault Server

BIOVIA Workbook 2021 • SDK Developers Guide | Page 19

Display Name Property Key Value Data Type
Data Type

Description Usage

Description Description String An account of the
resource

Assigned by user. User description of the
object, such as an abstract, a table of
contents, or a free-text account of the
content.

Flags Flags Integer Describes the
system-level flags
that can be
applied on a Vault
object.

Assigned by the source repository.
The ReadOnly flag overrides the security
permissions to write, update, or delete
the object, and it may require a signing
policy to unlock.
The Hidden flag has no bearing on
security settings; clients can handle
hidden objects as appropriate.
The System flag has no bearing on
security settings; clients can handle
system objects as appropriate.
The Archive flag is frequently used by
backup software to do incremental
backups. It identifies an object that has
reached a point in its lifecycle (workflow)
that makes it eligible for archiving.

Format Format String The file format,
physical medium,
or dimensions of
the resource.
Read-only.

Assigned by the Framework. Themedia
type of the object in MIME-type format.

ID Identifier VaultId An unambiguous
reference to the
resource within a
given context.
Read-only

Assigned by the Framework. The system
GUID for the object. Populated by the
VaultObject constructor.

Chapter 2: BIOVIA Vault Server

Page 20 | BIOVIA Workbook 2021 • SDK Developers Guide

Display Name Property Key Value Data Type
Data Type

Description Usage

IsLocked IsLocked Boolean Indicates whether
or not the Vault
object is locked by
the user

Assigned by user

Language Language String A language of the
resource

Assigned by user. User description of the
language used by the object.

ObjectData ObjectData Byte[] Hidden object
properties

For sections, an XML representation of
DocumentSection base class properties

PendingContentHistory PendingContentHistory MutableContentHistory A list of pending
content history
entries

Assigned by the Framework. Used to
capture content history entries before
they are committed to Vault

Permissions Permissions ObjectPermissions Current
perimissions of
the object. Read-
only.

Assigned by the source repository.
Contains both explicit and implicit
permissions. Populated by the server at
the time that the object was retrieved
from the server; may not necessarily
reflect the current permissions.

Preview Section Preview Image An
implementation-
defined preview
image of the
object

Assigned by a client application. For
sections, an implementation-specific
rendering of the section’s contents. For
documents, a rendering of the section
designated as the preview section.

PropertySets PropertySets List<PropertySetIdentifier> A list of property
set identifiers

Assigned by the Framework. The
PropertySetIdentifier is a VaultUri if the
PropertySetDefinition is managed, or
otherwise a key.

Published By Publisher String An entity
responsible for

Assigned by the Framework. The name
and version of the application creating

Chapter 2: BIOVIA Vault Server

BIOVIA Workbook 2021 • SDK Developers Guide | Page 21

Display Name Property Key Value Data Type
Data Type

Description Usage

making the
resource available.
Read-only.

the object, for example, Workbook.

Related To Relation String A related resource Assigned by user. User description of
related work, for example, a literature
reference or something semi-abstract like
the experiments I did as a postdoc.

Referenced References AssociationList A collection of
associations that
contain references

Assigned by the Framework. A reference
is a type of association in which the target
object is a reference to the source object.

RepositoryVersion RepositoryVersion String The version of a
repository

Assigned by the source repository.

Rights Rights String Information about
rights held in and
over the resource

Assigned by user. User description of
rights held to the object. This is distinct
from permissions, which describe the
accessibility of the object to users within
the system.

Initial Check-In Date ServerCreationDate DateTimeOffset Creation date and
time of the object
from the server

Assigned by Vault managed repository.
The date and time that the first version of
the object was saved to Vault, in UTC

Source Source String The resource from
which the
described
resource is derived

Assigned by the Framework.
For documents: title of
DocumentTemplate from which the
document was created.

For sections: title of SectionTemplate
from which the section was created.
For users: the user name in the

Chapter 2: BIOVIA Vault Server

Page 22 | BIOVIA Workbook 2021 • SDK Developers Guide

Display Name Property Key Value Data Type
Data Type

Description Usage

underlying directory, for example, Active
DirectoryEmpty for other object types.

Subject Subject String The topic of the
resource

Assigned by user. User description of the
object’s topic keywords and key phrases.

Name Title String A name given to
the resource

Assigned by user. Title of the object, for
display purposes. For users: the full name
of the user, for example, John Smith not
symyx\john.smith.

Total Content Size TotalContentSize Long The size of the
object data and all
its children

For experiments, this is the size of the
document and its sections, as stored in
the database. For file content stored in
file sections, this figure includes only size
of themetadata about the file, not the file
content size itself, which is stored in a
separate database schema.

Type Type String The type of the
resource

Assigned by the Framework.
For documents, Document
For document templates, Document
Template
For sections, Document Section
For section templates, Document Section
Template
For folders, Folder
For repositories, Repository
For a favorites collection, Favorites
For signature policies, Signature Policy
For users, User
For groups, Group
For forms, Form

Chapter 2: BIOVIA Vault Server

BIOVIA Workbook 2021 • SDK Developers Guide | Page 23

Display Name Property Key Value Data Type
Data Type

Description Usage

Vault Path VaultPath String Location of the
object in Vault in
directory-style

Assigned by a Vault managed repository.
A path-style concatenation of the object’s
containing folder and its parent
folders.Populated by the server; only
affected by saves to an authoritative
Vault repository, that is not a user
repository. Empty if not saved to Vault.

Current Version Version Integer Version number of
the object. Read-
only.

Assigned by Vault managed repository.
An integer value incremented with each
content change. Initialized to zero by the
Framework; non-zero value assigned by
the server.

Version Comment VersionComment String Description of the
current version of
the object
content.

Assigned by Vault managed repository.
Corresponds to the user-specified check-
in comment for that version.

Version Creation Date VersionCreationDate DateTimeOffset Creation date and
time of the object
from the server.
Read-only

Assigned by Vault managed repository.
The date and time that this version of the
object was originally checked into Vault,
in UTC.

Version Created By VersionCreator VaultId User ID
responsible for the
current version of
the object
content. Read-
only.

Assigned by Vault managed repository

Workflow Stages WorkflowSummary String A delimited list of
the current stage
for each of the

Assigned by Vault managed repository.

Chapter 2: BIOVIA Vault Server

Page 24 | BIOVIA Workbook 2021 • SDK Developers Guide

Display Name Property Key Value Data Type
Data Type

Description Usage

workflows in
which the object is
currently
participating

Chapter 2: BIOVIA Vault Server

Set Properties in VaultObject.ExtendedProperties
The property VaultObject.ExtendedProperties contains custom or extended properties of a
Vault object. ExtendedProperties is a Symyx.Framework.Properties.ExtendedPropertySet
object that allows you to set the property values.
The following C# example sets an extended property named key to the value myvalue:
vaultObject.ExtendedProperties.SetValue("key", "myvalue");

You can also create an enumeration and use the contents as keys. The following enumeration defines
keys.
named Size and InsertableThings: private enum MyKeys

{
Size, InsertableThings,

}

The following ExtendedVaultObject class contains a property that gets and sets Size.
public class ExtendedVaultObject : VaultObject
{
public ExtendedVaultObject() : base(VaultObjectType.User)
{
// additional constructor code

}
// create a Size property public int Size
{
// get and set methods get
{
return this.ExtendedProperties.GetValue<int>(MyKeys.Size, this.Size);
}

set
{
this.ExtendedProperties.SetValue(MyKeys.Size, value);
}

}

Use Data Scope to Set Information
The Framework provides various strategies for retrieving Vault objects. Before you see those strategies,
you need to understand how to specify the information to be retrieved from a Vault object by setting
the Data Scope.
Data Scope allows you to control the information retrieved for a Vault object.
The Symyx.Framework.Vault.DataScope enumeration contains options that correspond to the
parts of a Vault object that are retrieved.
public enum DataScope {

Minimal,
Properties,
Content,
Members,
Preview,
All = Properties | Preview | Content | Members,

}

BIOVIA Workbook 2021 • SDK Developers Guide | Page 25

Chapter 2: BIOVIA Vault Server

DataScope.Minimal specifies that only the following information about the vault object is returned
which includes: Title, Description, VaultObjectType, Class, and SourceRepositoryId.
DataScope.All is a shortcut for combining all the available data scopes.
Experiments could contain a large amount of content. Performing gets using DataScope.Content or
DataScope.All can cause significant performance problems and can lead to out ofmemory errors.

Do not execute a DataScope.Content or DataScope.All get methods unless the experiment
content is needed.
Avoid executing DataScope.Content or DataScope.All get methods on more than one
document a time.

In a few cases a repository might return more information than is requested. For example,
VaultRepository returns properties even if you only DataScope.Contentwas specified.
The following C# example shows how to use DataScope.Content to retrieve the Vault object content,
and displays the DataScope and retrieval properties.
VaultObject vaultObject = repository.Get(vaultId, DataScope.Content);
Console.WriteLine(vaultObject.DataScope);
// the DataScope
Console.WriteLine(vaultObject.PropertiesRetrieved);
// will be false
Console.WriteLine(vaultObject.ContentRetrieved);
// will be true
Console.WriteLine(vaultObject.PreviewRetrieved);
// will be false
Console.WriteLine(vaultObject.MembersRetrieved);
// will be false

The following C# example shows how to usemultiple DataScope combinations to retrieve the Vault
object properties and preview image:
vaultObject = repository.Get

(vaultId, DataScope.Properties | DataScope.Preview);
Console.WriteLine(vaultObject.DataScope);
// the DataScope
Console.WriteLine(vaultObject.PropertiesRetrieved);
// will be true
Console.WriteLine(vaultObject.ContentRetrieved);
// will be false
Console.WriteLine(vaultObject.PreviewRetrieved);
// will be true
Console.WriteLine(vaultObject.MembersRetrieved);
// will be false

DataScope applies to the objects to retrieve. In the case of a GetMembers()method call, DataScope
applies to themembers of the object.
The following C# example retrieves the subfolders of a folder (all of themembers for subfolders are also
retrieved):
Folder subFolder = (Folder) repository.Get

(folder.VaultId, DataScope.Properties | DataScope.Members);
foreach (VaultObject folder2 in subFolder)

{

Page 26 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

Console.WriteLine(folder2.MembersRetrieved);
}

When retrieving a Vault object that is a container such as documents and folders,
DataScope.Content applies to themembers when DataScope.Members is specified. On other
types, the content for members is not retrieved. For example, in C#:
// the members of the container will be retrieved
VaultObject vaultObject = repository.Get(documentId, DataScope.All);
// the members of the folder will not be retrieved
vaultObject = repository.Get(folderId, DataScope.All);

Retrieve Vault Users Example
The following C#method retrieves the Vault users.
private static void RetrieveVaultUsers(Repository repository)

{
// get the list of Vault users
VaultObjectList users = VaultWorkspace.Current.SiteRepository.Get

(VaultObjectType.User, DataScope.Properties,
RetrievalOptions.None);

foreach (User user in users)
{
// display some of the core properties
Console.WriteLine("Title: " + user.CoreProperties.GetValue

(CoreProperty.Title));
Console.WriteLine("Content size: " + user.CoreProperties.GetValue

(CoreProperty.ContentSize));
Console.WriteLine("Description: " + user.CoreProperties.GetValue

(CoreProperty.Description));
// set a new title
Symyx.Framework.Properties.Property titleProperty =

user.CoreProperties[CoreProperty.Title];
user.CoreProperties.SetValue(CoreProperty.Title, "New Title");
Console.WriteLine("Title: " + user.CoreProperties.GetValue

(CoreProperty.Title));
// set an extended Vault property
user.ExtendedProperties.SetValue("key", "myvalue");
Console.WriteLine("Key: " + user.ExtendedProperties.GetValue

("key"));
// use a different DataScope and re-retrieve the contents
VaultObject vaultObject = repository.Get

(user.VaultId, DataScope.Content);
Console.WriteLine(vaultObject.DataScope);
Console.WriteLine(vaultObject.PropertiesRetrieved);
Console.WriteLine(vaultObject.ContentRetrieved);
Console.WriteLine(vaultObject.PreviewRetrieved);
Console.WriteLine(vaultObject.MembersRetrieved);
// use a different DataScope and re-retrieve the contents
vaultObject = repository.Get

(user.VaultId, DataScope.Properties | DataScope.Preview);
Console.WriteLine(vaultObject.DataScope);
Console.WriteLine(vaultObject.PropertiesRetrieved);
Console.WriteLine(vaultObject.ContentRetrieved);

BIOVIA Workbook 2021 • SDK Developers Guide | Page 27

Chapter 2: BIOVIA Vault Server

Console.WriteLine(vaultObject.PreviewRetrieved);
Console.WriteLine(vaultObject.MembersRetrieved);

}
}

Retrieve a Vault Object using Vault ID or Vault URI
The following C# example gets a Vault object using a Vault ID:
VaultObject vaultObject = repository.Get

(vaultId, DataScope.Properties);

In the about code, repository represents a Vault Repository object.
A Vault URI can have the version number specified as part of the VaultId.
The C#method calls are:
VaultObject Get(VaultId vaultId, Version version, DataScope dataScope);
VaultObject Get(VaultUri vaultUri, DataScope dataScope);

For example:
VaultObject vaultObject = repository.Get

(vaultId, new Symyx.Framework.Version(1), DataScope.Properties);
vaultObject = repository.Get

(new VaultUri
(vaultId, new Symyx.Framework.Version(1)), DataScope.Properties);

A version that is empty (Version.Empty) is the same as only specifying the Vault ID. A request without
a version returns the latest version of that object. When a version is specified, the local object cache
might determine that object if it has been retrieved before.
The first version of a Vault object has the version number of 1. The following C# example retrieves a
document using a Vault ID. The DataScope.All parameter specifies that the retrieved object includes
its properties and contents. The RetrievalOptions.SuppressNotFoundExceptions parameter
specifies that an exception is not thrown if the specified Vault ID is not found.
VaultObject vaultObject = repository.Get
(vaultId, DataScope.All, RetrievalOptions.SuppressNotFoundExceptions);

Create a Batch For Identity Requests
You can specify multiple VaultIds or VaultUris identities and retrieve the Vault objects in a single
server call. The following C# shows the Get method signatures.
VaultObjectList Get

(IEnumerable <VaultId> vaultIds, DataScope dataScope);
VaultObjectList Get

(IEnumerable <VaultUri> vaultUris, DataScope dataScope);

The following C# example shows how the first Get method is called to retrievemultiple Vault objects,
and return the objects in a VaultObjectList.
List<VaultId> vaultIds = GetVaultIds();
VaultObjectList list = repository.Get(vaultIds, DataScope.Properties);

When supplying versions using VaultUris, the Vault objects that can be retrieved from the local
object cache are retrieved. The other Vault objects are retrieved from the Vault server.

Page 28 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

Retrieve and Cast a Vault Object
All of the identity Getmethods that return a single object allow you to return the object as a specific
type. For example, in C#:
TVaultObject Get<TVaultObject>(VaultId vaultId, DataScope dataScope) where
TVaultObject : VaultObject;

The following returns a Group object when the Getmethod is called:
VaultId groupId = vaultObject.VaultId;
Group group = repository.Get<Group>(groupId, DataScope.Properties);

The Getmethod throws an error if the retrieved type cannot be cast to the supplied generic parameter
type. You can specify any valid base class in the object's inheritance hierarchy. The following C# example
casts the retrieved object to a Notebook.DocumentSection:
Symyx.Notebook.DocumentSection section =

repository.Get<DocumentSection>(sectionId, DataScope.Properties);

This example is valid for a TextSection, FormsSection, or any custom section class that derives from the
DocumentSection class.

Identity Requests Scope
Requests sent to a specific repository find only the Vault objects that are located in that repository.
Requests using VaultWorkspace.Current use the Vault object location service on the Vault Server
machine to determine the appropriate repository. For example, in C#:
VaultObject vaultObject = VaultWorkspace.Current.Get

(vaultId, DataScope.Properties);

The call can only locate objects in managed repositories. Items in the User Repository are not found. The
exception is that a mixed list of VaultUris can be passed to the current workspace. An example is a set
of VaultShortcuts that might point to objects in many different repositories.
A VaultUri that contains a supplied repository VaultId always causes Vault Server to look in that
repository only for that Vault object. If a such a VaultUri is passed to a specific repository that is
different, an error is thrown. For example, in C#:
VaultUri vaultUri = new VaultUri

(VaultWorkspace.Current.Repositories[0].VaultId, vaultId);
VaultObject vaultObject = VaultWorkspace.Current.Repositories[1].Get

(vaultUri, DataScope.Properties);

Retrieve Vault Objects by Object Type
To retrieve Vault objects by a Vault object type, you use the Getmethod that accepts Vault object
types:
VaultObjectList Get

(VaultObjectTypes objectTypes, DataScope dataScope);

For example, the following C# statement retrieves the Vault folder objects:
VaultObjectList list = repository.Get

(VaultObjectTypes.Folder, DataScope.Properties);

The following C# example retrieves Vault objects ofmultiple types:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 29

Chapter 2: BIOVIA Vault Server

VaultObjectList list = repository.Get
(VaultObjectTypes.Folder | VaultObjectTypes.SignaturePolicy |
VaultObjectTypes.WorkflowDefinition, DataScope.Properties);

The VaultObjectTypes.All property can be used to retrieve all types, but the Get methods work
against the entire repository. Typically, you would use VaultObjectTypes.All in conjunction with a
context-based Vault object retrieval using themethod GetMembers.
The repository might contain a large number of vault objects of a given type in Vault. Searching by
object type can cause performance problems or out ofmemory exceptions.

Search for a Vault User Example
The following C#method shows how to search for a user whose user name ends with the string, admin.
private static void SearchForUser()

{
// get the list of Vault users
VaultObjectList users =VaultWorkspace.Current.SiteRepository.Get

(VaultObjectType.User, DataScope.Properties,
RetrievalOptions.None);

// loop over the users and search for a username that ends with admin
foreach (User user in users)
{

Console.WriteLine("User name: " + user.UserName);
if ((user as User).UserName.ToLower().EndsWith("admin"))
{
Console.WriteLine("User found");

}
}

}

Retrieve Vault Assemblies
The following C#method shows how to retrieve Vault assemblies.
private static void RetrieveAssemblies()
{
// get the list of assemblies
VaultObjectList assemblies = VaultWorkspace.Current.SiteRepository.Get

(VaultObjectType.Assembly, DataScope.Properties);
// display the assembly details
assemblies.ForEach(delegate(VaultObject vaultObject)

{
Console.WriteLine("Assembly: {0}, Created: {1}", vaultObject.Title,

vaultObject.ServerCreationDate);
}

}

Use GetMembers For Context Retrieval
For Vault objects that implement the IMemberBasedVaultObject, which means that they reference
other Vault objects, thosemembers can be directly accessed using the GetMembersmethod:
VaultObjectList GetMembers
(IMemberBasedVaultObject memberBasedVaultObject, DataScope dataScope);

Page 30 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

The GetMembersmethod returns a list of themembers. The DataScope applies directly to the
members, not themember-based object passed into themethod.
The following C# example returns the contents of a folder:
VaultObjectList list = repository.GetMembers
(folder, DataScope.Properties);

The base Repository implementation derives from Folder, so the repository can be passed into the
GetMembersmethod as the root folder of the repository. For example, the following C# example gets
the items located in the root repository folder:
VaultObjectList list = repository.GetMembers

(repository, DataScope.Properties);

This is different from the following C# example, which gets all of the items in the repository:
VaultObjectList list = repository.Get

(VaultObjectTypes.All, DataScope.Properties);

When retrieving objects from a managed repository, themembers are retrieved for the version of the
object passed into the GetMembers call. For non-container member-based objects, themembers are
not version based, so this is not important. For containers, it provides a means to retrievemembers for
a previous version. When making the call against a non-managed repository (the User Repository), the
supplied version is not considered because only one version is stored at a time.

Combine Vault object types in a GetMembers call
When getting themembers of a Vault object, it can be useful to limit the retrieval to only certain types of
members. For this reason, the following GetMembersmethod is provided that allows you to specify the
Vault object type(s):
VaultObjectList GetMembers

(IMemberBasedVaultObject memberBasedVaultObject,
VaultObjectTypes objectTypes, DataScope dataScope);

The following C# example returns the subfolders of a folder:
VaultObjectList subFolders = repository.GetMembers

(folder, VaultObjectType.Folder, DataScope.Minimal);

Retrieve Vault Folders
The following C#method shows how to retrieve the Vault folders:
private static void RetrieveVaultFolders

(Repository repository, Workspace workspace)
{
// get the list of Vault folders VaultObjectList folders =
VaultWorkspace.Current.SiteRepository.Get

(VaultObjectType.Folder, DataScope.Properties,
RetrievalOptions.None);

VaultId vaultId = new VaultId();
// loop over the folders
foreach (Folder folder in folders)
{
Console.WriteLine("Folder title: " + folder.CoreProperties.GetValue

(CoreProperty.Title));
// get the subfolders of the folder and display their details
Folder subFolder = (Folder) repository.Get

BIOVIA Workbook 2021 • SDK Developers Guide | Page 31

Chapter 2: BIOVIA Vault Server

(folder.VaultId, DataScope.Content);
VaultObjectList subFolders = repository.GetMembers

(subFolder, VaultObjectTypes.Folder, DataScope.All);
foreach (VaultObject folder2 in subFolders)
{
Console.WriteLine(folder2.MembersRetrieved);

}
vaultId = folder.VaultId;

}
// display the Vault ID
Console.WriteLine("Vault ID: " + vaultId);
// when the Vault ID is known, a Vault object can be retrieved
// using that Vault ID
VaultObject vaultObject = repository.Get

(vaultId, DataScope.Properties);
// get a specific version of a Vault object
VaultObject vaultObject2 = repository.Get

(vaultId, new Symyx.Framework.Version(1), DataScope.Properties);
VaultObject vaultObject3 = repository.Get

(new VaultUri(vaultId, new Symyx.Framework.Version(1)),
DataScope.Properties);

// requests sent to a specific repository only finds Vault objects
// that are located in that repository.
// Alternatively, requests sent using VaultWorkspace.Current will
// use the Vault object location service
// to determine the appropriate repository. For example:
VaultObject vaultObject4 = VaultWorkspace.Current.Get

(vaultId, DataScope.Properties);
// get a list of folder objects
VaultObjectList list = repository.Get

(VaultObjectTypes.Folder, DataScope.Properties);
Console.WriteLine("list = " + list);
// get a list of folders, signature policies, and workflow
// definitions
VaultObjectList list2 = repository.Get

(VaultObjectTypes.Folder | VaultObjectTypes.SignaturePolicy |
VaultObjectTypes.WorkflowDefinition, DataScope.Properties);

Console.WriteLine("list2 = " + list2);
// get the members of a folder as a list
Folder myFolder = (Folder) repository.Get

(vaultId, DataScope.Properties);
VaultObjectList list3 = repository.GetMembers

(myFolder, DataScope.Properties);
Console.WriteLine("list3 = " + list3);
// get the list of items located in the root repository folder
VaultObjectList list4 = repository.GetMembers

(repository, DataScope.Properties);
Console.WriteLine("list4 = " + list4);
// get the list of ALL the items located in the repository
VaultObjectList list5 = repository.Get

(VaultObjectTypes.All, DataScope.Properties);
Console.WriteLine("list5 = " + list5);

}

Page 32 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

Retrieve Hierarchy of Vault Folders Example
The following C#method shows how to retrieve the hierarchy of Vault folders, starting with the root
repository folder.
private static void ShowRepositoryFolderHierarchy

(VaultRepository repository)
{
// call ShowFolders to display the folder hierarchy
ShowFolders(repository, repository, 0);

}
private static void ShowFolders

(VaultRepository repository, Folder folder, int level)
{
// display the current folder
Console.WriteLine

("{0}{1}", new string((char)9, level), folder.Title);
VaultObjectList subFolders = repository.GetMembers

(folder, VaultObjectType.Folder, DataScope.Minimal);
// for each subfolder...
foreach (Folder subFolder in subFolders)
{
// call ShowFolders recursively
ShowFolders(repository, subFolder, level + 1);

}
}

Use Vault Query Service to Get Vault IDs
You can use the Vault query service and provide search operators to retrieve a set of Vault IDs. The Vault
IDs can then be used with the Get method to get the actual Vault objects.
To use the query service, you first build a Query object, and then use the FindVaultIdsmethod to
retrieve the Vault IDs of any matching Vault objects. You then use the Getmethod to retrieve the Vault
objects.
The following C# example creates a query condition to search for an object with the title,
NotebookAssemblies.
CorePropertyQueryCondition titleClause = new CorePropertyQueryCondition

(CoreProperty.Title,
QueryComparisonOperator.QueryComparisonOperators.EqualTo,
"NotebookAssemblies");

The following query condition searches for Folder objects.
CorePropertyQueryCondition typeClause = new CorePropertyQueryCondition

(CoreProperty.Type,
QueryComparisonOperator.QueryComparisonOperators.EqualTo,
VaultObjectType.Folder);

The following query condition searches for objects with the previous title clause and type clause.
Query query = new Query(titleClause & typeClause);

The following example runs the query and gets the results back as a list of Vault IDs:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 33

Chapter 2: BIOVIA Vault Server

List<VaultId> vaultIds =
VaultWorkspace.Current.SiteRepository.FindVaultIds(query);

For details on FindVaultIds(), see the Framework API reference.
Also, see the Query, QueryClause, and TitleTypeAndQuery classes in the API (these classes are
very important for finding Vault objects).
The following example gets the list of Vault objects.
VaultObjectList vaultObjects = repository.Get

(vaultIds, DataScope.Properties);

Retrieving a Vault object using the query service Example
The following C#method shows how to retrieve theNotebookAssemblies folder using the query service:
private static void RetrieveVaultObjectUsingQueryService

(VaultRepository repository)
{
// create a query condition to search for Vault objects using a title
CorePropertyQueryCondition titleClause = new

CorePropertyQueryCondition(CoreProperty.Title,
QueryComparisonOperator.QueryComparisonOperators.EqualTo,
"NotebookAssemblies");

// create a query condition to search for Vault objects using an
// object type
CorePropertyQueryCondition typeClause = new

CorePropertyQueryCondition(CoreProperty.Type,
QueryComparisonOperator.QueryComparisonOperators.EqualTo,
VaultObjectType.Folder);

// create a query to search for Vault objects with the specified
// title and type
Query query = new Query(titleClause & typeClause);
// run the query and get the Vault object IDs back as a list
List<VaultId> vaultIds =

VaultWorkspace.Current.SiteRepository.FindVaultIds(query);
Console.WriteLine("vaultIds = " + vaultIds);
// get the list of Vault objects
VaultObjectList vaultObjects = repository.Get

(vaultIds, DataScope.Properties);
Console.WriteLine("vaultObjects = " + vaultObjects);
foreach (VaultObject vaultObject in vaultObjects)
{
Console.WriteLine

("Vault object title: " + vaultObject.CoreProperties.GetValue
(CoreProperty.Title));

}
}

Retrieving a Vault Object Using the Query Service
The following IronPython example gets the Vault IDs where the subject is Symyx.Notebook and the
title is Forms.Editor:
from Symyx.Framework import

(CoreProperty, CorePropertyQueryCondition, Query,
QueryComparisonOperator)

Page 34 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

from Symyx.Framework.Vault import (VaultWorkspace, VaultId, DataScope) from
System.Windows.Forms import MessageBox
subjectClause = CorePropertyQueryCondition

(CoreProperty.Publisher,
QueryComparisonOperator.QueryComparisonOperators.EqualTo,
"Symyx.Notebook")

titleClause = CorePropertyQueryCondition
(CoreProperty.Title,
QueryComparisonOperator.QueryComparisonOperators.EqualTo,
"Forms.Editor")

query = Query(subjectClause & titleClause)
vaultIds = VaultWorkspace.Current.SiteRepository.FindVaultIds(query)
if vaultIds.Count > 0: MessageBox.Show(vaultIds[0].ToString())
else: MessageBox.Show('Object not found')

You can paste the script into the OnApplicationLoaded event in the Event Scripting area of the
Experiment Editor.
1. In the Experiment Editor, choose View > Properties.
2. In the Event Scripting area, click the ellipsis button.
3. Select OnApplicationLoaded.
4. Click Add Script.
5. Paste the script into the code area, and click OK.

Convert Vault IDs
A Vault ID is a 128-bit positive integer. The following examples show a Document Vault ID and a User
Vault ID, the 128-bit integer is shown as a hexadecimal number after the Vault object type:
Document.382c74c3-721d-4f34-80e5-57657b6cbc27 User.ff2d59a7-7d08-4a5b-97be-
e06df1cf0b33

You can change a Vault ID to a string, and convert a string that contains a Vault ID to a Vault ID.
To convert a Vault ID to a string, you use the ToString()method. For example, in C#:
string vaultIdString = vaultId.ToString();

To check that a string contains a valid Vault ID, you use the TryParse() to examine the supplied string
and attempt to convert the string to a Vault ID. If the supplied string is a valid Vault ID, TryParse()
returns true, otherwise themethod returns false.

Converting Vault IDs to Strings Example
The following C#method shows how to convert Vault IDs to strings:
private static void ConvertVaultIDsToStrings()
{
// get the list of Vault folders
VaultObjectList folders = VaultWorkspace.Current.SiteRepository.Get

(VaultObjectType.Folder, DataScope.Properties,
RetrievalOptions.None);

// loop over the folders
foreach (Folder folder in folders)
{
// get the Vault ID

BIOVIA Workbook 2021 • SDK Developers Guide | Page 35

Chapter 2: BIOVIA Vault Server

VaultId vaultId = folder.VaultId; Console.WriteLine
("Vault ID: " + vaultId);

// convert the Vault ID to a string
string vaultIdString = vaultId.ToString();

// check a supplied string contains a valid Vault ID using
TryParse() bool isValidVaultId = VaultId.TryParse

(vaultIdString, out vaultId);

// if the Vauld ID is valid, retrieve the Vault object using
Get() if (isValidVaultId)
{
Console.WriteLine("Vault ID is valid");
VaultObject vaultObject = VaultWorkspace.Current.SiteRepository.Get
(vaultId, DataScope.All);

Console.WriteLine("Vault object title: " + vaultObject.Title);
}

}
}

Vault Object References and Associations
A Vault object can be referenced by either its VaultId or VaultUri. The
VaultObject.Associations property contains a collection of Association objects that allow you to
capture types of relationships between Vault objects.
An association represents a relationship between two Vault objects. The basic constituents of an
association is Type, which is the association type listed in the
Symyx.Framework.Vault.AssociationTypes enumeration. The following table shows examples of
types of associations between two Vault objects.

Type Relationship between two objects

Parent Object1 is a parent of Object2.
For example, a document has this relationship with each of its sections

ContainedObject Object1 is contained in Object2.
For example, a section has this relationship with the document that contains it,
and a document in a search result has this relationship with the object returned by
the search. Note that [obj1 "is contained in" obj2 = TRUE] implies [obj2 "is parent
of" obj1 = TRUE].

CloneSource Object 1 is a clone of Object2

Template Object2 is a template of Object1.
For example, a document or a section has this relationship with the template that
was used to create that document or section.

Dependency Object1 is dependent on Object

Source object, which is the Vault object whose Associations property contains its target associations.

Page 36 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

Target object, which is the Vault ID of the target, or right operand of the association. It is stored in the
Association.TargetVaultId property.
Description, which describes the association or relationship between the objects. The following C#
example creates a parent association between two Vault objects:
Association association = new Association

(AssociationTypes.Parent, targetObject, true, "Child object");
arentVaultObject.Associations.Add(association);

The Symyx.Framework.Workflow.WorkflowActorAssociation provides a high-level abstraction
to an association. WorkflowActorAssociation is a helper class that allows an application to
associate a Vault object (for example, a user) with an actor in a workflow.
The following C# example assigns a supervisor (Mary) to a user (Jane) by adding a supervisor actor
association to a user:
WorkfowActorAssociation assoc = new WorkflowActorAssociation

(VaultObject<"Mary">, WorkflowActor<"Supervisor">);
User<"Jane">.Associations.Add(assoc);

Vault URIs
The objects and resources managed by the Vault are identified by a Uniform Resource Identifier (URI)
whose generic syntax conforms to the definitions found in the internet Request For Comments
document RFC 3986.
The generic syntax for a URI consists of a hierarchical sequence of components referred to as the
scheme, authority, path, query, and fragment. For example:
foo://example.com:8042/dir1/retrieve?name=get_row#132

Where:
foo is the Scheme
example.com:8042 is the Authority
dir1 is the Path
retrieve?name=get_row is the Query
132 is the Fragment

This section describes each component of the URI syntax used by Vault.

Scheme
In the following examples, the scheme for a Vault URI is represented by the characters "vault". Although
schemes are case-insensitive, the canonical form is lowercase.

Authority
The authority for a Vault URI optionally designates the Vault server endpoint that is responsible for
fulfilling a resource request.

Authority Syntax
The authority component is preceded by a double slash ("//") and is terminated by the next slash ("/"),
question mark ("?"), or number sign ("#") character, or by the end of the URI.
When an authority is not present, the path cannot begin with two slash characters ("//"). When an
authority is present, the path must begin with a slash ("/") character to imply that it is not a rootless
path. For more information, see Path.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 37

Chapter 2: BIOVIA Vault Server

The authority field consists of a host string and an optional port number. The any of the following are
valid for the host field:
A registered name intended for lookup in the DNS, using the syntax defined in Section 3.5 of RFC 1034
and Section 2.1 of RFC 1123.
An IPv4 literal address is represented in dotted-decimal notation, a sequence of four decimal numbers in
the range 0 to 255, separated by ".", as described in RFC 1123 by reference to RFC 0952.
A Internet Protocol literal address, version 6, as described in RFC 3513 or later, distinguished by
enclosing the IP literal within square brackets ("[" and "]").
Example Vault URIs:
vault://dev02.symyx.com/Repository.01234567-0123-0123-0123-
0123456789AB/Document.01234567-0123-0123-0123-0123456789AB

vault://192.168.1.1:1234/Repository.01234567-0123-0123-0123-
0123456789AB/Document.01234567-0123-0123-0123-0123456789AB

vault://[3ffe:1900:4545:3:200:f8ff:fe21:67cf]/Repository.01234567-0123-0123-
0123- 0123456789AB/Document.01234567-0123-0123-0123-0123456789AB

Authority Usage
The authority field is primarily useful for applications that must interact directly with multiple Vault
instances, for example, direct coordination of Vault servers, or server-side reparse points. For most
client applications, the authority field is not necessary: the URI is simply passed to the client's active
Vault server for processing. Distributed objects are located by other means, for example, the Vault
object locator service and Vault federation.

Path
The path component for a Vault URI identifies the specific resource within Vault.

Rootless path
In the simplest form, the path component simply specifies the Vault ID of the resource. Responsibility
for locating the resource is delegated to the Vault object locator service. In this form, the Vault ID
appears directly after the scheme separator, without a proceeding slash ("/") character.
Example:
vault:Document.01234567-0123-0123-0123-0123456789AB

Absolute path
If the path begins with a slash ("/") character, then the first component of the path specifies the Vault ID
of the repository containing the resource, and the last component of the path specifies the Vault ID of
the resource. In this form, the target repository is determined from the URI without consulting the Vault
object locator service. Because the resource ID is specified, no additional information is necessary to
locate the resource within the scope of the repository.
Example:
vault:/Repository.01234567-0123-0123-0123-0123456789AB/
Document.01234567-0123-012 3-0123-0123456789AB

Absolute path names
If an individual path component does not match the format of a Vault ID, then it is treated as a title, and
Vault attempts to locate the object by navigating the provided path. In this form, the target repository
must be specified, and the Vault object locator service is not consulted. Because titles of Vault Objects

Page 38 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

are not guaranteed to be unique, this operation does not authoritatively identify an object, and objects
can be located only on a best-effort basis.
Example:
vault:/Repository1/Folder2/Document3

Version Specifiers
If any path component includes a trailing integer version number delimited by a comma (",") character,
then it is treated as a reference to a specific version of the resource. If that component does not include
a trailing integer delimited by a comma, then it is treated as a reference to the latest version of the
resource.
Examples:
vault:Document.01234567-0123-0123-0123-0123456789AB,3

Note: This is version 3 of the Vault object.

vault:Document.01234567-0123-0123-0123-0123456789AB

Note: This is the latest version of the Vault object.

Query
The query component of a Vault URI provides a mechanism for refining the scope of an identified
resource. These values correspond to the values defined in the
Symyx.Framework.Vault.DataScope enumeration. If no scope is specified, then it is equivalent to
DataScope.All.
Example:
vault:Document.01234567-0123-0123-0123-0123456789AB&scope=members

Fragment
The fragment component of a Vault URI allows indirect identification of a secondary resource within the
scope of the primary resource that is, some resource in the scope of an identified VaultObject. The
primary resource is responsible for the interpretation of the fragment field, and might, for example,
represent a subset of the primary resource, an anchor within it, or an alternate view.
Example:
vault:DocumentSection.01234567-0123-0123-0123-0123456789AB#anchor

Vault Object Annotations
Vault object annotations provide a mechanism for attaching information to Vault objects. Annotations
exist outside of themetadata and content of the object, are not subject to Vault security, and are not
subject to audit trails. An annotation can be added to an object even if the user does not have
permission to modify that object. Some example uses of annotations are the comment features in
Workbook and workflow task features in Vault.
The following C# example creates an annotation for a hypothetical workflow:
Annotation annotation = new Annotation("Workflow category");
annotation.Category = "Workflow";
annotation.Context = "Workflow task";
annotation.Title = "Workflow task";
annotation.Description = "A test workflow task";

BIOVIA Workbook 2021 • SDK Developers Guide | Page 39

Chapter 2: BIOVIA Vault Server

The following example adds the annotation to a user:
annotation.Recipients.Add(vaultUser.VaultId);

The following example adds the annotation to the Site Repository:
site.AddAnnotation(vaultUser, annotation);

The following example gets the annotations assigned to the user:
List<Annotation> annotations = workspace.GetAnnotationsForUser

(vaultUser);

The following example removes the annotation from a user:
annotation.Recipients.Remove(user.VaultId);

The following example removes the annotation from the Site Repository:
site.RemoveAnnotation(vaultUser, annotation);

Add and Remove an Annotation
The following C#method shows how to add and remove an annotation:
private static void AddAnnotation(VaultWorkspace workspace)
{
// get the list of Vault users

VaultObjectList users =VaultWorkspace.Current.SiteRepository.Get
(VaultObjectType.User, DataScope.Properties, RetrievalOptions.None);

// create an annotation
Annotation annotation = new Annotation("Workflow category");
annotation.Category = "Workflow";
annotation.Context = "Workflow task";
annotation.Title = "Workflow task";
annotation.Description = "A test workflow task";

// loop over the users
foreach (User user in users)
{
// add the annotation to the user

Console.WriteLine("Adding annotation to " + user.Title);
annotation.Recipients.Add(user.VaultId);

// add the annotation to the site repository
Console.WriteLine("Adding annotation to the site repository");
VaultRepository site = VaultWorkspace.Current.SiteRepository;

site.AddAnnotation(user, annotation);
// display the user's annotations

List<Annotation> annotations = workspace.GetAnnotationsForUser
(user);

for each (Annotation myAnnotation in annotations)
{
Console.WriteLine("myAnnotation title: " + myAnnotation.Title);

}
// remove the annotation

Console.WriteLine("Removing the new annotation");
annotation.Recipients.Remove(user.VaultId);
site.RemoveAnnotation(user, annotation);

}
}

Page 40 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

Create and Delete Vault Objects
The following C# example creates a folder named newFolder:
Folder newFolder = new Folder("newFolder");

The following example adds the new folder to the list of the current user's favorite folders:
workspace.UserRepository.Add

(newFolder, workspace.CurrentUser.Favorites);

The following example deletes the new folder:
workspace.UserRepository.Delete(newFolder);

Note: Deleting is only allowed if permitted by the repository as specified by the
workspace.RepositoryBehaviors.AllowDeletes property. In general, deletes are only
allowed in the user repository.

Adding and Deleting a Folder
The following C#method shows how to add and delete a folder:
private static void AddAndDeleteFolder(VaultWorkspace workspace)
{
// create a folder

Folder newFolder = new Folder("newFolder");

// add the folder to the list of the current user's favorite folders
workspace.UserRepository.Add
(newFolder,workspace.CurrentUser.Favorites);

// display the favorite folders
foreach (Folder folder in workspace.CurrentUser.Favorites)
{
Console.WriteLine("Folder title = " + folder.Title);

}

// display the AllowDeletes property
// (this is true for the User Repository)
Console.WriteLine("workspace.UserRepository.AllowDeletes =

" + workspace.UserRepository.AllowDeletes);

// if the folder is not null
if (newFolder != null)
{
Console.WriteLine("Deleting the new folder");

// delete the folder
workspace.UserRepository.Delete(newFolder);

}
}

Package Vault Objects in VOZIP Files
The class Symyx.Framework.Vault.Packaging.VaultObjectPackage provides the ability to
package Vault objects in a Vault object package file known as a VOZIP file. VOZIP files have the extension
.vozip.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 41

Chapter 2: BIOVIA Vault Server

Reasons for packaging Vault objects include:
Packaging assemblies that are used in scripts. For information about using external assemblies with
Workbook scripts, see Script From External Assemblies.
Packaging an application permission for deployment to multiple Vault servers.
Creating a property set definition and then packaging it allows access to a subset of available
properties in Property Set Definitions.

To create and populate a VaultObjectPackage object:
1. Call the VaultObjectPackage.Create static method to create a VOZIP file for the package.
2. Write to the VaultObjectPackage object in the sameway as writing to a

Symyx.Framework.Vault.Repository object.

Create a Vault Object Package Example
The following C#method creates a VaultObjectPackage object named package, and then adds a
VaultDictionary object named customSettings to package.
private static void CreateVaultObjectPackage()

{
// set the VOZIP file name
string packageFilename = "C:\\myPackage.vozip";

// create a Vault object package
using (VaultObjectPackage package = VaultObjectPackage.Create

(packageFilename))
{
// create a Vault dictionary
VaultDictionary customSettings = new VaultDictionary
{ Title = "Custom Settings" };

// for example purposes, add a single key and value to the
// dictionary
customSettings.Add("myKey", "myValue");

// add the dictionary to the Vault object package
package.AddToRoot(customSettings);

// close the Vault object package package.Close();
}

}

Enclosing the last set of lines within the using statement ensures that the
VaultObjectPackageobject is closed properly and the package contents are written to the VOZIP
file.

Note: Do not use a plus (+) character or other special characters in package or profile names. If you do
so, when a user whose account uses that package or profile attempts to log on, the system displays
an message that says it cannot log them on to Vault due to an error on the server.

Add an Object to a Vault Object Package
The following C#method opens an existing Vault object package and adds a VaultDictionary object
to the package.
private static void AddObjectToVaultObjectPackage()

{
// set the VOZIP file name
string packageFilename = "C:\\myPackage.vozip";

Page 42 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

// open the Vault object package
using (VaultObjectPackage package = VaultObjectPackage.Open

(packageFilename))
{
// create a dictionary object
VaultDictionary customSettings = new VaultDictionary

{ Title = "Custom Settings" };
// add a key and value to the dictionary object
customSettings.Add("myKey", "myValue");

// add the dictionary object to the Vault object package
package.AddToRoot(customSettings);

// close the package package.Close();
}

}

List Objects in a Vault Object Package
The following C#method shows how to list the objects in an existing Vault object package:
private static void ListObjectsInVaultObjectPackage()

{
// set the VOZIP file name
string packageFilename = "C:\\myPackage.vozip";
using (VaultObjectPackage package = VaultObjectPackage.Open

(packageFilename))
{
// get the list of Vault objects
VaultObjectList list = package.Get

(VaultObjectType.All, DataScope.Properties);
foreach (VaultObject obj in list)
{
Console.WriteLine("Vault ID: " + obj.VaultId);
Console.WriteLine("Vault object type: " + obj.Type);
Console.WriteLine("Vault object title: " + obj.Title);

}
// close the package package.Close();
}

}

Publish Using a VOZIP File
To publish your custom assembly, you can write a program that includes your assembly in a Vault
object package (.vozip) file which can be distributed and published to Vault. In your program:
Call the VaultObjectPackage.Createmethod to create a VaultObjectPackagewith the specified
.vozip filename. VaultObjectPackage is in the Symyx.Framework.Vault.Packaging
namespace in the Symyx.Framework.dll assembly.
Use the Assembly.LoadFrommethod to load the assembly. Assembly is in the System.Reflection
namespace.
Create a VaultAssembly object and populate it with the content of your custom assembly.
VaultAssembly is in the Symyx.Framework.Extensibility namespace in the
Symyx.Framework.dll assembly
For example, the following C#method reads from CompanyName.ProjectName.dll and writes the
contents to a .vozip file named myPackage.vozip:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 43

Chapter 2: BIOVIA Vault Server

private static void ReadDLLAndWriteContentsToVaultObjectPackage()
{
// set the path and file name for the DLL assembly to be read from
string assemblyFile "C:\\ProjectName\\CompanyName.ProjectName.dll";

// set the path and file name for the VOZIP file to be written
string outputFile = "C:\\myPackage.vozip";

// create a VaultObjectPackage object using
(VaultObjectPackage package = VaultObjectPackage.Create(outputFile))
{
// load the assembly
Assembly loadFrom = Assembly.LoadFrom(assemblyFile);

// create a Vault assembly object and populate it with the content
// read from the assembly

VaultAssembly vaultAssembly = new VaultAssembly(loadFrom);

// add the Vault assembly object to the package, which writes the
// package to the VOZIP file

package.Add(vaultAssembly, package);

// close the package
package.Close();

}
}

For more information on packaging Vault objects, including how to list the contents of a .vozipfile, see
Package Vault Objects in VOZIP files.
After creating the .vozip file, useWorkbook to publish the file to Vault, see "Publish Vozip Files" in the
BIOVIAWorkbook online help.

Delete an Object From a Vault Object Package
The following C#method shows how to search an existing Vault object package for any Vault objects
with the title, Custom Settings, and then delete thematching Vault objects.
private static void DeleteObjectFromVaultObjectPackage()

{
// set the VOZIP file name
string packageFilename = "C:\\myPackage.vozip";
using (VaultObjectPackage package = VaultObjectPackage.Open

(packageFilename))
{
// get the list of Vault objects
VaultObjectList list = package.Get

(VaultObjectType.All, DataScope.Properties);
foreach (VaultObject obj in list)
{
// if the object title equals "Custom Settings", delete the object
if (obj.Title.Equals("Custom Settings"))
{
package.Delete(obj);

}
}

// close the package

Page 44 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

package.Close();
}

}

Read andWrite to a Vault Object
A program can read the contents of an assembly DLL file and write the contents to a Vault object
package. For example, the following C#method reads from Symyx.Framework.dll and writes the
contents to a VOZIP file named myPackage2.vozip:
private static void ReadDLLAndWriteContentsToVaultObjectPackage()

{
// set the path and file name for the DLL assembly to be read from
string assemblyFile =

"C:\\Program Files\\Symyx\\Symyx6.6\\lib\\Symyx.Framework.dll";
// set the path and file name for the VOZIP file to be written string
outputFile = "C:\\myPackage2.vozip";

// create a VaultObjectPackage object using
(VaultObjectPackage package =VaultObjectPackage.Create(outputFile))
{
// load the assembly
Assembly loadFrom = Assembly.LoadFrom(assemblyFile);

// create a Vault assembly object and populate it with the content
// read from the assembly
VaultAssembly vaultAssembly = new VaultAssembly(loadFrom);

// add the Vault assembly object to the package, which writes the
// package to the VOZIP file
package.Add(vaultAssembly, package);

// close the package package.Close();
}

}

By default, when you add an assembly to a Vault object package, all of the assemblies on which the first
assembly is dependent on will also be added. For example, if DLL1 is dependent on DLL2 and DLL3, then
all three DLLs will be written to the Vault object package. To omit dependent assemblies, create an
AssemblyPublicationOptions object and specify the assemblies you want to omit. For example:
AssemblyPublicationOptions publicationOptions = new
AssemblyPublicationOptions(Iterator.FromItems("Symyx.Framework.Controls",
"Symyx.Framework.Materials", "Symyx.Framework.Reporting"));

You then include publicationOptions in the VaultObjectPackage.Createmethod call nested
within the using statement:
using (VaultObjectPackage package = VaultObjectPackage.Create(outputFile,
publicationOptions))

Display DLL Assembly Dependencies
One DLL assembly can depend on another. The following C#method opens a VOZIP file, checks whether
a Vault object is an assembly, and displays the DLL dependencies.
private static void DisplayAssemblyDependencies()

{
// open the Vault object package VOZIP file using
(VaultObjectPackage package = VaultObjectPackage.Open

("C:\\myPackage2.vozip"))

BIOVIA Workbook 2021 • SDK Developers Guide | Page 45

Chapter 2: BIOVIA Vault Server

{
// display column headings
Console.WriteLine(String.Format("{0,-24} {1,-54} {2}",

"VaultObject type", "Vault ID", "Title"));
Console.WriteLine(String.Format("{0,-24} {1,-54} {2}",

new String('-', 24), new String('-', 54), "-----"));
Console.WriteLine();

// display the details of the Vault objects in the package
foreach (VaultObject vaultObject in package.Get

(VaultObjectTypes.All, DataScope.All, RetrievalOptions.None))
{
// if the Vault object is an assembly, display the dependencies
if (vaultObject.ObjectType == VaultObjectType.Assembly)
{
// display the Vault object details
Console.WriteLine(String.Format("{0,-24} {1,-54} {2}",

vaultObject.ObjectType, vaultObject.VaultId,
vaultObject.Title));

// display the dependencies
Console.WriteLine("Dependencies:");
foreach (Association association in vaultObject.Associations)
{
// if the association is a dependency
if (association.AssociationType == AssociationTypes.Dependency)
{
// get the dependency
VaultObject dependency = package.Get(association.TargetVaultId,

DataScope.All, RetrievalOptions.SuppressNotFoundExceptions);
// if the dependency is not null
if (dependency != null)
{
// display the dependency
Console.WriteLine(String.Format("{0} - {1}",

association.TargetUri, dependency.Title));
}

}
}

}
// close the package
package.Close()

}
}

}

The following IronPython example creates a Vault object package VOZIP file:
from Symyx.Framework.Vault.Packaging import VaultObjectPackage
package = VaultObjectPackage.Create("filename.vozip")
#can also use the full path
package.AddToRoot(document)
package.Close()

The next example creates folder hierarchies within the Vault object package:

Page 46 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 2: BIOVIA Vault Server

from Symyx.Framework.Vault.Packaging import VaultObjectPackage from
Symyx.Framework.Vault import Folder
package = VaultObjectPackage.Create("filename.vozip") folder = Folder
("MyFolder")
package.AddToRoot(folder) package.Add(document, folder)
package.Close()

BIOVIA Workbook 2021 • SDK Developers Guide | Page 47

Chapter 3:
Users and Security
The Symyx.Framework.User namespace provides classes that support user settings and preferences
such as:

Favorite links and shortcuts
Recent documents
Vault objects

The Symyx.Framework.Vault.Group UserProfile class is a dictionary of user-specific settings and
preferences. The class describes a group of Vault users assembled into a single unit for which security
permissions are granted.
The Symyx.Framework.Vault.User class describes the server account of a user. The IsActive
property indicates if the user is allowed to log in to a Vault server.

Classes Supporting Users Settings and Preferences
The Symyx.Framework.User namespace provides classes that support user settings and preferences
such as user-defined lists of:

Favorite links and shortcuts (Favorites)
Recent documents (RecentDocumentsList)
Vault objects (UserDefinedVaultObjectList)

The UserProfile class is a dictionary of user-specific settings and preferences.
The Symyx.Framework.Vault.Group class describes a group of Vault users or groups that are
assembled into a single unit granted security permissions.
The Symyx.Framework.Vault.User class describes the server account of a Vault user. The
IsActive property indicates if the user is allowed to log in to a Vault server.

Access User Profiles
A user's profile is encapsulated in the Symyx.Framework.User.UserProfile class. To access a user's
profile, use the UserProfile.Loadmethod. For example, in C#:
try

{
myWorkspace.Current.CurrentUser.Profile.Load();

}
catch(Exception ex)

{
Debug.WriteLine("User profile could not be retrieved:");
Debug.WriteLine(ex.ToString());

}

Permissions
The Symyx.Framework.Vault.Security namespace contains classes that encapsulate the
permissions that users and groups have on Vault objects. The Permissions property of the

Page 48 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 3: Users and Security

Symyx.Framework.Vault.VaultObject class returns the
Symyx.Framework.Vault.Security.ObjectPermissions for that Vault object. The Permissions
enumeration contains the different types of permissions for low-level operations that can be granted to
a Vault object.
Multiple low-level permissions are aggregated into higher level privileges that are encapsulated in the
Privilege class.
The following C# example returns false if a Vault object does not have the specified permissions:
if (vaultObject.Permissions != null)

{
// Must have the checkout permission.
if (!vaultObject.Permissions.HasPermission(Permissions.Checkout))
{ return false;
// Must have the write data permission.
if (!vaultObject.Permissions.HasPermission(Permissions.WriteData))
{ return false; }

// Must have the write properties permission.
if(!vaultObject.Permissions.HasPermission

(Permissions.UpdateProperties))
{ return false; }

// Must have the transition permission.
if(!vaultObject.Permissions.HasPermission

(Permissions.WorkflowTransition))
{ return false; }

}

Explicit Permissions
Explicit permissions are permissions that are explicitly granted or denied. The AllowPermissions and
DenyPermissions properties of the
Symyx.Framework.Vault.Security.ExplicitObjectPermissions class returns the set of
permissions flags that are granted or denied.

Note: Denied permissions take precedence over allowed permissions.

To set explicit permissions:
Use the Symyx.Framework.Vault.VaultServer.SetExplicitPermissionsmethod.
The following C# example sets ReadData permissions to user1 on the Favorites collection of the current
user:
VaultObjectList users = workspace_.SiteRepository.Get

(VaultObjectType.User, DataScope.Minimal);
string username = @"server\user1";
VaultObject user1 = users.FindByTitle(username);
workspace_.ActiveVaultServer.SetExplicitPermissions

(user1.VaultId, workspace_.CurrentUser.Favorites.VaultId,
workspace_.UserRepository.VaultId, "Favorites",
Permissions.ReadData, Permissions.NoPermission);

BIOVIA Workbook 2021 • SDK Developers Guide | Page 49

Chapter 3: Users and Security

Implicit Permissions
Implicit permissions are inherited from the user or repository hierarchies. For example, although a folder
may have explicit permissions when it was created, the documents inside it and its subfolders have
implicit permissions. The Permissions property of the
Symyx.Framework.Vault.Security.ImplicitObjectPermissions class contains the inherited
permission a user has to the object. The GranteeGuid property specifies the VaultID of the user or
group associated with the permissions, and the VaultObjectGuid property specifies the VaultID of
the repository to which the permissions apply.
The following C# example gets the implicit permissions of a user on a Vault object:
ImplicitObjectPermissions implicitPermissions = null;
implicitPermissions = workspace_.ActiveVaultServer.GetImplicitPermissions
(user1.VaultId, aVaultObject.VaultId);

Application Permissions
The Symyx.Framework.Vault.ApplicationPermission class supports adding privileges to a user
with respect to an application. The ApplicationPermissions property of the
Symyx.Framework.Vault.User class returns a collection of ApplicationPermission,
ApplicationPermissionCollection class, for a Vault user.
The following C# example shows how to check whether the current user is a template editor for the
Workbook application:
bool isTemplateEditor =

currentUser_.ApplicationPermissions.HasExecutePermissionFor
("Symyx.Notebook", "Template.Editor");

Page 50 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 4:
Properties
Workbook uses properties as key/value pairs to define characteristics and attributes of objects. A
property set is a collection of properties, bound by a property set definition. A property set definition
contains metadata and contents (data) of an object the user can save in the Vault server. This provides
an easy way to create dynamic tables or grids of data and persist them in Vault. The schema of a table-
based section in Workbook is defined by one or more property set definitions, so that each column in
the table corresponds to a property in a property set definition.
The property set definitions are defined in Workbook. A user with the PropertySetEditor permission
can create custom property set definitions and add the property set definition for use in table-based
Workbook sections.

Property Set Editor
Workbook includes a Property Set Editor that provides the ability to interactively create and edit
property set definitions.
You can add scripts for property event handlers that provide extension points for customization. The
event handlers are listed under the Scripting category in the Property Set Editor. You can open the
IronPython Script Editor from the event handlers.
If you copy an IronPython script from a text editor and copy the script into the IronPython Script Editor,
make sure that your code uses straight double-quote characters in the IronPython Script editor. If your
script contains smart quotes, the script fails.
In the Python programming language, leading white spaces or indentations at the beginning of each
logical line are interpreted by the Python parser. If you copy and paste sample scripts from this
document, verify that the indentations are correct in the pasted script.

Property Set Definitions
Property Set Definitions (PSDs) are reusable field definitions that specify columns and fields in table and
form sections. Use the following setting values:

Cloneable property settings
Value Description

Allowed Indicates that cloning the data is allowed.

NotAllowed Indicates that data is not cloned from the source experiment

AllowedNotData Same as Allowed.

Limitation
Clone to latest does not support a section upgrading to a newer version and renaming the section.
The user cannot clone an unlinked reaction scheme section into a linked reaction scheme section.
If the parent template had linked sections such as synthetic chemistry linked to parallel chemistry,
the cannot clone to latest if the link is removed. In addition, after cloning to latest, the user must
relink those sections.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 51

Chapter 4: Properties

Allow Nulls property settings
Value Description

AllowNulls Indicates that null values are permitted in the property.

CannotBeNull Indicates that null values are not permitted; if the user tries to delete data and
check in the document, the original data displays in the cell when the document is
checked out.

ShouldNotBeNull The interface renders a red X until user enters a value in the field.

All Updates
Value Description

Always Indicates that updates are permitted.

Never Indicates that updates are not permitted.

Once Indicates that the user can update the value one time only if the Experiment was
cloned,otherwise updates are not permitted. The Once value reference is to the original
data in the source experiment prior to saving.

Until
Saved

Indicates that updates to the field are permitted until the experiment is saved.

Until
Managed

Indicates that updates are permitted until the experiment is checked into a managed
repository.

Property Event Handlers
A property has event handlers that allow reading or updating the vale when certain events are triggered.

Event Handler Description

CalculatedValueHandler Executes when the value is requested by the client, that is, when a property
is created or when a value is calculated.

OnCreatedHandler Executes when the property is first created. For example, a script can set the
initial value of the property.

ValueChangingHandlers Executes before the value changes. You can use the
ValueChangingHandlers to validate a value or prevent a user from
entering an invalid value.

ValueChangedHandlers Executes after the value has changed.

Page 52 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 4: Properties

Property and Vault Object Variables
Variable
name

Description

property Identifies the Symyx.Framework.Properties.Property object.

properties Indentifies the Symyx.Framework.Properties.PropertySet object in which the
property resides.

host_
object

Identifies the object that owns the properties.

vault_
object

Identifies the Symyx.Framework.Vault.VaultObject object, if host_object is a
Vault object.

<type> Specifies the type of Vault object, whose name follows the Python naming convention for
variables, for example, document_section, table_section, section, table.

Property Class and PropertySetDefinition Variables
Variable name Description

property_class Indentifies the Symyx.Framework.Properties.PropertyClass object.

property_set_
definition

Identifies the Symyx.Framework.Properties.PropertySetDefinition
object in
which the property class resides.

Variable Aliases
Variable
name

Description

section Identifies the Symyx.Notebook.DocumentSection or a section from which the section
was derived.

table Identifies the Symyx.Notebook.Sections.TableSection.

row Identifies the Symyx.Framework.Properties.IPropertySetHost representing a row
in the table.

owner Added by generic scripting and dynamic toolbars. Represents the object that has the
property on which the script is defined. Other scope variables are not present for the
owner, but might exists for the subject of the event.

Validation Script Variables for Value Changing Handlers
Scripts for the ValueChangingHandler are executed when a user changes a property value. These
scripts are used for validation. If you are creating scripts using the Property Set Editor in Workbook, the
following variables are available to Validations scripts:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 53

Chapter 4: Properties

Variable
name

Description

e Specifies the Symyx.Framework.Properties.ValueChangingEventArgs object
allows access to:

e.NewValue - The new value of the property. You can only get this value.
e.OldValue - The old value of the property. You can only get this value.
e.NewValueIsNull - Indicates whether the new value is null.
e.OldValueIsNull - Indicates whether the old value is null.
e.AddValidationResult(ValidationResults) - Adds a list of
Symyx.Framework.Review.ValidationResult objects containing a message
and severity level.
e.AddValidationResult(string, SeverityLevel) - Adds a message and
Symyx.Framework.Review.SeverityLevel.
e.AddValidationResult(string) - Adds a message to be displayed as an
error.
e.Cancel - Set to true to cancel the property being updated. If set to True, the
CancelMessage displays and the user must press the Escape key to cancel the
action.
e.CancelMessage - Amessage to be displayed when canceling.

sender The Symyx.Framework.Properties.Property object.

property For more information, see Property and Vault Object Variables.

properties

host_object

<an alias of
the host_
object>

parent Indicates if the host_object has a parent such as document.

CalculateValueHandler Script Variables
You can use scripts for CalculateValueHandler for automatic value calculations or for assigning
initial values. If you are creating scripts using the Property Set Editor in theWorkbook, the following
variables are available to Calculated Value and Initial Value scripts:

Variable name Description

value This variable is set to the return value, for example:
value = 12

The Calculated Value and Initial Value scripts can use the variables in the ValueChangingHandler and
Validation Scripts.

Page 54 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 4: Properties

ValueSelectionsProvider Script Variables
Scripts for ValueSelectionsProvider provide the dictionary values that are listed in a list for a
property. If you are creating scripts using the Property Set Editor in Workbook, the following variables
are available to DictionaryProvider scripts.

Variable
name

Description

dictionary Specifies the Symyx.Framework.Properties.PropertySet bound to a property set
definition. All the properties are defined from existing keyed values.

Property Dictionaries
A property dictionary is a list of values that user can select from when the property is rendered. A
property dictionary can contain a list of one of the following:

Static values
Values generated by an IronPython script that uses the following construct to add values to the
dictionary:
dictionary.Add("key", "value")

Values from a Vault vocabulary
You can assign the dictionary options to a property using the Property Set Editor in Workbook. Using
the Framework API, you can assign a dictionary provider to the ValueSelectionsProvider property
of a PropertyClass.
If a property containing a dictionary is an Integer or Quantity, Value, Double, Decimal, Long Integer,
Measurement, and String:

The AllowNulls property is set to CannotBeNull.
The Initial Value is not set.

Then the default value of the property will be 0 (zero) for the numeric types and zero-length string for
the String type, even if 0 and the empty string are not an allowed value in the dictionary. If this is not an
acceptable default value, create an OnCreatedHandler script that sets a meaningful Initial Value.
For example, assuming the desired default value for a Quantity-type property is 0mg, the following
IronPython script sets the initial value:
from Symyx.Framework import Quantity,

UnitKey value = Quantity(0, None, UnitKey.MILLIGRAM)

Dictionary Providers Types
The PropertyClass.ValueSelectionsProvider property contains the dictionary for a property.
This dictionary implements the IValueSelectionsProvider interface and can be one of the
following providers:

StaticValueSelectionsProvider - contains a static list of values. The following C# example
creates a static dictionary using StaticValueSelectionsProvider:
StaticValueSelectionsProvider staticProvider = new

StaticValueSelectionsProvider();
staticProvider.Dictionary.Add("Key1", "Key1");
staticProvider.Dictionary.Add("Key2", "Key2");

BIOVIA Workbook 2021 • SDK Developers Guide | Page 55

Chapter 4: Properties

// Assign the static dictionary provider to a property.
// Assume aPropertyClass is already created.
aPropertyClass.ValueSelectionsProvider = staticProvider;

ScriptedValueSelectionsProvider - contains a list of generated values by an IronPython
script.
The following C# example executes a simple IronPython script that builds a dictionary.
string[] script = new string[]

{
"dictionary.Add(\"1.1\", 1.1)",
"dictionary.Add(\"1.2\", 1.2)",
"dictionary.Add(\"1.3\", 1.3)",

};
ScriptedValueSelectionsProvider scriptedProvider = new

ScriptedValueSelectionsProvider(string.Join("\n", script));
// Assign the scripted dictionary provider to a property.
// Assume aPropertyClass is already created.
aPropertyClass.ValueSelectionsProvider = scriptedProvider;

VaultDictionaryValueSelectionsProvider - contains a
Symyx.Framework.Vault.VaultUri reference to a
Symyx.Framework.Vault.VaultDictionary that contains a set of key/value pairs.
The following C# example creates a VaultDictionary for the dictionary provider:
// Create a Vault dictionary.

VaultWorkspace workspace = new VaultWorkspace(endpoint);
workspace.MakeCurrentWorkspace();
VaultUri vaultUri = new VaultUri(new VaultId

(VaultIdPrefixes.Unknown), new Version(1));
VaultDictionary dictionary = new VaultDictionary();
dictionary.Add("Selection", "Value");

// Create the Vault dictionary provider
VaultDictionaryValueSelectionsProvider vaultProvider = new

VaultDictionaryValueSelectionsProvider(vaultUri);
// Assign the Vault dictionary provider to a property.
// Assume aPropertyClass is already created.

aPropertyClass.ValueSelectionsProvider = vaultProvider;

Dictionary Scripts Examples
Adding values to a Request Column Dictionary
The following IronPython example is a script for the RequestColumnDictionary that dynamically adds
to the dictionary:
if not e.Items.Contains("orange"): e.Items.Add("orange")

Using data from another property in the same table
The following IronPython example is a script for the RequestColumnDictionary that builds a
dictionary for a Name property based on the value of a Count property:
if e.Property is not None and e.Property.Key == "Name": e.Items.Clear()
for i in range(e.Property.PropertySet["Count"].Value): e.Items.Add(str(i

+ 1))

Page 56 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 4: Properties

Using data from another table
The following IronPython example is a script for the RequestColumnDictionary that builds a
dictionary for a Name property using the Name property in theMaterials property set in the
SourceTable section:
if e.Property is not None and e.Property.Key == "Name": for section in
Table.Document.Sections:
if section.Title == "SourceTable": target = section

break
else:

raise RuntimeError, "SourceTable section not found" e.Items.Clear()
for row in target.GetRows():
e.Items.Add(row.PropertySets["Material"]["Name"].DisplayValue)

Using data from an external database
The following IronPython example is a property script that retrieves a list of solvent class names from
a database. The retrieved values are added to a dictionary for a string property, called SolventClass.
import sys import clr
clr.AddReference("System.Data") from System import *

from System.Data import *
from System.Data.OleDb import *
Connect to the database and
execute the query to get all solvent class names.
connection = OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=C:\\solventdb.mdb;Persist Security Info=False")
query = "select distinct(Class) from solventdb" adapter =

OleDbDataAdapter(query, connection) solvents = DataSet()
adapter.Fill(solvents)
rows = solvents.Tables[0].Rows.Count

Add each class name to the dictionary.
if solvents.Tables.Count > 0 and rows > 0 :
for i in range(rows):
dr = solvents.Tables[0].Rows[i] temp = dr["Class"].ToString()
dictionary.Add(temp, temp)

else :
Value = " "

ValueSelectionsProvider Script Variables
Scripts for ValueSelectionsProvider are used to provide dictionary values that are listed in a drop-
down list for a property. If you are creating scripts using the Property Set Editor in Workbook, the
following variables are available to DictionaryProvider scripts:

dictionary

The Symyx.Framework.Properties.PropertySet that has been bound to a property set
definition. All the properties have been defined from existing keyed values.

Property Dictionaries
A property dictionary is a list of values the end-user selects when the property is rendered. A property
dictionary can contain a list of one of the following:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 57

Chapter 4: Properties

Static values
Values generated by an IronPython script that uses the following construct to add values to the
dictionary:
dictionary.Add("key", "value")

Values from a Vault vocabulary
You can assign the dictionary options to a property using the Property Set Editor in Workbook. Use the
Framework API to assign a dictionary provider to the ValueSelectionsProvider property of a
PropertyClass.
If a property containing a dictionary isa n Integer or Quantity, Value, Double, Decimal, Long Integer,
Measurement, and String, and its AllowNulls property is set to CannotBeNull, and the Initial Value
is not set,then the default value of the property is zero for the numeric types and zero-length string for
the String type, even if 0 and the empty string are not an allowed value in the dictionary. If zero is not an
acceptable default value, create an OnCreatedHandler script that sets a meaningful Initial Value. For
example, if the desired default value for a Quantity-type property is 0mg, the following IronPython
script sets the initial value:
from Symyx.Framework import Quantity,

UnitKey value = Quantity(0, None, UnitKey.MILLIGRAM)

Page 58 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 5:
Materials

Material Classes and Interfaces
The Symyx.Framework.Materials namespace, in the Symyx.Framework.Materials.dll,
provides classes and interfaces that support:

Representing of chemical materials
Composing relationships among material objects
Creating and transforming materials
Developing of specialized types ofmaterials used in chemical research and production

Material Class
The Symyx.Framework.Materials.Material class represents a material element or a mixture in a
certain physical state. It can have a density, a molecular weight, and a collection of components.
You can prepare a material using an intensivemixture definition or an extensivemixture definition. An
intensivemixture is created by combining substances whose quantities are not based on actual
amounts. For example, the intensivemixture definition of brine is 50%water and 50% salt.
An extensivemixture is created by combining substances whose quantities are proportional to the
actual amounts in a mixture, for example, an extensivemixture definition of brinemight have 15 g salt
and 20ml water. Symyx.Framework.Materials.MixtureType is an enumeration that lists the ways
in which the quantities of substances within a mixture is specified.

Material Properties
TheMaterial class contains the following properties.
The properties are available to thematerial script variable that represents a Material object. For more
information, seeMaterial Section Scripting.

Property Description

CASNumber Specifies a string containing the Chemical Abstracts Service Number (CAS#).

Comments Specifies a string containing comments about thematerial.

Components Specifies an IEnumerable containing the components,
Symyx.Framework.Materials.Component objects, of a material.

Density Specifies a Quantity object containing the density of thematerial.
See Quantity Class.

DensityCalculation Specifies a DensityCalculation object for thematerial.
See DensityCalcuation Class.

FormattedMolFormula Specifies a MolecularFormula object containing a formatted molecular
formula, including subscript and superscript annotations.

InitialAmount Specifies a Quantity object containing the initial amount of thematerial.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 59

Chapter 5: Materials

Property Description

MF Specifies a string containing themolecular formula of thematerial.

MW Specifies a Value object containing themolecular weight of thematerial.
See Value Class.

Preparation Specifies a Preparation object containing instructions on how to prepare the
material.
See Preparation Class.

PreparationID Specifies a VaultUri object containing the preparation ID.

PS Specifies a Symyx.Framework.Properties.PropertySet containing the
property set for theMaterial object.

Role Specifies a string specifying the role of thematerial.

Structure Specifies a Symyx.Framework.Chemistry.Structure object containing
themolecule structure in thematerial. The Structure class provides both the
Molfile and Chime string formats in theMolfile and Chimestring properties.
For example:
molfile = material.Structure.Molfile
chimestring = material.Structure.Chimestring

Material as a Mixture
Material are combined to create a mixture or concentration.
To create a mixture or concentration:
1. Create a Material object for each chemical in themixture, and set its chemical properties. The

following example IronPython script creates a Material object for two chemicals, Chem1 and
Chem2, and sets their molecular weight ("MW") and Density properties:
Chem1 = Material("Chem1") Chem1.MW = Value(100)
Chem1.Density = Quantity(1, 4, UnitKey.GRAMPERCM3)
Chem2 = Material("Chem2")
Chem2.Density = Quantity(0.5000, 4, UnitKey.GRAMPERCM3)
Chem2.MW = Value(50)

2. Create a Material object for themixture, and add a Component for each material to be included.
The following example IronPython script creates a Material object for a mixture Chem1_2, and adds
a Component for the Chem1 and Chem2materials:
Chem1_2 = new Material("Chem1_2")
Comp1 = new Component(Chem1, new Quantity(12, 4, UnitKey.MOLELITER))
Comp2 = new Component(Chem2, new Quantity(0, UnitKey.REMAINDER))
Chem1_2.Components.Add(Comp1)
Chem1_2.Components.Add(Comp2)

Note: This example creates an excessively concentrated molar mixture. If you get the density of
themixture, Chem1_2.Density.Number, the result would be 1.2, which exceeds either density
of the component materials.

The Symyx.Framework.Materials.AmountHelper provides static methods for amount calculations
for material mixture and preparations. The calculation is done for conversions among mass, volume,

Page 60 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 5: Materials

and mole units. Thematerial density and molecule weight are the key properties that determine the
calculation result. Thematerial mixture can specify its mixing model for the calculation. The result of the
calculation is stored in a Symyx.Framework.Materials.CalculationResult object.

DensityCalculation Class
TheMaterial class contains a DensityCalculation property, which returns a
Symyx.Framework.Materials.DensityCalculation object. It contains specifications for
calculating density such as the preferred density unit, a correction factor for non-ideal mixing, and the
type (DensityType) of calculation that identifies a mixture’s density. The
Symyx.Framework.Materials.AmountHelper class provides a static method for calculating the
ideal density of a mixture.
The following example IronPython script (CalculatedValue script for an IdealDensity property of type
Quantity) creates a mixture, assigns the density type and correction factor, and gets the density and
ideal density of themixture:
from Symyx.Framework.Materials import Material, Component,

AmountHelper,DensityType
from Symyx.Framework import Quantity, UnitKey, Value

Create two chemicals
Chem1 = Material("Chem1")
Chem1.Density = Quantity(1.000, 4, UnitKey.GRAMPERCM3)
Chem1.MW = Value(100)
Chem2 = Material("Chem2")
Chem2.Density = Quantity(0.8000, 4, UnitKey.GRAMPERCM3)
Chem2.MW = Value(80)

Create 1M mixture called Chem1and2
Chem1and2 = Material("Chem1and2")
Comp1 = Component(Chem1, Quantity(1, 4, UnitKey.MOLELITER))
Comp2 = Component(Chem2, Quantity(0, UnitKey.REMAINDER))
Chem1and2.Components.Add(Comp1)
Chem1and2.Components.Add(Comp2)

Assign a positive corrected (5%) density to Chem1and2
Chem1and2.Density = Quantity(0, UnitKey.GRAMPERCM3)
Chem1and2.DensityCalculation.Type = DensityType.Corrected
Chem1and2.DensityCalculation.CorrectionFactor = 0.05

Check density info for Chem1and2
properties["DensityValue"].Value = Chem1and2.Density.Value
IdealDensity = AmountHelper.GetIdealDensity

(Chem1and2.Components, UnitKey.GRAMPERCM3)
value = IdealDensity.Quantity

To run this script:
1. Login theWorkbook client as a user with the PropertySetEditor permission.
2. Using the Property Set Editor, create a property set with the following properties:

ID as an Integer
DensityValue of type Value

BIOVIA Workbook 2021 • SDK Developers Guide | Page 61

Chapter 5: Materials

IdealDensity of type Quantity
3. On the property sheet for IdealDensity, add the script to its Scripting > Calculated Value property.
4. Select View >Grid.

When you enter a value for ID, the DensityValue and IdealDensity properties are automatically
populated.

Materials Calculations
The Symyx.Framework namespace (in Symyx.Framework.Quantity.dll) provides classes that support
specifying, measuring, and converting amounts of chemical and physical materials used in experiments.

Value class
The Symyx.Framework.Value class represents a decimal number and the number of significant figures to
consider when rounding that decimal according to the active rounding rule. By default, the value is
rounded up if the discarded fraction is equal or greater than .5; otherwise, the value is rounded down.
Symyx.Framework.RoundingRules provides a static method SetRoundingRule which allows you to set
the arithmetic rounding rule with Value instances. The Symyx.Framework.RoundingRuleType
enumeration lists the possible rounding techniques.
The Value.Value property contains the number, and the Value.SigFigs property contains the number of
significant figures.
Value supports arithmetic operations carrying significant figures. Note that batch calculations of values
are not as efficient as operations performed by the native .NET calculation objects.
You cannot convert a double number into a Value. For example, you cannot use the constructor Value
(9.99) where 9.99 is of type Double.
To convert a Double to a Value object, convert the Double number to a string, and use the Value.Parse
method. For example, the following IronPython script gets the property value of type Double
(“DoubleProperty”), converts it to a string, parses it, then puts it into another property of type Value
(“ValueProperty”):
from Symyx.Framework import Value
doubleString = properties["DoubleProperty"].Value.ToString() properties["ValueProperty"].Value =
Value.Parse(doubleString)
Note: The Value.Parsemethod is sensitive to the current regional settings. If you use this method with
numeric literals, note that the regional settings will affect the parsed value. For example, if the regional
settings are in French, the decimal point is ignored in Value.Parse(”222.332”). This does not happen if
you parse user input values.

Unit class
The Symyx.Framework.Unit class represents a unit ofmeasure of chemical or physical quantity. A Unit
contains a SymyxID which corresponds to a key in Symyx.Framework.UnitKey. UnitKey is an
enumeration that lists the units ofmost common chemical and physical quantities.
The Symyx.Framework.Dimensions class describes the dimensions of a chemical or physical unit. It
contains properties that return the power of various dimensions, such as ElectricCurrent, Length, Mass,
Mole, ThermodynamicTemperature, Time, and others. Dimensions contains a SymyxID that
corresponds to a key in Symyx.Framework.DimensionsKey. DimensionsKey is an enumeration that lists
the dimensions of chemical and physical units. One dimension can havemultiple units to one
dimension; units are stored in the Dimensions.Units property.
The Symyx.Framework.UnitCategory class represents a category or grouping of units of chemical or
physical quantity. UnitCategory contains a SymyxID that corresponds to a key in

Page 62 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 5: Materials

Symyx.Framework.UnitCategoryKey. UnitCategoryKey is an enumeration that lists the categories of
chemical and physical units. An object property can havemultiple UnitCategories.
The Symyx.Framework.UnitsHelper class allows clients to perform operations on units including the
creation of a unit with specified key or name; the conversion of amounts expressed in one unit into
amounts expressed in another unit in the same category; the list of unit categories; and the dimensions
of a unit. Unit keys are backward compatible with LEA applications. See “Converting amounts” below.

Quantity class
The Symyx.Framework.Quantity class represents a value plus a unit. It includes methods to construct a
quantity from various data, compare quantities, round values, and cast the quantity into a string. The
Quantity.Number property contains the decimal value of the quantity.
A Quantity stores a Value and a UnitKey. The UnitKeys are defined as an enum for
Symyx.Framework.Quantity. Units are grouped by Dimensions and by UnitCategory.

Conversions
Conversions are possible among units of the same dimension wherever that is well defined. However, it
is not possible to perform conversions among units of currency.
UnitCategories are groups of units related by use, rather than dimensional analysis. You can define
new categories. An example of category is Concentration. This groups diverse units ofmolarity, density,
mass, or volume fraction. There are no conversions among units of a category because they might
belong to different dimensions.
Quantity is a value type, not a reference type. Quantity is indexed into two RAS fields: a Number and a
Unit. These unit keys are the same as the RAS values. RAS does not support unit conversion during
query.
Conversions are handled by the UnitsHelper object. Conversions do not modify the original value
and unit.

Limitations and tips
Calculations on Quantity objects are not supported, but operations on Quantity.Number are
supported.
A Double number cannot be converted into a Quantity. For example, you cannot use the constructor
Quantity(9.99) where 9.99 is of type Double.
To convert a Double to a Quantity object, convert the Double number to a string, and use the
Quantity.Parsemethod.
For example, the following IronPython script gets the property value of type Double
("DoubleProperty"), converts it to a string, parses it, then puts it into another property of type
Quantity ("QuantityProperty"):
from Symyx.Framework import Quantity
doubleString = properties["DoubleProperty"].Value.ToString()
properties["QuantityProperty"].Value = Quantity.Parse(doubleString)

The Quantity.Parsemethod is sensitive to the current regional settings. If you use this method
with numeric literals, the regional settings affect the parsed value. For example, if the regional
settings are in French, the decimal point is ignored in Quantity.Parse("222.332"). This does
not happen if you parse user input values.

The Quantity constructor is overloaded and can accept various numeric data types. See the Quantity
constructor in the Symyx.Framework namespace section of the Framework API Reference.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 63

Chapter 5: Materials

Calculating Molecular Weight Example
The following IronPython example calculates themolecular weight (MW) based on a structure. In this
example, MW is of type Quantity. The script calls Symyx Cheshire to get the weight of the structure,
creates a Value using the weight and number of significant figures, and assigns it to the
Quantity.Value property ofMW:
Calculates molweight from a structure
import Symyx.Framework.Quantity from MDL.Cheshire import Cheshire
Create a Cheshire environment
cheshire = Cheshire()
try:

if structure has been entered...
if not e.NewValueIsNull:
if MW has been calculated in this editor session...
if not 'oldMW' in locals():
if the old structure value was set...
if not e.OldValue == None:

cheshire.SetTarget(e.OldValue.Molfile)
cheshire.RunScript('w = Weight()')
mwFromOldStruct = cheshire.UnloadVariable('w')
sfFromOldStruct =\
Symyx.Framework.Value.GetApparentSigFigs(mwFromOldStruct)

if MW is same as previous structure,
set oldMW var to the old structure's MW
if properties['MW'].Value ==\
Symyx.Framework.Value(mwFromOldStruct, sfFromOldStruct):
oldMW = properties['MW'].Value
else:

oldMW = None
else:

oldMW = None
if MW is null or previously calculated MW is equal to current MW,
calculate and set a new MW
if properties['MW'].IsNull or (oldMW == properties['MW'].Value):
cheshire.SetTarget(e.NewValue.Molfile)
cheshire.RunScript('w = Weight()') mw = cheshire.UnloadVariable('w')
sf = Symyx.Framework.Value.GetApparentSigFigs(mw) properties['MW'].Value =
Symyx.Framework.Value(mw, sf)
oldMW = properties['MW'].Value

finally:
if not cheshire is None:

cheshire.Dispose()

To run this script:
1. Login to Workbook as a user with the PropertySetEditor permission.
2. Using the Property Set Editor, create a property set with at least the following properties:

Structure of type Structure
MW of type Quantity

Page 64 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 5: Materials

3. On the property sheet for Structure, add the script to its Scripting > Property Changed property.
4. Select View >Grid. When you enter a value for Structure, theMW property is automatically

populated. For more information about Cheshire scripts, see the Cheshire developer
documentation.

Materials Sections C# Example
TheMaterials Section is derived from the Table Section. The following C# example lists the
PropertySetDefinitions (PSDs) of a table section.
// setting up the test case
TableSection ts = new TableSection();
ICollection<PropertySetIdentifier> selectedPSDs =

ts.TableSectionProperties.GetValue
<ICollection<PropertySetIdentifier>>
(TableSectionP roperty.SelectedPropertySetDefinitons);

selectedPSDs.Add(new PropertySetIdentifier("Test"));
selectedPSDs.Add(new PropertySetIdentifier("Test2"));

// listing PSDs without knowing anything about them
foreach(PropertySetIdentifier identifier in selectedPSDs)
{
// identifier can identify a PSD by its Key, unique within Vault Server
// or by VaultUri to the exact version of the PSD
// this is the selected PSD Key identifier.Key PropertySetDefinition
aSelectedPropertySetDef = PropertySetManager.GetDefinition

(identifier.Key);
Debug.WriteLine("The table has columns corresponding to this PSD: "

+ aSelectedPropertySetDef.Key);
foreach(PropertyClass propertyClass in aSelectedPropertySetDef)

{
Debug.WriteLine("The table has a column corresponding to this

PropertyClass: " + propertyClass.DisplayName);
}

}

The following example shows how to add a row to a table, list the PSDs for a table section, clear the
table, and delete a specific row.
public void ListRowsInATable()

{
// setting up the test case TableSection
ts = new TableSection();
ICollection<PropertySetIdentifier> selectedPSDs =

ts.TableSectionProperties.GetValue
<ICollection<PropertySetIdentifier>>
(TableSectionProperty.SelectedPropertySetDefinitons);

selectedPSDs.Add(new PropertySetIdentifier("Test"));
selectedPSDs.Add(new PropertySetIdentifier("Test2"));

// a Row is a VaultObject, and as such it implements IPropertySetHost
IPropertySetHost r = ts.AddRow();
r.PropertySets["Test"]["Key"].Value = "Hello1";
r.PropertySets["Test2"]["Key0"].Value = "Hello2";
r.PropertySets["Test2"]["Key1"].Value = "Hello3";
IPropertySetHost r2 = ts.AddRow();

BIOVIA Workbook 2021 • SDK Developers Guide | Page 65

Chapter 5: Materials

r2.PropertySets["Test"]["Key"].Value = "2Hello1";
r2.PropertySets["Test2"]["Key0"].Value = "2Hello2";
r2.PropertySets["Test2"]["Key1"].Value = "2Hello3";
foreach(IPropertySetHost host in ts.Rows)
{
foreach(PropertySetDefinition psd in host.PropertySetDefinitions)
{
foreach(PropertyClass pc in psd)
{
Debug.WriteLine(host.PropertySets[psd.Key][pc.Key].DisplayValue);

}
}

}
// to clear the table

ts.Clear();
// to delete a specific row by Id

ts.Delete(r.Id);
}

Measurement Class
The Symyx.Framework.Measurement class describes themeasurement of a quantity, which consists
of a Value and a Unit. The Measurement.ActualAmount property returns the Quantity containing the
amount. The Measurement.Detail property is an implementation of IMeasurementDetail that
allows additional data to be attached to themeasurement, such as measurement type
(MeasurementType.Manual or MeasurementType.Automatic), description, and timestamp.
The following IronPython example is an Initial Value script for a Measurement Property. The script
creates an automated measurement value:
from Symyx.Framework import Measurement, MeasurementType, Quantity,

UnitKey from Symyx.Framework.Properties import
SimpleMeasurementDetail

value = Measurement(Quantity(10.0, 3, UnitKey.GRAM),\
SimpleMeasurementDetail(MeasurementType.Automated, None,
"Automated value"))

To run this script:
1. Login theWorkbook as a user with the PropertySetEditor permission.
2. Using the Property Set Editor, create a property set with at least the following properties:

ID of type Integer
TempWeight of typeMeasurement

3. On the property sheet for TempWeight, add the script to its Scripting > Initial Value property.
4. Select View >Grid. When you enter a value for ID, the TempWeight property will be automatically

populated.

Validate a Measurement
The Framework provides a script the capability to report validation errors to the user. When validating
measurement amounts, a script writer can use the e.AddValidationResult script variable to display
a message and indicate a severity level using Symyx.Framework.Review.SeverityLevel.

Page 66 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 5: Materials

The following IronPython example is a validation script for a measurement property. The script
evaluates the input number and displays a message.
from Symyx.Framework.Review import SeverityLevel
e.NewValue is a Measurement
number = e.NewValue.ActualAmount.Number if number < 1.5:
SeverityLevel not specified; default is SeverityLevel.Error.
e.AddValidationResult("Value less than 1.5 is an error")
elif number > 7.0:
e.AddValidationResult("Value is okay, but too high.",\
SeverityLevel.Information)
elif number > 5.5:
e.AddValidationResult("Value is within warning range.",\
SeverityLevel.Warning)

To run this script:
1. Log in theWorkbook as a user with the PropertySetEditor permission.
2. Using the Property Set Editor, create a property set with at least the following properties:

ID of type Integer
IdealValue of typeMeasurement

3. On the property sheet for IdealValue, add the script to its Scripting > Validations property.
4. Select View >Grid.
5. Enter values in IdealValue that might produce the validation results from the script.
If a validation requires the user to cancel an entry, you can use e.CancelMessage. The following example
uses e.CancelMessage to prompt the user to cancel an entry based on validation checks:
if not e.NewValueIsNull:

if e.NewValue.Number > 1:
e.Cancel = True
e.CancelMessage = 'The Correction Factor cannot be greater than 1' if

e.NewValue.Number <= 0:
e.Cancel = True
e.CancelMessage = 'The Correction Factor must be strictly positive.'

To run this script:
1. Log in theWorkbook as a user with the PropertySetEditor permission.
2. Using the Property Set Editor, create a property set with the following property:

CheckValue of type Value
3. On the property sheet for CheckValue, add the script to its Scripting > Validations property.
4. Select View >Grid.
5. Enter values in CheckValue that might produce the validation results from the script.

Convert Amounts
The Symyx.Framework.UnitsHelper class provides static, Convert methods that convert a double,
decimal, value, or quantity from one unit to another. The source and target units must both belong to
the same UnitCategory. The significant figures of the amount in the target unit are the same as those
of the amount in the source unit, the one exception occurs with a temperature conversion, where an
offset might change the significant figures.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 67

Chapter 5: Materials

When performing conversions and calculations, always check the input calculation values for nulls or
zero.
The following IronPython example is a CalculatedValue script for an actual concentration quantity.
The script converts a measurement (Amount) to milligrams, converts a quantity (TotalVolume) to
milliliters, constructs a value with a calculated concentration number, and constructs a quantity with the
calculated concentration in milligrams-per-milliliter.
from Symyx.Framework import Quantity, UnitKey, UnitsHelper, Value
Before calculation, always check that input values are valid.
if not properties["Amount"].IsNull and\
not properties["TotalVolume"].IsNull and\ properties
["TotalVolume"].Value.Number > 0.0:
Convert input Measurement.ActualAmount Quantity to milligram
actualMg = UnitsHelper.Convert(\
properties["Amount"].Value.ActualAmount, UnitKey.MILLIGRAM)
Convert input Quantity to milliliter
volumeMl = UnitsHelper.Convert(\
properties["TotalVolume"].Value, UnitKey.MILLILITER)
Create a Value by dividing decimal numbers of actualMg and volumeMl
valueConcentration = Value(actualMg.Number / volumeMl.Number)
Create a Quantity using the calculated concentration
and milligrams per milliliter unit.
value = Quantity(valueConcentration, UnitKey.MGPERML)
else:
value = None

To run this script:
1. Log in to theWorkbookas a user with the PropertySetEditor permission.
2. Using the Property Set Editor, create a property set with the following properties.

Amount of typeMeasurement
Set the Default Unit to milligrams (mg)
UnitCategories to mass
TotalVolume of type Quantity
Set the Default Unit to liters (L)
UnitCategories to volume.
ActualConcentration of type Quantity

3. Leave Default Unit and UnitCategories as undefined.
4. On the property sheet for ActualConcentration, add the script to its Scripting > Calculated Value

property.
5. Select View >Grid.

When you enter values in Amount and TotalVolume. The script should automatically populate
ActualConcentration with the converted amount.

The following IronPython example is a CalculatedValueHandler script on a property of type Long Integer.
The script converts an Integer to a Long Integer.
from System import Int64
MyValue = properties['MyInteger'].Value iVal = -1
if MyValue >= 0: try:
iVal = MyValue + 12345 except:

Page 68 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 5: Materials

iVal = -99
else:
iVal= 999
value = Int64.Parse(iVal.ToString())

To run this script:
1. Log in to theWorkbook as a user with the PropertySetEditor permission.
2. Using the Property Set Editor, create a property set with at least the following properties:

MyInteger of type Integer
MyLongInteger of type Long Integer

3. On the property sheet for MyLongInteger, add the script to its Scripting > Calculated Value
property.

4. Select View >Grid.
When you enter values inMyInteger the script should automatically populateMyLongInteger.

Container Class
The Symyx.Framework.Materials.Container class describes the object that physically contains a
material. The Container.Material property represents theMaterial that the Container holds. The
Container.Capacity specifies a quantity indicating howmuch material it can hold. The
Container.Amount property specifies a quantity of howmuch material it actually holds.

Preparation Class
The Symyx.Framework.Materials.Preparation class is used to record an actual execution of
producing a material. You can record actual amounts and actual process conditions in the Preparation
class. The Preparation.ActionTargets property is a collection of
Symyx.Framework.Materials.ActionTarget objects, representing a conceptual entity that can
associate with a container, a piece of equipment, or an instrument.
For example, two material charges can reference the same action target to say they aremade in the
same flask or vial. Amaterial transfer can occur by taking this material from one action target to the
other. The Preparation.Procedure property contains a
Symyx.Framework.Materials.PreparationStepGroup that has indexed ParameterStep
children describing each step in the preparation procedure.
The following C# example creates a preparation with two water charges. Its input parameter is a water
Material object.
public static Preparation CreatePreparationWith2WaterCharges

(Material water)
{

Preparation target = new Preparation();
IEnumerable<PreparationStep> enumerator =

target.Procedure.GetChildren(null);
foreach (PreparationStep psb in enumerator)
{
Assert.IsNotNull(psb);

}
// Create a vial ActionTarget.
ActionTarget vial = new ActionTarget();

BIOVIA Workbook 2021 • SDK Developers Guide | Page 69

Chapter 5: Materials

// Add vial to the Preparation.
target.ActionTargets.Add(vial);
// Get the PreparationStepGroup.
PreparationStepGroup topStep = target.Procedure;
// Create the first water material charge.
MaterialCharge materialCharge = new MaterialCharge();
materialCharge.ActionTarget = vial;
materialCharge.PlannedAmount = new Quantity(1M, UnitKey.MILLILITER);
materialCharge.SetMaterial(water);
// Insert the first material charge to the PreparationStepGroup
topStep.InsertChild(0, materialCharge);
// Create the second water material charge.
materialCharge = new MaterialCharge();
materialCharge.ActionTarget = vial;
materialCharge.PlannedAmount = new Quantity(200M, UnitKey.MICROLITER);
materialCharge.SetMaterial(water);
// Insert the second material charge to the PreparationStepGroup
topStep.InsertChild(1, materialCharge);
return target;

}

Page 70 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 6:
Documents
A document is an instantiation of a user-specified document (experiment) template. A user creates a
new document, by selecting a document template in the Vault repository browser.
The Symyx.Notebook.Document class is a collection of sections (container). You can :

Enumerate and access the Symyx.Notebook.DocumentSection objects that make up a
document or template through the Document.Sections property.
Access the document template used to create a document through the Document.Template
property.
Access the section template used to create a document section through the
DocumentSection.Template property.

Document Sections
A document section is the building block of a document, a given document instance is composed of a
collection of document sections.
A section template defines how each document section is created. A document template defines the
specific set of section templates that are used to create document of a specific type.
Document sections represent a primary extension point for customized Workbook application behavior.
Document template authors can create custom document types by referencing:

Generic document section implementations such a section used to display images or free-form text,
and or more complex section such as a data entry form.
Domain-specific document sections such as a document created to meet the needs of analytical
chemistry, a preparation section for information related to formulations.

The Symyx.Notebook.DocumentSection class is an abstract base class for document section
implementations. Concrete document section implementations are directly or indirectly derived from
Symyx.Notebook.DocumentSection.
Symyx.Notebook.DocumentSection is derived from a VaultElement that is derived from a
VaultObjectwhich enables storing an managing each DocumentSection instance in Vault.
A DocumentSection implementation can implement the interfaces that correspond to the activities it
supports. For example, the default form section supports edit, report, and indexing activities, and can
incorporate a custom data entry form as a section in a document.

Document Sections Types
A document in can contain any of the sections described in the following table.

Section Type Description

TextSection Renders a text editor that allows a user to enter and format text.

FileSection Renders files such as PDF and image files that can be inserted by a user.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 71

Chapter 6: Documents

Section Type Description

FormsSection Contains widgets such as a text box, label, button, check box,and combo
boxes that a user with using the FormEditor. A form allows a user to view
and enter information for a single logical unit of data.

SpreadsheetSection Contains an Excel spreadsheet.

TableSection Renders a grid whose columns are defined by a property set definition.
A table section enables viewing and entering multiple records of data in a
grid format.
The following sections are derived from the TableSection:

Materials Section used for entering information about a set ofmaterials.
Equipment Section used for entering information about equipments.
Preparation Section used for entering information about materials, their
components, and their order of usage in an experiment.
Synthetic Chemistry Section provides rows that represent a material that
participates in a reaction.
Formulations Section, similar to a Preparations section, but used for
formulations.
Formulation Materials Section, similar to a Materials section, but with
additional properties.

ReactionSchemeSection Provides a workspace that can contain reaction steps that can contain a
reaction.

ReferenceSection Contains a list of reference to one or moreWorkbook sections.

Find a Template Example
The following IronPython example gets the DocumentSectionTemplate for the file section:
SectionTemplates = active_workspace.Current.SiteRepository.Get

(VaultObjectTypes.DocumentSectionTemplate,DataScope.All)
for SectionTemplate in SectionTemplates:
if SectionTemplate.Title == "File" : neededSection = SectionTemplate

Create a Document from a Template
This C# example of creates a document from a template and assigns a title:
using Symyx.Framework.Vault;
using Symyx.Notebook;

namespace Symyx.Notebook.Examples
{
public class DocumentExamples
{
public static Document CreateDocumentFromTemplate

(IRepository repository, VaultId templateVaultId)
{

Page 72 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 6: Documents

Document;
}
var template = repository.Get(templateVaultId, DataScope.All) as
var document = Document.Create(template); document.Title = "Example

experiment"; return document;
}

}

Get a Document
A document is VaultObject that belongs to the Vault repository. To get a document, use the Get method
on the Vault repository object, specifying that the data scope is all the sections in the document. The
Get method returns a VaultObject that you cast as a Document.
myDoc = (Document)VaultWorkspace.Get(VaultURI, DataScope.All);

or
myDoc = (Document)VaultWorkspace.Get(VaultID, DataScope.All);

Note: There is also the Symyx.Notebook.Document.Findmethod, which is overloaded to find by
Vault ID, VaultUri, Predicate, or String title.

Adding, Inserting, and Removing Document Sections
Whereas the add operation appends the section to the end of the ordered list of sections, the insert
operation places a section at a specific, indexed located. The following C# example adds a section and
assigns it a name.
using System;
using System.Collections.Generic; using System.Linq;
using System.Text;
using Symyx.Framework.Vault; using Symyx.Notebook;
using Symyx.Notebook.Sections.Text;

namespace Symyx.Notebook.Examples
{

class DocumentExamples
{
public static Document CreateDocumentFromTemplate

(IRepository repository, VaultId templateVaultId)
{
var template = repository.Get(templateVaultId, DataScope.All)

as Document;
var template = repository.Get(templateVaultId, DataScope.All)

as var document = Document.Create(template);
var textSection = new TextSection();
// Assign a name
textSection.Title = "myTextSection";
// Add the new text section to the document
document.Add(textSection);
return document;

}

BIOVIA Workbook 2021 • SDK Developers Guide | Page 73

Chapter 6: Documents

}
}

The following References were added: Symyx.Framework, Symyx.Notebook,
Symyx.Notebook.Sections.Text, Symyx.Notebook.Sections.Text.Extensibility,
System, System.Core, System.Data, System.Data.DataSetExtensions, System.Xml,
System.Xml.Linq.

Insert a Section Between Other Sections
To insert a section into a Document at a specific location, use the
Symyx.Notebook.Document.Insertmethod with the following signature:
public void Insert(int index, DocumentSection item)

Remove a Section
You can remove a section from the document using the Symyx.Notebook.Document.Remove
method and enable the removal based on the VaultElement, VaultId, VaultObject, or DocumentSection.

Text Sections Example
This C# example illustrates adding a text section to a document, and setting the PlainText property of
the TextDocument in Workbook.

Note: If you use this example in other applications separate licensing is required for the
TXTextControl and for Keyoti RapidSpell.NET.

using System;
using System.Collections.Generic; using System.Diagnostics;
using System.Linq; using System.Text;
using Symyx.Notebook.Sections.Text;

namespace Symyx.Notebook.Examples
{
public static class TextDocumentExamples
{
private static Document CreateSampleDocumentContainingTextSection()
{
Document template = new Document();

// Create a document from the template Document
document = Document.Create(template);

// Add a new text section to the document
document.Add(new TextSection());
return document;

}

// Sets the RichText property of a TextDocument
public static TextDocument SetTextDocumentRichText()
{
Document document = CreateSampleDocumentContainingTextSection();

Page 74 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 6: Documents

TextSection textSection = (TextSection) document[0];
textSection.Text.RichText =

@"{\rtf1\ansi\ansicpg1252\deff0\deflang1033
{\fonttbl{\f0\fswiss\fcharset0 Arial;}}"

+ "\r\n"
+ @"{\colortbl ;\red255\green0\blue0;}"
+ "\r\n"
+ @"{*\generator Msftedit 5.41.15.1515;}
\viewkind4\uc1\pard\b\f0\fs20 Sample\cf1\ul\b0
text\cf0\ulnone\par"
+ "\r\n"
+ @"}" + "\r\n";

Debug.Assert(textSection.Text.PlainText == "Sample text\r\n");

return textSection.Text;
}

// Sets the PlainText property of a TextDocument
public static TextDocument SetTextDocumentPlainText()
{
Document document = CreateSampleDocumentContainingTextSection();
TextSection textSection = (TextSection) document[0];
textSection.Text.PlainText = "Sample text";
Debug.Assert(textSection.Text.PlainText == "Sample text");
return textSection.Text;

}
}

}

Add Text Sections and Set Plain Text
This C# example illustrates adding a text section to a document, and setting the PlainText property of
the TextDocument. This illustration assumes use in Workbook. Otherwise, separate licensing is required
for separate licensing is required for the TXTextControl and for Keyoti RapidSpell.NET.
using System;
using System.Collections.Generic; using System.Diagnostics;
using System.Linq; using System.Text;
using Symyx.Notebook.Sections.Text;
namespace Symyx.Notebook.Examples
{
public static class TextDocumentExamples
{
private static Document CreateSampleDocumentContainingTextSection()
{
Document template = new Document();
// Create a document from the template Document
document = Document.Create(template);
// Add a new text section to the document
document.Add(new TextSection());
return document;

}

BIOVIA Workbook 2021 • SDK Developers Guide | Page 75

Chapter 6: Documents

// Sets the RichText property of a TextDocument
public static TextDocument SetTextDocumentRichText()
{
Document document = CreateSampleDocumentContainingTextSection();
TextSection textSection = (TextSection) document[0];
textSection.Text.RichText =

@"{\r-f1\ansi\ansicpg1252\deff0\deflang1033
{\fonttbl{\f0\fswiss\fcharset0 Arial;}}"
+ "\r\n"
+ @"{\colortbl ;\red255\green0\blue0;}"
+ "\r\n"
+ @"{*\generator Msftedit 5.41.15.1515;}
\viewkind4\uc1\pard\b\f0\fs20 Sample\cf1\ul\b0
text\cf0\ulnone\par"
+ "\r\n"
+ @"}"
+ "\r\n";

Debug.Assert(textSection.Text.PlainText == "Sample text\r\n");
return textSection.Text;

}
// Sets the PlainText property of a TextDocument
public static TextDocument SetTextDocumentPlainText()
{
Document document = CreateSampleDocumentContainingTextSection();
TextSection textSection = (TextSection) document[0];
textSection.Text.PlainText = "Sample text";
Debug.Assert(textSection.Text.PlainText == "Sample text");
return textSection.Text;

}
}

}

Add Data to a Text Section
The following C# snippets are from Symyx.SDK.Samples.DataCreation.Program.cs available in
the samples folder of the SDK installation.
using Symyx.Notebook.Sections.Text;
...
AddNewTextSectionWithVariedRtf(document);
AddNewTextSectionWithRtfContainingImages(document);
AddNewTextSectionWithSamplePlainText(document);
AddNewTextSectionWithImage(document);

Additionally:
AddNewTextSectionWithStructure(document);
AddNewTextSectionWithTextAndStructure(document);

public static TextSection AddNewTextSection
(Document document, string sectionTitle)

{
var textSection = new TextSection();
textSection.Title = sectionTitle; document.Add(textSection);

Page 76 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 6: Documents

return textSection;
}

public static TextSection AddNewTextSectionWithRtf
(Document document, string sectionTitle, string sectionRtfContent)

{
var textSection = AddNewTextSection(document, sectionTitle);
textSection.Text.RichText = sectionRtfContent;
return textSection;

}

public static TextSection AddNewTextSectionWithPlainText
(Document document, string sectionTitle, string
sectionPlainTextContent)

{
var textSection = AddNewTextSection(document, sectionTitle);
textSection.Text.PlainText = sectionPlainTextContent;
return textSection;

}

public static TextSection AddNewTextSectionWithImage
(Document document, string sectionTitle, string imageFilePath)

{
var textSection = AddNewTextSection(document, sectionTitle);
textSection.Text.Images.Add(imageFilePath);
return textSection;

}

public static TextSection AddNewTextSectionWithStructure
(Document document, string sectionTitle, string imageFilePath,

Structure structure)
{
var textSection = AddNewTextSection(document, sectionTitle);
textSection.Text.Images.Add(imageFilePath, structure);
return textSection;

}

public static TextSection AddNewTextSectionWithPlainTextAndStructure
(Document document, string sectionTitle, string
sectionPlainTextContent, string imageFilePath, Structure structure,
int imagePosition)

{
var textSection = AddNewTextSectionWithPlainText

(document, sectionTitle, sectionPlainTextContent);
textSection.Text.Selection.Start = imagePosition;
textSection.Text.Images.Add(imageFilePath, structure);
return textSection;
}

}

BIOVIA Workbook 2021 • SDK Developers Guide | Page 77

Chapter 6: Documents

Check the Section Type
The Symyx.Notebook.Sections.Text.TextSection class implements the
Symyx.Notebook.Sections.Text.Extensibility.ITextSection interface (which is found in
Symyx.Notebook.Sections.Text.Extensibility.dll). You can use ITextSection to determine
whether a section is a Text section. For example, in C#:
foreach (var section in document)
{
if (section is ITextSection)
{
((ITextSection)section).TextDocument.PlainText = "hello world";

}
}

Or in Python:
from Symyx.Notebook.Sections.Text.Extensibility import ITextSection
for section in owner:
if isinstance(section, ITextSection): section.TextDocument.PlainText =
"hello world"

Only Text sections created in version 6.5 and later can implement ITextSection. You cannot check
documents created in previous versions ofWorkbook using ITextSection. In versions prior to 6.5, use
section.GetType().AssemblyQualifiedName to check the section type.

Scale an Image
The Symyx.Notebook.Sections.Text.TextDocumentImages class contains
TextDocumentImage objects that represent images in a text document. The TextDocumentImages

class, Addmethods inserts structures, reactions, or images from in a specified filepath into the text
section. Some Add methods can use a boolean parameter that specifies if the image is scaled to fit the
text document. The Add(string imageFilePath, float horizontalScalePercent, float

verticalScalePercent) signature enables scaling an image by a percentage to increase or decrease
the image size.
The images added to a TextDocument object are returned in the TextDocument.Images property.

Page 78 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 7:
Query Service for Searching
The Symyx Framework provides a query service that allows client applications to search a Vault
repository and the RAS data warehouse. The query service is built on ADO.NET. Client applications can
invoke directly the ADO.NET classes to execute queries.
To connect to a data source, use Symyx.Framework.Vault.Query.ADO.VaultDbConnection. The
current VaultDbConnection for the active Vault server of the current workspace can be obtained from
the VaultDbConnection property of Symyx.Framework.Vault.VaultServer. The following example
shows how to get the VaultDbConnection after logging into a workspace:
VaultWorkspace workspace = new VaultWorkspace(endpoint);
workspace.Login(username, password);
using (VaultDbConnection connection =

(VaultDbConnection)workspace.ActiveVaultServer.VaultDbConnection)
{
QueryByTitle(connection);

}

To search for Vault objects, use the classes in the System.Data namespace that is provided by the
ADO.NET framework. The following example shows the ADO.NET classes IDBCommand and
IDBDataParameter to search Vault objects by title. The IDataReader class gets the search results.
private static void QueryByTitle(VaultDbConnection connection)
{
//Create a command object.

IDbCommand command = connection.CreateCommand();
//Define the SQL string.

command.CommandText = "select Title, VaultId, VaultObjectType
from VaultObject where Title like :Title";

//Create a parameter object.
IDbDataParameter parameter = command.CreateParameter();
parameter.ParameterName = "Title";
parameter.Value = "My Title%";

//Add the parameter to the command.
command.Parameters.Add(parameter);

//Execute the command and get the results.
using (IDataReader reader = command.ExecuteReader())
{
int rowCount = 0;
while (reader.Read())
{
for (int i = 0; i < reader.FieldCount; i++)
{ Console.WriteLine("{0} = {1}", reader.GetName(i), reader[i]); }
Console.WriteLine();
rowCount++;

}
Console.WriteLine("rowCount = {0}", rowCount);
}

}

For more information, see ADO.NET classes.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 79

https://msdn.microsoft.com/en-us/library/vstudio/h43ks021(v=vs.100).aspx

Chapter 7: Query Service for Searching

RAS Data Schema
RAS stores information about Vault objects in the VAULTOBJECT_OBJ view in the RAS data warehouse.
To query the VAULTOBJECT_OBJ view, construct the SQL query and use the System.Data

namespace.
The following shows the data schema of the VAULTOBJECT_OBJ view in the RAS data warehouse:

Name Null? Type Description

LINKID VARCHAR2
(80)

An object reference which is created when a new
object is instantiated and preserved after the object is
saved.

STATUS NOT
NULL

NUMBER
(11)

The status bits of a persistent object with a specified
type and ID, and, possibly, the status of all its sub-
objects.

CREATIONDATE DATE The creation date and time of the object.

CREATEDBY VARCHAR2
(255)

The user who created the object.

LASTMODIFICATIONDATE DATE The date and time on which the object was last
modified.

LASTMODIFIEDBY VARCHAR2
(255)

The user who last modified the object.

ALIAS VARCHAR2
(255)

An alternate display name for the object.

ASSOCIATIONTARGET NUMBER
(1)

True if the object can be the target of a user-defined
association.

CHECKOUTUSERNAME VARCHAR2
(255)

The user who checked out the object.

CHECKOUTSTATE VARCHAR2
(255)

The checkout state of the object at the time it was
retrieved from the server.

CLASS VARCHAR2
(255)

The assembly-qualified typename of the .NET class
that implements the containing object.

CONTENTIDENTIFIER VARCHAR2
(255)

An ID that references the content of the object.

CONTENTSIZE NUMBER
(11)

The size of the object data.

CONTRIBUTOR VARCHAR2
(255)

An entity responsible for making contributions to the
resource.

COVERAGE VARCHAR2
(255)

The user description of the scope of the object.

CREATOR VARCHAR2 The ID of the user making the first Vault check-in of the

Page 80 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 7: Query Service for Searching

Name Null? Type Description

(255) object.

CLIENTCREATIONDATE DATE The date and time that the object was originally
created on the client.

DESCRIPTION VARCHAR2
(4000)

A user description of the object, such as an abstract, a
table of contents, or a free-text account of the
content.

FORMAT VARCHAR2
(255)

Themedia type of the object in MIME-type format.

LANGUAGE VARCHAR2
(255)

A user description of the language used by the object.

VAULTOBJECTTYPE VARCHAR2
(255)

The specific type of the Vault object.

PERMISSIONS VARCHAR2
(255)

Current explicit and implicit permissions to the object.

IMPLICITPERMISSIONS VARCHAR2
(255)

Permissions that are inherited from another object.

PUBLISHER VARCHAR2
(255)

The name and version of the application creating the
object.

RELATION VARCHAR2
(255)

A user description of related work, for example, a
literature reference.

VAULTPATH VARCHAR2
(255)

The path to the object in the repository.

VAULTCONTAINERPATH VARCHAR2
(255)

The path to the object container in the repository.

RIGHTS VARCHAR2
(255)

A user description of rights held to the object.

SOURCEREPOSITORYID VARCHAR2
(255)

The source VaultObjectId from which this VaultObject
was retrieved.

SOURCE VARCHAR2
(255)

The resource from which the described resource is
derived.

SUBJECT VARCHAR2
(1000)

A user description of the object's topic (keywords and
key phrases).

TITLE VARCHAR2
(1000)

A user title of the object, for display purposes.

TYPE VARCHAR2
(255)

The nature of the object's content ("image", "text",
etc).

VAULTID NOT VARCHAR2 The unique system identifier for the object.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 81

Chapter 7: Query Service for Searching

Name Null? Type Description

NULL (255)

VERSION VARCHAR2
(255)

The version number of the object which is
incremented with each object change.

VERSIONCOMMENT VARCHAR2
(4000)

Description of the current version of the object
content.

VERSIONCREATIONDATE DATE The date and time on which the current version of the
object is created.

VERSIONCREATOR VARCHAR2
(255)

The user ID responsible for the current version of the
object content.

VERSIONIDENTIFIER VARCHAR2
(255)

The system identifier for the specific version of the
object.

WORKFLOWNAME VARCHAR2
(255)

The name of the workflow in which the object is
participating.

WORKFLOWSTAGE VARCHAR2
(255)

The stage of the workflow the object is in.

LOCKED NUMBER
(1)

True if the object is locked.

DELETED NUMBER
(1)

True if the object is deleted.

HIDDEN NUMBER
(1)

True if the object is hidden.

SYSTEM NUMBER
(1)

True if the object is a system object.

ARCHIVE NUMBER
(1)

True if the object has been updated since the last
archive pass.

SYNCHRONIZE NUMBER
(1)

True if the object is included in synchronization.

Most of the columns in the VAULTOBJECT_OBJ view are Vault object core properties as enumerated in
Symyx.Framework.Properties.CoreProperty.

Query Form Data
When a new form is created using the Symyx Framework, the Framework maps and saves the form data
into a new table in the RAS data warehouse.
The view name format is as follows:
FORMAT + sequential_number

For example:
FORMAT000000001

Page 82 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 7: Query Service for Searching

The column names are the design-time name of the field on the form.
To query form data in the data warehouse, construct the SQL query using its data schema and use the
System.Data namespace.

Search Results
Use the ADO.NET class IDataReader to retrieve the search results. The searching example also shows
how to get the search results using IDataReader:
//Execute the command and get the results.
//Assume command is IDbCommand that already contains the SQL. using
(IDataReader reader = command.ExecuteReader())
{
int rowCount = 0;
while (reader.Read())
{
for (int i = 0; i < reader.FieldCount; i++)
{ Console.WriteLine("{0} = {1}",reader.GetName(i), reader[i]); }
Console.WriteLine(); rowCount++;

}
DebugLogDataTable(reader.GetSchemaTable());
Console.WriteLine("rowCount = {0}", rowCount);

}

The privatemethod DebugLogDataTable, used in the preceding example, shows how to get the data
in a table using the ADO.NET classes DataTable, DataRow, and DataColumn:
private static void DebugLogDataTable(DataTable table)
{
foreach(DataRow row in table.Rows)
{
foreach (DataColumn column in table.Columns)
{
Console.WriteLine(string.Format("{0} = {1}", column.ColumnName,

row[column]));
}

}
}

For details about the ADO.NET classes, see theMicrosoft System.Data Namespace documentation.

Create a Custom Query Builder Using Metadata
A custom query builder is a user interface that enables users to enter a search criteria. The query builder
must have access to themetadata of the data to search. The
Symyx.Framework.Vault.Query.Metadata namespace contains classes that give access to the
metadata. The following diagram shows the class hierarchy in the
Symyx.Framework.Vault.Query.Metadata namespace:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 83

https://msdn.microsoft.com/en-us/library/system.data(v=vs.110).aspx

Chapter 7: Query Service for Searching

The Symyx.Framework.Vault.Query.ADO.VaultDbConnection class contains the
QueryMetadata property which represents the structure of the connected database. The
QueryMetadata property returns the
Symyx.Framework.Vault.Query.Metadata.QueryMetadata class.
The following example shows how to get themetadata:
private static void GetMetadata(VaultDbConnection connection)
{
QueryMetadata metadata = connection.QueryMetadata;
foreach (View view in metadata.Views.Values)
{
Console.WriteLine(view.ViewName);
foreach (ViewColumn column in view.Columns)
{ Console.WriteLine(column.ColumnName); }

}
}

Custom Vault Objects Indexing
If you create a custom Vault object, you can:

Create a custom index for searching and retrieving the custom Vault object. See Custom indexing.
Enable the custom Vault object for full-text searching. See Full text search indexing.

Full-text Search Indexing
If you want to enable full-text searching of your custom Vault object's contents, the custom Vault object
class must implement the Symyx.Framework.Vault.IIndexableText or
Symyx.Framework.Vault.IIndexableTextContainer interface. The Vault text indexer indexes
any Vault object that implements one of these interfaces. If the object implements IIndexableText, it
is added to the full text index in the Vault data warehouse. If the object implements
IIndexableTextContainer, the indexer iterates through all elements returned by the
IIndexableTextContainer.TextEnumerator property, and adds them to the index.
The IIndexableText interface has three properties:

BinaryContent
IIndexableText implements this property when the custom Vault object has binary content such
as a Microsoft Word file or PDF attachment.
TextContent
IIndexableText implements this property when the custom Vault object's content to search is a
text string.

Page 84 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 7: Query Service for Searching

Name
Identifies the text object.

IIndexableText Implementation Example
The following is a sample implementation of an object that contains an image and text caption that is
searchable:
public class Image : IIndexableText
{
private string caption_;
private string name_;
public TextReader TextContent
{
get
{
return new StringReader(caption_.toString());

}
}
public string Name
{
get
{
return name_;

}
}

}

Custom Indexing
You can use create a custom message processor to index data for a search. The custom message
processor runs using events that occur the server such as the saving of an experiment. You can use
custom indexing to index custom Vault objects or default Vault objects.
For an example of a custom message processor, see the sample projects included in the samples folder
of the SDK installation.

Creating a New Search Type
The Symyx SDK provides a way to extend the Vault Search system. The example is installed within the
Symyx SDK:
\samples\Symyx.SDK.Samples.SectionIdSearchExtension\

The examples in the samples folder assume you have NUnit, an open source unit testing framework for
.NET.
You can create a new search type that will plug into the Vault Search drop down list in Notebook
Explorer and provide the user with newways to find the data stored in Vault.
For details about API calls, see the API Reference for
Symyx.Framework.Controls.IQueryBuilderGrid interface, Symyx.Framework.Query
class, Symyx.Framework.QueryLogicExpression class, and other query-related classes.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 85

http://www.nunit.org/

Chapter 7: Query Service for Searching

SampleIDSearchExtension
The SectionIdSearchExtension class is a sample SDK search extension for Workbook. It allows a
user to enter the document section Id and then finds the Document that contains the corresponding
section.
This sample shows how an SDK author can create a new search type by creating a class that implements
the Symyx.Framework.Controls.IQueryBuilderGrid interface. A class that implements this
interface can be configured to show up in the Vault Search dropdown list as a new search type. The new
search type can be used like any other search. You can display the search results in the Notebook
Explorer, save the search results as a list, and save the search as a favorite.
The SectionIdSearchExtension is a simple example of creating a new search type. It also
demonstrates some of the best practices for creating new searches.

Build Queries
When you create a search extension, construct the query from the user input to run the query and
return the results in the Notebook Explorer Vault object grid. Use the BuildQuery method in the
IQueryBuilderGrid interface to return the results to Notebook Explorer.
Use the following code after the query is created:
query.UsePropertiesQuerySQLGeneration();
query.ObtainParentContainers = true;

Simple Condition Example
The example in the SectionID search extension creates a QueryView to the VaultObject_obj table, as well
as, a condition that ensures the VaultId field of the VaultObject_obj table is equal to the VaultId
specified by the user.
/// <summary>
/// Builds a query from the user input. The SDK programmer will use
/// the Query object API found in the Symyx.Framework.Query namespace
/// to convert the user input found in the UI to a valid Query object.
/// </summary>
/// <returns>A query.</returns>

public Symyx.Framework.Query BuildQuery()
{

currentQuery_ = BuildQuery(GetDocumentSectionVaultId());
return currentQuery_;

}
/// <summary>
/// Builds the query object from the user input.
/// </summary>
/// <param name="vaultId">The vault id.</param>
/// <returns></returns>

public Query BuildQuery(VaultId vaultId)
{
// Create the query view

QueryView vaultObjectTableView = new QueryView
("VaultObject_obj",false);

// Create the condition
QueryCondition condition = new QueryCondition

Page 86 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 7: Query Service for Searching

(new QueryField(vaultObjectTableView, "VaultID"),
QueryComparisonOperator.QueryComparisonOperators.EqualTo,
vaultId);

Query query = new Query(condition);
// Set the ObtainParentContainers variable on the query.

query.ObtainParentContainers = true;
return query;

}

Review the Symyx.Framework.Query and SymyxFramework.Query.Extensions namespaces before
creating a search extension.

Specific Materials and Amounts Example
The following example assumes that a user needs to search for a document that has a materials table in
which 1000 grams of Benzene or 1000 grams of water are used. Pass the specific material names such as
Benzene and Water, and the specific amounts and units to the BuildQuery method from the Search user
interface.
return (
(
(
"P_MATERIAL_OBJ.NAME".Is
(QueryComparisonOperator.QueryComparisonOperators.EqualTo, "Benzene") |
"P_MATERIAL_OBJ.NAME".Is
(QueryComparisonOperator.QueryComparisonOperators.EqualTo, "Water")
).Grouped() &"P_PLANNEDAMOUNT_OBJ.AMOUNT_VALUE".Is
(QueryComparisonOperator.QueryComparisonOper ators.EqualTo, 1000) &
"P_PLANNEDAMOUNT_OBJ.AMOUNT_UNIT".Is
(QueryComparisonOperator.QueryComparisonOpera tors.EqualTo,
(int)UnitKey.GRAM)
).AllOnSameRow()
).AllInSameSection().AllInSameDocument();

Using Synonyms Example
private Query Query1000gBenzeneOrWater_UsingIsOneOf()
{
return (
"P_MATERIAL_OBJ.NAME".Is(QueryComparisonOperator.QueryComparisonOperators.IsOneOf
, "Aspirin", "Synonym1", "Synonym2") &
"P_PLANNEDAMOUNT_OBJ.AMOUNT_VALUE".Is(QueryComparisonOperator.QueryComparisonOper
ators.EqualTo, 1000) &
"P_PLANNEDAMOUNT_OBJ.AMOUNT_UNIT".Is(QueryComparisonOperator.QueryComparisonOpera
tors.EqualTo, (int)UnitKey.GRAM)
).AllOnSameRow().AllInSameSection().AllInSameDocument();
}

Specific Folder Example
private Query Query1000gBenzeneLocatedInSpecificFolder()
{
return (

(("P_MATERIAL_OBJ.NAME".Is

BIOVIA Workbook 2021 • SDK Developers Guide | Page 87

Chapter 7: Query Service for Searching

(QueryComparisonOperator.QueryComparisonOperators.EqualTo, "Benzene") &
"P_PLANNEDAMOUNT_OBJ.AMOUNT_VALUE".Is

(QueryComparisonOperator.QueryComparisonOper ators.EqualTo, 1000) &
"P_PLANNEDAMOUNT_OBJ.AMOUNT_UNIT".Is

(QueryComparisonOperator.QueryComparisonOpera tors.EqualTo,
(int)UnitKey.GRAM)

).AllOnSameRow()
).AllInSameSection() &
"VAULTOBJECT_OBJ.VAULTPATH".Is

(QueryComparisonOperator.QueryComparisonOperators.C ontains,
destinationFolder_.VaultPath)

).AllI

Timestamp Example
private Query Query1000gBenzeneCreatedByCurrentUserToday()
{
return (

(
("P_MATERIAL_OBJ.NAME".Is

(QueryComparisonOperator.QueryComparisonOperators.EqualTo"Benzene") &
"P_PLANNEDAMOUNT_OBJ.AMOUNT_VALUE".Is

(QueryComparisonOperator.QueryComparisonOper ators.EqualTo, 1000) &
"P_PLANNEDAMOUNT_OBJ.AMOUNT_UNIT".Is

(QueryComparisonOperator.QueryComparisonOpera tors.EqualTo,
(int)UnitKey.GRAM)).AllOnSameRow()

).AllInSameSection() &
"VAULTOBJECT_OBJ.CREATOR".Is

(QueryComparisonOperator.QueryComparisonOperators.Equ alTo,
workspace_.CurrentUser.VaultId) &

"VAULTOBJECT_OBJ.CREATIONDATE".Is
(QueryComparisonOperator.QueryComparisonOperator s.DateTimeEqualTo,
DateTime.Today)

).AllInSameDocument();
}

Title Example
private Query Query1000gBenzeneAndSpecificDocumentTitleContents()
{
return (
(
(
"P_MATERIAL_OBJ.NAME".Is
(QueryComparisonOperator.QueryComparisonOperators.EqualTo, "Benzene") &
"P_PLANNEDAMOUNT_OBJ.AMOUNT_VALUE".Is
(QueryComparisonOperator.QueryComparisonOper ators.EqualTo, 1000) &
"P_PLANNEDAMOUNT_OBJ.AMOUNT_UNIT".Is
(QueryComparisonOperator.QueryComparisonOpera tors.EqualTo,
(int)UnitKey.GRAM)
).AllOnSameRow()
).AllInSameSection() &"VAULTOBJECT_OBJ.TITLE".Is
(QueryComparisonOperator.QueryComparisonOperators.Conta ins, "Benzene") &
"VAULTOBJECT_OBJ.TITLE".Is

Page 88 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 7: Query Service for Searching

(QueryComparisonOperator.QueryComparisonOperators.Conta ins, "Water")
).AllInSameDocument();
}

Search Extension Development Best Practices
The lazy initialization pattern is an example of a best practice for performance. The lazy initialization
pattern is found in the IQueryBuilderGrid.UserControlmethod. The UserControlmethod
provides the graphical user interface for the search extension.
If the user interface has a single text box in which the user can enter the document section ID, you can
create a UserControl that allows the user to construct a more complex search.
The following example demonstrates the lazy creation of the view class, the preferred method, because
you do not control when the search extension is loaded into Workbook.
/// <summary>
/// Gets the UserControl view for this search extension.
/// Note: we use lazy view creation here so that we pay
/// the cost of view creation only when the view is needed.
/// </summary>
/// <value>The user control.</value> public UserControl UserControl
{
get
{
if (view_ == null)
{
view_ = new SectionIdSearchExtensionView(this);
if (currentQuery_ != null)
{
view_.SectionId = FindSectionIdInQuery(currentQuery_).ToString();

}
ApplyConfiguration();

}
return view_;

}
}

Using theModel-View-Controller pattern is a best practice, which aids in improving usability. It is easier
for users to launch the search with the Enter key, rather than using a mouse to click the Search button.
Use the ExecuteSearchRequest event in the IQueryBuilderGrid Inerface to implement themodel-view-
controller pattern. In the following example, use the ExecuteSearchRequest event to run the query after
the user enters the section ID and presses the enter key.
From the SectionIdSearchExtensionView class:
/// <summary>
/// Handles the KeyPress event of the documentSectionVaultId control.
/// </summary>
/// <param name="sender">The source of the event.</param>
/// <param name="e">The <cref="System.Windows.Forms.KeyPressEventArgs" />
instance containing the event data.

///</param>
private void documentSectionVaultId_KeyPress

(object sender, KeyPressEventArgs e)

BIOVIA Workbook 2021 • SDK Developers Guide | Page 89

Chapter 7: Query Service for Searching

{
// char 13 represents the ENTER key
if(e.KeyChar == (char)13)
{
e.Handled = true; model_.RaiseExecuteQueryRequest();

}
}

From the SectionIdSearchExtension class:
internal void RaiseExecuteQueryRequest()
{
if(GetDocumentSectionVaultId() != VaultId.Empty)
{
EventHandler handler = ExecuteQueryRequest; if (handler != null)
{
handler(this, new EventArgs());
}

}
}

Search Extension Configuration
Search extensions are configured through the SearchExtensionService.SearchExtensions
application permission. You can view and edit the SearchExtensionService.SearchExtensions
application permission in Workbook.
The first dictionary entry is called SearchExtensionTypes and is an XML-defined list of all known
search extensions. Each entry contains a fully-qualified assembly class name for a class that implements
the IQueryBuilderGrid interface and a key from the extension.
Example SearchExtensions XML:
<?xml version="1.0" encoding="utf-16"?>
<SearchExtensions>

<SearchExtension
class="Symyx.SDK.Samples.SectionIdSearchExtension.SectionIdSearchExtension,
SectionIdSearchExtension, Culture=neutral, PublicKeyToken=null"
key="SectionIdSearchExtension" />
</SearchExtensions>

All subsequent entries in the dictionary are used to configure the individual search extensions. Set the
name to the search extension key. The entries have a SearchExtension node that defines the specific
extension to configure, followed by a configuration data node. You can put any valid XML inside the
configuration data node, and the information is passed to the search extension using the configuration
property when the extension is instantiated.
Example Search Extension configuration XML:
<?xml version="1.0" encoding="utf-16"?>

<SearchExtension key="SectionIdSearchExtension"
displayName="Document Section Id Search">

<ConfigurationData>
<SectionIdSearchExtensionConfiguration>

<SectionIdSearchLabel>
section id *from config*

Page 90 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 7: Query Service for Searching

</SectionIdSearchLabel>
</SectionIdSearchExtensionConfiguration>

</ConfigurationData>
</SearchExtension>

Search Extension Publishing
While you are developing a search extension, use the Private Assembly model for distribution. After
compiling and configuring the search extension, copy the compiled assembly binary (.dll) and
program database (.pdb) file to the directory where the Symyx.Notebook.Application executable
file (.exe) resides. Workbook finds the search extension when it dynamically loads the search extension
types.
To publish the search extension so that other users can use the new search type, use the Vault Object
Package (.vozip) publishing system to upload the Search Extension assembly to Vault. To learn how a
Vault Object Package is created, see the SearchExtensionVozipBuilder project in the sample code.
An assembly that is published in this manner must be fully signed. Workbook does not dynamically load
a search extension that is not properly signed. The SearchExtensionTypes entry must contain updated
public key token information.
Example SearchExtensions XML with public key token specified:
<?xml version="1.0" encoding="utf-16"?>

<SearchExtensions>
<SearchExtension

class="Symyx.SDK.Samples.SectionIdSearchExtension.SectionIdSearchExtension,
SectionIdSearchExtension, Culture=neutral, PublicKeyToken= fb4b5791c48b7e8a"
key="SectionIdSearchExtension" />

</SearchExtensions>

BIOVIA Workbook 2021 • SDK Developers Guide | Page 91

Chapter 8:
Scripting in BIOVIA Workbook
Scripting provides a powerful mechanism for extending capabilities ofWorkbook. Scripting is supported
as extension points for customization by providing event handlers that execute custom IronPython
scripts. IronPython scripts use the Python programming language and run within theMicrosoft .NET
Framework.
The scripting framework within Workbook provides script variables that represent Symyx Framework
objects.
The script variables allow your scripts to useWorkbook API and perform custom operations, for
example, editor is one of the script variables that are available with Experiment Editor scripting. The
editor variable represents a Symyx.Notebook.ApplicationManagement.IDocumentEditor
object. Your script can call the appropriate IDocumentEditor API to get information about or invoke
methods on the Experiment Editor.
The following script invokes the IDocumentEditor.GetMenuItemmethod, which returns a
System.Windows.Forms.ToolStripItem, and then sets the ToolStripItem.Enabled property:
item = editor.GetMenuItem('viewToolStripMenuItem')

if item is not None:
item.Enabled = False

Workbook Objects
To invoke theWorkbook API from your script, import the class that you need from the appropriate
namespace, and use the API calls directly within your script. For example, the following script invokes
Symyx.Notebook.Sections.Table.AddNewRowsForm to prompt a user to add rows to a table.
from Symyx.Notebook.Sections.Table import AddNewRowsForm
from System.Windows.Forms import DialogResult
try:
addNew = AddNewRowsForm() result = addNew.ShowDialog() if result ==

DialogResult.OK:
i = 0

while i < addNew.RowCount: table.AddRow()
i = i + 1

finally:
addNew.Dispose()

The preceding example uses the table script variable that represents
Symyx.Notebook.Sections.Table.TableSection and provides the AddRowmethod.
The IronPython.dll is placed in the global assembly cache (GAC) as part of theWorkbook
installation.

Python Scripting
Use proper indentations.
In Python, leading white spaces or indentations at the beginning of each logical line are interpreted
by the Python parser. If you copy and paste sample scripts from this document, verify that the
indentations are correct in the pasted script.

Page 92 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

Use straight double-quote (") characters
If you copy an IronPython script from a text editor (such as Microsoft Word) and copy it into the
IronPython Script Editor, ensure that any smart quote, (“) or (”), from your text editor are entered as
straight double-quote characters (") in the IronPython Script editor. If your script contains smart
quotes, the script fails to run as expected.
Use proper error-handling in your scripts perform
To catch exceptions, use try-except-finally statements. Also, initially check for non-null or valid input
before performing an operation or calculation. An unhandled exception in your script might prevent
subsequent scripts from executing or might cause subsequent scripts to fail.

Note: On a listbox, setting selectionmode to none is not supported; only selected items in a form can
appear in reports.

Script Performance Profile
You can monitor and profile the performance of your scripts by enabling the script execution
performance log file on the client. In addition to logging script execution times, performance log files are
also created when a user checks in Vault objects in the check-in performance log file, and when a user
checks out and opens Vault objects, in the check-out and open performance log file. These performance
log files help isolate and identify performance bottlenecks on Workbook client.

Document Toolbar Scripting
Scripts that are triggered by the Experiment Editor or Form Editor events automatically incur a
performance penalty during user activities such as opening, editing, and saving documents.
Use document-level dynamic toolbar buttons to execute the scripts instead of executing scripts during
events such as OnApplicationLoaded, OnSaving, OnSaved, and OnSectionActivated in the
Experiment Editor, or during events such as OnEdit and OnClick events in the Form Editor. When
using a custom toolbar button, a script only executes when the user clicks the button.
You can add menu items to customizeWorkbook. In Workbook you can add custom menu items at run
time using document event scripts. Use document-level dynamic toolbar buttons innstead of using
custom menu items to provide custom functionality. The scripts do not need to execute scripts to add
menu items during user activities. Toolbar button gives the user the option to execute what is needed
only at the appropriate timewithout a performance penalty.
For more information about toolbar scripting, see Custom Toolbar Scripting.

Optimize Scripts
If you need to perform custom logic during start-up or during common document events, there are
potential performance costs. Avoid unnecessary or repetitive calls, and avoid possibly long-running
server code. For example, if a script executes server calls to populate a list in a combo box, avoid
executing it during the Experiment Editor’s OnApplicationLoaded event. The following are some
alternatives:

Populate a hidden listbox with the vocabulary only when the document is first created. This works if
the vocabulary doesn’t change often.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 93

Chapter 8: Scripting in BIOVIA Workbook

Create an add-in that runs at login-time to download the vocabulary as text snippets to the local
disk. This makes login a few seconds slower but everything else faster. This works if it is acceptable
for users to wait until the next login to update the vocabularies.
Use the combo box list event to execute the server call to populate the list only when the user drops
down the combo box.
Use a check box to enable the controls containing the combo box, and get the vocabulary only if the
user clicks the check box. Alternatively, use a button to allow a user to click the button to get the
vocabulary.

To help you optimize your script, use the diagnostic logging that is available with Workbook. The
diagnostic log helps in monitoring the performance of your script execution. For example, if your script is
performing server or external calls, it is useful to profile its performance to determine whether it should
be executed from an automatic event such as OnSectionActivated and OnSectionDeactivated
event or from an event that requires user action such as the button OnClick event.

Form Editor Scripting
Using the Form Editor in Workbook, you can specify IronPython scripts that execute when events on
the form, BaseForm, or form widgets are triggered. Scripts can perform custom processing such as data
validation, automatic updates, or display data in the form. Specify your scripts in the property sheet for
a widget or a base form in the Form Editor.

FormSection Events
The following table contains the form or widget events that can execute IronPython scripts.

Event Description Type Script
variables

OnClick Occurs when the button is clicked. Button active_
form

OnEdit Occurs when the form is loaded for editing. Form active_
form

OnValidate Occurs when the widget on the form changes
See OnValidate Script for an example.

CheckBox,
ComboBox,
ListBox,
TextBox

active_
widget
active_
form

OnReview Occurs when the widget is reviewed.
Use an OnReview script to manipulate review
messages in the active_widget.ReviewResults
that is a
Symyx.Framework.Review.ReviewResultColl

ection object.
See OnReview Script for an example.
Displaying a Message Box or any UI component from
an OnReview scripts is not supported.
Review scripts are also run on the server, invoking a UI
component could cause problems.

CheckBox,
ComboBox,
ListBox,
TextBox,
PictureBox

active_
widget
active_
form

Page 94 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

Event Description Type Script
variables

OnValueChanged Occurs when the value of a widget on the form
changes. The OnValueChanged event occurs after the
OnValidate event occurs, and is not fired when the
widget validation fails.

Form active_
form

The events execute scripts on a Form document and its widgets. You can assign scripts to these events
using the Form Designer.
Form section scripts do not reference ELN assemblies. To createWorkbookobjects, you need to
reference the form section in your scripts using a Python script as follows:
import clr
lr.AddReference("Symyx.Framework")

FormSection Script Variables
Within a script, you can access and update the properties of the current form and its widgets by using
the following variables:

active_form - Represents the current form, Symyx.Notebook.Forms.BaseForm. The following
example sets the back color of the active form.
active_form.BackColor = System.Drawing.Colors.Blue
active_form.Controls["widgetName"] represents a widget (whose name is specified by
widgetName) on the current form.

The following example sets (toggles) the ReadOnly property of a TextBox named Comments:
active_form.Controls["Comments"].ReadOnly = not active_form.Controls
["Comments"].ReadOnly

active_form.Controls["groupBoxName"].Controls["widgetName"] represents a
widget (whose name is specified by widgetName) in a GroupBox (whose name is specified by
groupBoxName) on the current form.
The following example increments the SelectedIndex property of a ComboBox in a GroupBox:
newIdx = active_form.Controls["GroupBox1"].Controls
["lbColors"].SelectedIndex + 1

active_widget - Represents the current widget on the form (an object that implements
Symyx.Notebook.Forms.IModifiableWidget such as a CheckBox, ComboBox, ListBox,
PictureBox, and TextBox).

The following example sets text on a TextBox control:
active_widget.Text = "hello world"

This is equivalent to:
active_form.Controls["TextBox1"].Text = "hello world"

active_widget.ReviewResults returns a
Symyx.Framework.Review.ReviewResultCollection object containing review results for
the widget.

active_section - Represents the form section containing the BaseForm
(Symyx.Notebook.DocumentSection).

BIOVIA Workbook 2021 • SDK Developers Guide | Page 95

Chapter 8: Scripting in BIOVIA Workbook

Note: active_section is only available in a FormSection within an experiment; active_
section is null in the Form Designer.

active_document - Represents the document containing the form section
(Symyx.Notebook.Document).

Note: active_document is only available in a FormSection within an experiment; active_
document is null in the Form Designer.

active_workspace - Represents the current Vault workspace
(Symyx.Framework.Vault.VaultWorkspace).

Note: active_workspace is only available in a FormSection within an experiment; active_
workspace is null in the Form Designer.

FormSection Events Script Variables
The following tables show the script variables that are available to the events on a Form. You can add
scripts for the events using the Form Designer.

OnClick Event
Applies to Button

Script variable Represents

active_form Symyx.Notebook.Forms.BaseForm

active_section Symyx.Notebook.Sections.Forms.FormsSection

Use active_section if the Form is used in a FormSection within an experiment.

Note: active_section returns null when used within the Form Designer.

active_document Symyx.Notebook.Document that owns the FormsSection
Use active_document if the Form is used in a FormSection within an experiment.

Note: active_document returns null when used within the Form Designer.

active_workspace Symyx.Framework.Vault.VaultWorkspace

Use active_workspace if the Form is used in a FormSection within an experiment.

Note: active_workspace returns null when used within the Form Designer.

OnEdit Event
Applies to Form

Script variable Represents

active_form Symyx.Notebook.Forms.BaseForm

active_section Symyx.Notebook.Sections.Forms.FormsSection

Use active_section if the Form is used in a FormSection within an experiment.

Note: active_section returns null when used within the Form Designer.

Page 96 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

Script variable Represents

active_document Symyx.Notebook.Document that owns the FormsSection
Use active_document if the Form is used in a FormSection within an experiment.

Note: active_document returns null when used within the Form Designer.

active_workspace Symyx.Framework.Vault.VaultWorkspace

Use active_workspace if the Form is used in a FormSection within an experiment.

Note: active_workspace returns null when used within the Form Designer.

OnValidate Event
Applies to CheckBox, ComboBox, ListBox, TextBox

Script variable Represents

active_form Symyx.Notebook.Forms.BaseForm

active_widget Symyx.Notebook.Forms.IModifiableWidget

active_section Symyx.Notebook.Sections.Forms.FormsSection

Use active_section if the Form is used in a FormSection within an experiment.

Note: active_section returns null when used within the Form Designer.

active_document Symyx.Notebook.Document that owns the FormsSection
Use active_document if the Form is used in a FormSection within an experiment.

Note: active_document returns null when used within the Form Designer.

active_workspace Symyx.Framework.Vault.VaultWorkspace

Use active_workspace if the Form is used in a FormSection within an experiment.

Note: active_workspace returns null when used within the Form Designer.

OnReview Event
Applies to CheckBox, ComboBox, ListBox, TextBox, PictureBox

Script variable Represents

active_form Symyx.Notebook.Forms.BaseForm

active_widget Symyx.Notebook.Forms.IModifiableWidget

active_section Symyx.Notebook.Sections.Forms.FormsSection

Use active_section if the Form is used in a FormSection within an experiment.

Note: active_section returns null when used within the Form Designer.

active_document Symyx.Notebook.Document that owns the FormsSection
Use active_document if the Form is used in a FormSection within an experiment.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 97

Chapter 8: Scripting in BIOVIA Workbook

Script variable Represents

Note: active_document returns null when used within the Form Designer.

active_workspace Symyx.Framework.Vault.VaultWorkspace

Use active_workspace if the Form is used in a FormSection within an experiment.

Note: active_workspace returns null when used within the Form Designer.

OnValueChanged Event
Applies to Form

Script variable Represents

active_form Symyx.Notebook.Forms.BaseForm

active_section Symyx.Notebook.Sections.Forms.FormsSection

Use active_section if the Form is used in a FormSection within an experiment.

Note: active_section returns null when used within the Form Designer.

active_document Symyx.Notebook.Document that owns the FormsSection
Use active_document if the Form is used in a FormSection within an experiment.

Note: active_document returns null when used within the Form Designer.

active_workspace Symyx.Framework.Vault.VaultWorkspace

Use active_workspace if the Form is used in a FormSection within an experiment.

Note: active_workspace returns null when used within the Form Designer.

Access Widgets
A FormSection can use the following widgets or controls:

Button
CheckBox
ComboBox
GroupBox
Label
ListBox
PictureBox
TextBox

Each of the widgets represents an object that has properties, methods, and events that you can access
or invoke in your script.
To view the properties, methods, and events of these widgets, see their API member listings in the
product's API documentation. The widgets inherit from corresponding base controls in
System.Windows.Form, and also inherit their API. For more information, seeMicrosoft
System.Windows.Form documentation.

Page 98 | BIOVIA Workbook 2021 • SDK Developers Guide

https://msdn.microsoft.com/en-us/library/system.windows.forms(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms(v=vs.110).aspx

Chapter 8: Scripting in BIOVIA Workbook

To access a widget, specify:
active_form.Controls["widgetName"]

The widgetName is the name of the widget on the current form. In the following example, the
Controls["TextBox1"] specifies the name of a TextBox control.
To set the Text property use:
active_form.Controls["TextBox1"].Text = "hello world"

To access a widget in a GroupBox, specify:
active_form.Controls[“groupBoxName”].Controls[“widgetName”]

The groupBoxName is the name of the GroupBox on the current form. WidgetName is the name of the
widget in the specified GroupBox. In the following example, Controls["txtTitle"] and Controls
["lblTitle"] specify TextBox and Label controls in a GroupBox control named, GroupBox1. In this
example, the copyTitle function is registered to the TextBox.TextChanged event:
def copyTitle(sender,e):

active_form.Controls["GroupBox1"].Controls["lblTitle"].Text =\
active_form.Controls["GroupBox1"].Controls["txtTitle"].Text
active_form.Controls["GroupBox1"].Controls["txtTitle"].TextChanged

+= copyTitle

To run this script:
1. In Workbook, create a new form.
2. In the Form Designer, add a GroupBox named GroupBox1.
3. In GroupBox1, add the following widgets:

A TextBox named txtTitle
A Label named lblTitle

4. On the form, select the txtTitle TextBox widget.
5. On the Properties pane for txtTitle, select Validation >OnValidate. Add the script.
6. Select View > Preview to see the form.
7. Enter text in txtTitle, and press the Tab key. Change the text on txtTitle. The changed text in txtTitle

is automatically copied into lblTitle.

OnReview Script Example
The following is a sample script for a ComboBoxwidget's OnReview event. It checks if the user selected
an item from the ComboBox, and adds messages to the ReviewResultCollection.
clr.AddReference("Symyx.Framework")
from Symyx.Framework.Review import *
Get the current ReviewResults of the ComboBox
reviewResultCollection = active_widget.ReviewResults
Get the selected value from the ComboBox.
s = active_widget.SelectedItem
If no selected value, add an error to ReviewResults;
else add an informational message.
if s == "" or s == None:
err = "From ReviewScript(ColorComboBox) - Please select a value."
reviewResultCollection.Add(ReviewResult(SeverityLevel.Error, err))

else:
info = "From ReviewScript(ColorComboBox) - You selected " + s

BIOVIA Workbook 2021 • SDK Developers Guide | Page 99

Chapter 8: Scripting in BIOVIA Workbook

reviewResultCollection.Add(ReviewResult(SeverityLevel.Information, info))
Update the ReviewResults of the ComboBox
active_widget.ReviewResults = reviewResultCollection

To run this script:
1. In Workbook, create a new form.
2. In the Form Designer, import the form_OnReview.snform located in the NotebookDocExamples

directory of the SDK documentation.
3. On the form, select the cbColor ComboBoxwidget.
4. On the Properties pane for txtSolvent, open the OnReview script.

You do not have to change anything in the script.
5. Save and check-in the form.
To see the review results, create an experiment with a Form Section using the form you just
checked in:

In the Experiment Editor, select View > Review Results to see the results of the script.

OnValidate Script Example
The following is a sample script for a TextBox widget’s OnValidate event. It retrieves values from a
database based on the text entered, and displays the values in a ComboBox.
import sys import clr
clr.AddReference("System.Data")

from System import *
from System.Data import *
from System.Data.OleDb import *
Reset the combobox
active_form.Controls["cbSolventClasses"].Items.Clear()
Perform a lookup in a DB if there is a name to look up
solventName = active_form.Controls["txtSolvent"].Text
if not String.IsNullOrEmpty(solventName) :

connection = OleDbConnection
("Provider=Microsoft.Jet.OLEDB.4.0;

DataSource=C:\\solventdb.mdb;
Persist Security Info=False")

query = String.Format
("select * from solventdb where name like '%{0}%'", solventName)

adapter = OleDbDataAdapter(query, connection)
solvents = DataSet()
adapter.Fill(solvents)
rows = solvents.Tables[0].Rows.Count
If found, get the values and add them to the combobox
if solvents.Tables.Count > 0 and rows > 0 :

active_form.Controls["cbSolventClasses"].BeginUpdate()
for i in range(rows):
dr = solvents.Tables[0].Rows[i] temp = dr["Name"].ToString()
active_form.Controls["cbSolventClasses"].Items.Add(temp)
active_form.Controls["cbSolventClasses"].EndUpdate()

To run this script:

Page 100 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

1. In theWorkbook, create a new form.
2. In the Form Designer, import the form_OnValidate.snform located in the

NotebookDocExamples directory of the BIOVIAWorkbook SDK documentation.
3. On the form, select the txtSolvent TextBox widget.
4. On the Properties pane for txtSolvent, open the OnValidate script. Search for Source=C:_

temp\\solventdb.mdb in the script, and edit its appropriate location.
The solventdb.mdb file is a Microsoft Access database file located in the NotebookDocExamples
directory of the BIOVIAWorkbook SDK documentation. After you edit the script, close the Script
Editor.

5. Select View > Preview to see the form.
To use the lookup service:

Type a word to look up, and press the Tab key.
The cbSolventClasses list displays a list of solvent classes that were retrieved from the database.

Add Scripts to an Experiment Template
In the Experiment Editor, you can create custom experiments and experiment templates. You can add
toolbar buttons to experiments created from an experiment template. You can write Python scripts that
respond events that occur in the experiment. Event scripting is available using the Scripts property in
the Experiment Editor's Experiment and Section properties. For more information about scripting, see
"Scripting in BIOVIAWorkbook" in the BIOVIAWorkbook SDK.
The following sections of an experiment are for internal use only, do not use these sections in scripts:

Grouped Materials
Plate Layout
Reaction List
Spreadsheet

IMPORTANT! You must have administrator or Template Editor permission to add scripts to the
Experiment Editor.

To add a script using the Experiment Editor:
1. In an open experiment template, select View > Properties.
2. In the Properties pane, select the Experiment or Section tab.
3. Navigate to Event Scripting, and click the ellipsis button.
4. In the Event Scripting dialog, select the event to access.
5. Click Add Script.
6. Using Python write a script to handle the event.
7. Click OK, and test the script by initiating the event.
8. Implement changes as needed.

Experiment Editor Events
The following table contains the Experiment Editor events that can execute IronPython scripts. The
event descriptions include the EventArgs that are available to the event script.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 101

Chapter 8: Scripting in BIOVIA Workbook

Note: In Workbook, if an OnLockingSection script encounters an exception, the Experiment Editor
user interface is not refreshed and subsequent sections are not property locked or unlocked. To
avoid unhandled exceptions from your script, perform proper error handling within your script.

Event Description

OnApplicationClosing Occurs when the Experiment Editor is about to close.
Scripts executed during this event can choose to cancel the close.
The EventArgs type is
Symyx.Framework.ApplicationManagement.Ap

plicationClosingEventArgs, whose properties are:
e.Cancel - indicates whether the event is canceled.
e.ReasonForCanceling - specifies the reason for canceling
the event.

OnApplicationLoaded Occurs when a document is fully loaded in the Experiment Editor.
The EventArgs type is
Symyx.Framework.ApplicationManagement.Ap

plicationLoadedEventArgs.

OnInsertingSection Occurs before the Experiment Editor inserts a section.
Scripts executed during this event can choose to cancel the
insertion.
The EventArgs type is
Symyx.Notebook.ApplicationManagement.Ins

ertingSectionEventArgs, whose properties are:
e.Section - specifies the section to insert.
e.Cancel - indicates whether the event is canceled.
e.CancelReason - specifies the reason for canceling the
event.

OnLockingSection Occurs before the Experiment Editor locks a section.
Script executed during this event can choose to cancel the lock.
The EventArgs type is
Symyx.Notebook.ApplicationManagement.Loc

kingSectionEventArgs, whose properties are:
e.Section - specifies the section to insert.
e.Cancel - indicates whether the event is canceled.
e.CancelReason - specifies the reason for canceling the
event.

Page 102 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

Event Description

OnMenuItemEnabledStatesUpda
ted

Occurs after the Experiment Editor updates the Enabled state of
its menu items. If the event occurred due to a user menu
selection, that menu is included in the event arguments.
The EventArgs type is
Symyx.Notebook.ApplicationManagement.Men

uItemEnabledStatesUpdatedEventArgs, whose properties
are:

e.MenuOpening - indicates if themenu is opened or selected.
e.Menu - specifies themenu to open.

OnRemovingSection Occurs before the Experiment Editor removes a section. Scripts
executed during this event can choose to cancel the removal.
The EventArgs type is
Symyx.Notebook.ApplicationManagement.Rem

ovingSectionEventArgs, whose properties are:
e.Section - specifies the section to remove.
e.Cancel - indicates whether the event is canceled.
e.CancelReason - specifies the reason for canceling the
event.

OnSaving Occurs before the experiment is saved. Scripts executed
during this event can choose to cancel the save.
The EventArgs type is
Symyx.Notebook.ApplicationManagement.Sav

ingEventArgs, whose properties are:
e.Cancel - indicates if the event is canceled.
e.CancelReason - specifies reason for canceling the save.
e.IsAutoSave - Indicates an automatic save.

An OnSaving script executes before a user responds to a prompt
to save changes, if the user attempts to exit the Experiment Editor
without saving any changes.

OnSaved Occurs after the experiment is saved.
The EventArgs type is
Symyx.Notebook.ApplicationManagement.Save

dEventArgs.

OnSectionInserted Occurs after a section is inserted.
The EventArgs type is
Symyx.Notebook.ApplicationManagement.Sec

tionInsertedEventArgs, whose property is:
e.Section - specifies the section t insert.

OnSectionLocked Occurs after a section is locked. The EventArgs type is
Symyx.Notebook.ApplicationManagement.SectionLocke

dEventArgs, whose property is:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 103

Chapter 8: Scripting in BIOVIA Workbook

Event Description

e.Section - specifies the section to lock.

OnSectionRemoved Occurs after a section is removed. The EventArgs type is
Symyx.Notebook.ApplicationManagement.Sec

tionRemovedEventArgs, whose property is:
e.Section - specifies the section to remove.

OnSectionUnlocked Occurs after a section is unlocked.
The EventArgs type is
Symyx.Notebook.ApplicationManagement.Sec

tionUnlockedEventArgs, whose property is:
e.Section - specifies the section that was unlocked.

OnToolBarButtonEnabledStatesU
pdated

Occurs after the Experiment Editor updates the Enabled state of
its toolbar items. The EventArgs type is
Symyx.Notebook.ApplicationManagement.Too

lBarButtonEnabledStatesUpdatedEventArgs.

OnUnlockingSection Occurs before the Experiment Editor unlocks a section. Scripts
executed during this event can choose to cancel the unlock.
The EventArgs type is
Symyx.Notebook.ApplicationManagement.Unl

ockingSectionEventArgs, whose properties are:
e.Section - specifies the section to unlock.
e.Cancel - indicates whether the event is canceled.
e.CancelReason - specifies the reason for canceling the
event.

Experiment Editor Event Scripts
• Events on the Experiment Editor, not the active document: The events listed in “Experiment Editor
events” above are events on the Experiment Editor, not on the active document. If your script performs
an action on the document such as removing or adding a section, none of the Experiment Editor events
will occur because these events are on the Experiment Editor, not the document.

One Python script interpreter instance per session
Only one instance of the Python script interpreter is instantiated per Experiment Editor session. As a
result, when import statements are run from any script, they affect all subsequent scripts until the
Experiment Editor is closed.
A script change on a document does not affect its dirty bit
An Experiment Editor event script that makes a change to the active document does not affect the
dirty bit on the properties and content of the document. However if the script needs to set the dirty
bit on the document, set the editor.Document.IsDirty property to true:
editor.Document.IsDirty = True

Displaying the signature dialog when locking a section

Page 104 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

If the Lock Section Signature property of a section is set to require a signature, locking the section
from a script does not display the signature dialog that requires the user to sign. For example, the
following script does not display the signature dialog:
editor.ActiveDocumentSection.IsLocked=True

To display the signature dialog, use the following script:
editor.LockAndUnlockSections()

Check the existence of a dynamic ToolBar item before setting its Enabled or Visible property
The OnToolBarButtonEnabledStatesUpdated event fires when dynamic toolbars are not
initialized. This causes exceptions to be thrown in scripts designed to set the Enabled or Visible
properties of dynamic toolbar buttons, unless the scripts first check whether the toolbar exists. The
following example first checks if the toolbar button IsTemplate exists before setting the Visible
property of the button:
if sender.GetToolBarItem("mode", "IsTemplate") is not None:
sender.GetToolBarItem("mode", "IsTemplate").Visible =
sender.Document.IsTemplate

Experiment Editor Events Script Variables
The following variables are available to Experiment Editor event scripting. These script variables
represent objects in theWorkbook environment. Using these script variables, you can invoke the
appropriate API on the objects they represent. For details about the API that can be used with these
script variables, see the API Reference. For examples, see Add Scripts to an Experiment Template.

Variable
name

Description

editor Implements the Symyx.Notebook.ApplicationManagement.IDocumentEditor

interface in the Symyx.Notebook.dll. The Experiment editor object implements other
interfaces, but only the properties, events and methods in the IDocumentEditor
interface are supported for scripting purposes.

sender Same as editor.

owner The document or document section on which the script is attached.

e Container for event-specific objects. See the "<Event Name>EventArgs" classes in the
Symyx.Notebook.ApplicationManagement namespace in Symyx.Notebook.dll.
For example, in
Symyx.Notebook.ApplicationManagement.InsertingSectionEventArgs the e
contains e.Section, the section to insert, e.Cancel, a boolean value indicating if the
script cancels the insertion, and e.CancelReason, a string value the script can set to
explain why it canceled the insertion.

active_
workspace

The Symyx.Framework.Vault.VaultWorkspace object. It is the same as the active
workspace inserted into forms section script environment. Instead of using active_
workspace, you can use Symyx.Framework.Vault.VaultWorkspace in your script.
For example:
from Symyx.Framework.Vault

import VaultWorkspace
isOnline = VaultWorkspace.Current.IsOnline

BIOVIA Workbook 2021 • SDK Developers Guide | Page 105

Chapter 8: Scripting in BIOVIA Workbook

Get the Active Section
If an experiment has multiple sections, and your script needs to perform operations on the active
section, use the editor.ActiveDocumentSection property. For example:
section = editor.ActiveDocumentSection

Access Menu Items
A script has access to themenus and menu items in theWorkbook Experiment Editor, Text Section, File
Section, and Form Section. To access themenu items, use the editor.GetMenuItem

('menuItemName')method. Use the name of themenu item as the value in menuItemName
parameter.
For example, the following script disables the Viewmenu in the Experiment Editor:
item = editor.GetMenuItem('viewToolStripMenuItem')

if item is not None:
item.Enabled = False

If you change a menu item property, themodification is not saved when themenu is opened because
menu items are recreated each time themenu is opened. If you want to set menu item properties, use
the OnMenuItemEnabledStatesUpdated event to make the changes. If you need to set a menu item
property based on a calculation in a different event such as OnSaved, you can persist the result in a file
or in a Document property. For example, the following script for the OnSaved event gets the
openToolStripMenuItem and sets the editor.Document.Description property:
item = editor.GetMenuItem("openToolStripMenuItem")

if item is not None:
editor.Document.Description = "Disable openToolStripMenuItem"

A script used with the OnMenuItemEnabledStatesUpdated event can inspect the
editor.Document.Description property to determine whether or not it disables the
openToolStripMenuItem, for example:
item = editor.GetMenuItem("openToolStripMenuItem")

if editor.Document.Description == "Disable openToolStripMenuItem":
item.Enabled = False

else:
item.Enabled = True

Menu Item Property Changes
If you change a property of a menu item, themodification is not saved when themenu is opened
because themenu items are recreated every time themenu is opened. If you want to set the properties
of a menu item, set them in the OnMenuItemEnabledStatesUpdated event. If you need to set a
property of a menu item based on a calculation in a different event such as OnSaved, you can persist
the result in a file or in a Document property. For example, the following script for the OnSaved event
gets the openToolStripMenuItem and sets the editor.Document.Description property:
item = editor.GetMenuItem("openToolStripMenuItem")
if item is not None:

editor.Document.Description = "Disable openToolStripMenuItem"

Then a script for the OnMenuItemEnabledStatesUpdated event can inspect the
editor.Document.Description property to determine whether or not it disables the
openToolStripMenuItem item = editor.GetMenuItem("openToolStripMenuItem").

Page 106 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

if editor.Document.Description == "Disable openToolStripMenuItem":
item.Enabled = False

else:
item.Enabled = True

Menu Item Names
The following lists show the names of themenu items that are accessible in the Experiment Editor, Text
Section, File Section, and Form Section. Select a name from the list when using the
editor.GetMenuItemmethod:

Menu item names for the ExperimentEditor
fileToolStripMenuItem
openToolStripMenuItem
exitToolStripMenuItem
undoToolStripButton
redoToolStripButton
viewToolStripMenuItem
toolsToolStripMenuItem
closeToolStripMenuItem
notebookExplorerToolStripMenuItem
preferencesToolStripMenuItem
editToolStripMenuItem
undoToolStripMenuItem
redoToolStripMenuItem
cutToolStripMenuItem
copyToolStripMenuItem
pasteToolStripMenuItem
deleteToolStripMenuItem
selectAllToolStripMenuItem
helpToolStripMenuItem
contentsToolStripMenuItem
aboutToolStripMenuItem
toggleOnlineToolStripMenuItem
newToolStripMenuItem
windowToolStripMenuItem
onlineStripMenuItem
offlineStripMenuItem
saveToolStripMenuItem
checkInToolStripMenuItem
checkOutToolStripMenuItem
undoCheckOutToolStripMenuItem

BIOVIA Workbook 2021 • SDK Developers Guide | Page 107

Chapter 8: Scripting in BIOVIA Workbook

historyToolStripMenuItem
pageSetupToolStripMenuItem
printPreviewToolStripMenuItem
printToolStripMenuItem
cloneToolStripMenuItem
arrangeAllToolStripMenuItem
compareSideBySideToolStripMenuItem
transitionToolStripMenuItem
editPropertySetsMenuItem

Menu item names for the Text Section
editToolStripMenuItem
selectAllToolStripMenuItem
findToolStripMenuItem
replaceToolStripMenuItem
viewToolStripMenuItem
normalViewToolStripMenuItem
pageLayoutViewToolStripMenuItem
showStatusBarToolStripMenuItem
showHorizontalRulerToolStripMenuItem
showVerticalRulerToolStripMenuItem
zoomToolStripMenuItem
zoom25ToolStripMenuItem
zoom50ToolStripMenuItem
zoom75ToolStripMenuItem
zoom100ToolStripMenuItem
zoom150ToolStripMenuItem
zoom200ToolStripMenuItem
zoom300ToolStripMenuItem
insertToolStripMenuItem
insertImageToolStripMenuItem
insertPageBreakToolStripMenuItem
formatToolStripMenuItem
fontDialogToolStripMenuItem
formatParagraphToolStripMenuItem
formatTabsToolStripMenuItem
formatBulletsAndNumberingToolStripMenuItem
formatBulletsAndNumberingAttributesToolStripMenuItem
increaseNumberingLevelToolStripMenuItem
decreaseNumberingLevelToolStripMenuItem

Page 108 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

formatBulletsAndNumberingAsArabicNumbersToolStripMenuItem
formatBulletsAndNumberingAsCapitalLettersToolStripMenuItem
formatBulletsAndNumberingAsLowercaseLettersToolStripMenuItem
formatBulletsAndNumberingAsRomanNumeralsToolStripMenuItem
formatBulletsAndNumberingAsLowercaseRomanNumeralsToolStripMenuItem
bulletsToolStripMenuItem
formatImageToolStripMenuItem
formatTextColorToolStripMenuItem
formatTextBackgroundColorToolStripMenuItem
formatDocumentBackgroundColorToolStripMenuItem
tableToolStripMenuItem
tableInsertToolStripMenuItem
insertTableToolStripMenuItem
insertTableColumnLeftToolStripMenuItem
insertTableColumnRightToolStripMenuItem
insertTableRowAboveToolStripMenuItem
insertTableRowBelowToolStripMenuItem
tableDeleteToolStripMenuItem
deleteTableToolStripMenuItem
deleteTableColumnToolStripMenuItem
deleteTableRowsToolStripMenuItem
splitTableToolStripMenuItem
splitTableAboveToolStripMenuItem
splitTableBelowToolStripMenuItem
tableSelectToolStripMenuItem
selectTableToolStripMenuItem
selectTableRowToolStripMenuItem
selectTableCellToolStripMenuItem
showTableGridLinesToolStripMenuItem
tablePropertiesToolStripMenuItem

Menu item names for the Form Section
insertToolStripMenuItem
insertFormToolStripMenuItem
toolsToolStripMenuItem
manageFormsToolStripMenuItem

Menu item names for the File Section
menuEditDeleteSection_
menuEditRenameSection_

BIOVIA Workbook 2021 • SDK Developers Guide | Page 109

Chapter 8: Scripting in BIOVIA Workbook

menuEditReplaceSectionWith_
menuInsertInsertFile_
menuViewDisplayAnnotations_
menuFileSaveSectionAs_
menuEditEditExternalFile_
menuViewRefresh_
menuEditSelectWorksheets_

Access Workbook Toolbar Items
A script has access to the tool bars and tool bar items on the Experiment Editor, Text Section, File
Section, and Form Section. To access the toolbar items that are available, use the
editor.GetToolBarItem('toolBarName', 'toolBarItemName')

In themethod, toolBarName is the name of the toolbar, and toolBarItemName is the name of the
toolbar item.
For example, the following script disables the Delete toolbar button on the Experiment Editor. The
standardToolStrip is the name of the toolbar and deleteToolStripButton is the name of the
toolbar item:
item = editor.GetToolBarItem('standardToolStrip', 'deleteToolStripButton')
if item is not None:

item.Enabled = False

Section Toolbars and Toolbar Items
The following lists show the names of the toolbar and toolbar items that are accessible in the Experiment
Editor, Text Section, File Section, and Form Section. Use the toolbar name and the toolbar item name
from the appropriate list when using the editor.GetToolBarItemmethod.

Section Name Toolbar Name Toolbar Item

Experiment Editor standardToolStrip newToolStripButton
openToolStripButton
saveToolStripButton
printToolStripButton
cutToolStripButton
copyToolStripButton
pasteToolStripButton
deleteToolStripButton

Text Section dateTimeToolbar DateToolStripButton
TimeToolStripButton
DateTimeToolStripButton

standardToolStrip findToolStripButton
undoToolStripButton
redoToolStripButton
spellingToolStripButton

Page 110 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

Section Name Toolbar Name Toolbar Item

formattingToolStrip fontToolStripComboBox
fontSizeToolStripComboBox
boldToolStripButton
italicsToolStripButton
underlineToolStripButton
subscriptToolStripButto
superscriptToolStripButton
alignLeftToolStripButton
alignCenterToolStripButton
alignRightToolStripButton
justifyToolStripButton
numberingToolStripButton
bulletsToolStripButton
decreaseIndentToolStripButton
increaseIndentToolStripButton
zoomToolStripComboBox
showMarkupToolStripButton

Form Section sectionToolStrip insertFormBrowseToolStripButton

File Section standardToolStrip fonts_
sizes_
cutToolStripButton
copyToolStripButton
pasteToolStripButton
deleteToolStripButton
undoToolStripButton
redoToolStripButton
cmdBold_
cmdItalic_
cmdUnderline_
cmdAlignLeft_
cmdAlignCenter_
cmdAlignRight_
cmdIncreaseIdent_
cmdDecreaseIdent_
cmdBullets_
cmdChangeBackColor_
cmdChangeForeColor_

BIOVIA Workbook 2021 • SDK Developers Guide | Page 111

Chapter 8: Scripting in BIOVIA Workbook

Section Name Toolbar Name Toolbar Item

File Section standardToolStrip sizes_
cutToolStripButton
copyToolStripButton
pasteToolStripButton
deleteToolStripButton
undoToolStripButton
redoToolStripButton
cmdBold_
cmdItalic_
cmdUnderline_
cmdAlignLeft_
cmdAlignCenter_
cmdAlignRight_
cmdIncreaseIdent_
cmdDecreaseIdent_
cmdBullets_
cmdChangeBackColor_
cmdChangeForeColor_

PdfToolBar_ cmdFirstPage_
cmdPreviousPage_
cmdNextPage_
cmdLastPage_
txtCurrentPage_
labelDivizor_
labelPagesCount_
cmdSinglePage_
cmdSingleContinuous_
cmdFacingContinuous_
cmdFacingPages_
ccmdZoomInTool_
cmdFitPage_
cmdFitWidth_
cmdRotateRight_
labelSearch_
txtSearchCriteria_
cmdFindPrevious_
cmdFindNext_

Page 112 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

Section Name Toolbar Name Toolbar Item

PropertiesToolBar createLine_
createArrow_
createFreehand_
createRectangle_
createElipse_
createImage_
createText_
drawColor_
fillColor_
lineWidth_
lineStyle_
arrowStyle_
opacity_

File Section ZoomToolBar_ cmdZoomOut_
txtCurrentZoom_
abelPrecent_
cmdZoomIn_

Access Workbook Toolstrips
A script has access to the toolstrips on the Experiment Editor. To access the toolstrips that are available,
use the editor.GetToolStrip('toolStripName')method where toolStripName is the name of
theWorkbook toolstrip. The toolstrip names are:
In the editor.GetToolStripmethod, the standardToolStrip contains the New, Open, Save,
Print, Cut, Copy, Paste, and Delete button.
The SectionReferencesStrip contains the button for Sample IDs referenced by a section.

Check User Permissions and Disable a Section Example
The following example disables a Text Section if the current user does not have permission.
hasPermission = active_
workspace.CurrentUser.ApplicationPermissions.HasExecutePermissionFor("Symy
x.Notebook", "SectionTemplate.Editor")

for section in editor.Document.Sections:
if section.Title == 'Text':

section.ReadOnly = not hasPermission editor.RefreshView()

To run this script:
1. Login to Workbook as a user with the SectionTemplate.Editor permission.
2. Create a new experiment template in Experiment Editor. Add a Text Section.
3. Add the script to the OnApplicationLoaded event of the Text Section.
4. Save and check in the template.
5. Log off theWorkbook client.
6. Log in as a user without SectionTemplate.Editor permission.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 113

Chapter 8: Scripting in BIOVIA Workbook

7. Create an experiment using the template created in the preceding steps.
You should see a disabled Delete Section option in the Text section.

Remove the Active Section
The following example checks the active section can be removed, then removes the active section from
the document if the section can be deleted.
import clr clr.AddReference('System.Windows.Forms')
from System.Windows.Forms import MessageBox MB
section = editor.ActiveDocumentSection
if section.AllowSectionDelete:

editor.Document.Remove(section)
editor.Document.IsDirty = True editor.RefreshView()

else:
MB.Show('Section cannot be deleted.')

To run this script:
1. Login to Workbook as a user with the SectionTemplate.Editor permission.
2. Create a new experiment template in Experiment Editor. Add any type of section.
3. On the Properties pane for that section, set Allow Section Delete to false.
4. Add the script to a Dynamic Toolbar item.
5. Save the template.
6. Click the toolbar item you just created. You should see theMessageBox indicating that the section

cannot be deleted.
The Symyx.Notebook.DocumentSectionProperty.AllowSectionDelete field is read-only in the
API. The end-user can set AllowSectionDelete.

Rename the Active Section
The following example checks if the active section can be renamed, then renames the active section:
from System.Windows.Forms import MessageBox as MB
section = editor.ActiveDocumentSection
if section.AllowSectionRename:

section.Title = 'New Title'
editor.Document.IsDirty = True editor.RefreshView()

else:
MB.Show('Section cannot be renamed')

To run this script:
1. Log in to the as a user with the SectionTemplate.Editor permission.
2. Create a new experiment template in Experiment Editor. Add any type of section.
3. On the Properties pane for that section, set Allow Section Rename to false.
4. Add the script to a Dynamic Toolbar item.
5. Save the template.
6. Click the toolbar item you just created. You should see theMessageBox indicating that the section

cannot be renamed.

Page 114 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

Add a Button to a Toolstrip
The following example adds a button to the SectionReferenceStrip toolstrip that displays a
message box. The
SectionReferenceStrip is the toolstrip with the button for Sample IDs referenced by a section.
import System
from System.Windows.Forms import MessageBox
from System.Windows.Forms import MessageBoxButtons
from System.Windows.Forms import MessageBoxIcon
from System.Windows.Forms import ToolStripButton
from System.Windows.Forms import ToolStripSeparator

def ShowMessage(sender, e):
MessageBox.Show('Hello World', editor.Title, MessageBoxButtons.OK,

MessageBoxIcon.Information)
tool_strip = editor.GetToolStrip('SectionReferencesStrip')
tool_strip_item = ToolStripButton('Show Message', None, ShowMessage,

'myToolStripButton')
tool_strip.Items.Add(ToolStripSeparator())
tool_strip.Items.Add(tool_strip_item)

Use document.Title to refer to the title of a document. Use editor.Title to refer to the titlebar of
a window.
To run this script:
1. Login to theWorkbook as a user with the SectionTemplate.Editor permission.
2. Create a new experiment template in Experiment Editor. Add any type of section.
3. Add the script to any of the events of the experiment section, for example, to the OnSaving event.
4. Save the template.
If you added the script to the OnSaving event, you should see a ShowMessage toolbar item next to the
Sample ID toolbar item, as the following view:

Custom Toolbar Scripting
You can create custom toolbars for a document section, or for the entire experiment, and add buttons
that execute IronPython scripts in the Template editor. The Dynamic Toolbar property of a document
section in Workbook opens the Dynamic Toolbar Editor. Use the Dynamic Toolbar Editor to create or
update custom toolbars with custom buttons.

Custom ToolStripButton Example
The following example is a script for a custom ToolStripButton that displays information about the
custom section.
import clr clr.AddReference("System.Windows.Forms")
from System.Windows.Forms import MessageBox
from System.Text import StringBuilder

sb = StringBuilder() sb.Append("About this section:\n\n")
sb.Append("Title: " + editor.ActiveDocumentSection.Title + "\n")
sb.Append("Class: " + editor.ActiveDocumentSection.Class + "\n")
sb.Append("Type: " + editor.ActiveDocumentSection.Type + "\n")
sb.Append("Version: " + editor.ActiveDocumentSection.Version.ToString

BIOVIA Workbook 2021 • SDK Developers Guide | Page 115

Chapter 8: Scripting in BIOVIA Workbook

() + "\n")
MessageBox.Show(sb.ToString(), "Custom Toolbar Example")

Assign a Script to a Toolbar Button
To assign a script to a custom toolbar button for the entire document or experiment follow the
instructions below but use Dynamic Toolbars on the Experiment property sheet instead of Dynamic
Toolbars on the Section property sheet.
To assign a script to a custom toolbar button for a Workbook section:
1. View Properties > Section to see the property sheet for that Workbook section. Click the ... button

associated with Dynamic Toolbars to launch the Dynamic Toolbar Editor.
2. On the Dynamic ToolbarEditor, click Add Toolbar to create a new toolbar for theWorkbook section,

then click Add Toolbar Item to add a button to that new toolbar.
3. On the Dynamic Toolbar Item property sheet, change the property values accordingly. To add a

script that the button will execute, click the ... button for the Script property to launch the Iron
Python Script Editor. Enter your script in the Iron Python Script Editor:

Variables for Custom Toolbar Scripts
The following variables are available to scripts used with custom toolbar items. These script variables
represent objects in theWorkbook environment. Using these script variables, you can invoke the
appropriate Symyx Framework API on the objects they represent. For details about the API that can be
used with these script variables, see the API Reference.

Variable
name

Description Example

editor Implements the
Symyx.Notebook.ApplicationManag

ement.IDocumentEditor interface in
Symyx.Notebook.dll.

Note: The editor object implements other
interfaces, but only the properties, events and
methods in the IDocumentEditor interface
are supported for scripting purposes.

Interfaces are subject to change in subsequent
releases. Scripts written against the changes
interfaces other than the IDocumentEditor
might break in future releases.

To get the active document section
from the editor object:
editor.ActiveDocumentSectio
n

sender The
System.Windows.Forms.ToolStripButton

that was clicked.

To get the ToolStrip of the current
ToolStripButton:
toolStrip =
sender.GetCurrentParent()

e The System.EventArgs for the ToolStripButton
Click event.

None

active_
workspac
e

The
Symyx.Notebook.Vault.NotebookWorkspac

e object in Symyx.Notebook.dll.

isOnline = active_
workspace.IsOnline.ToString
()

Page 116 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

Variable
name

Description Example

It is the same as the active workspace inserted
into forms section script environment.

owner For Table Section scripts that are executed by a
custom toolbar item, owner is the only item such
as TableSection on which the dynamic toolbar is
defined.

Custom toolbar scripts can also access the standard menu and toolbar items that are available in
Workbook. For more information, see Access Menu Items and Access Workbook Toolbar Items.

Interaction Between Scripts
The following example shows how scripts for multiple ToolStripButtons can interact with each other. For
this example, two ToolStripButtons are defined on the toolbar: toolbarItem1 and toolbarItem2.
The script for toolbarItem1 toggles the Enabled property of toolbarItem2:
toolStrip = sender.GetCurrentParent()
otherButtons = toolStrip.Items.Find("toolbarItem2", True)
otherButton = otherButtons[0]
otherButton.Enabled = not otherButton.Enabled

Similarly, toolbarItem2 toggles the Enabled property of toolbarItem1:
toolStrip = sender.GetCurrentParent()
otherButtons = toolStrip.Items.Find("toolbarItem1", True)
otherButton = otherButtons[0]
otherButton.Enabled = not otherButton.Enabled

To run these scripts:
1. Login to Workbook as a user with the SectionTemplate.Editor permission.
2. Create a new experiment template in Experiment Editor. Add any type of section.
3. On the Properties pane of the section, configure (click) the Dynamic Toolbars property.
4. Add a toolbar, and create two toolbar items: toolbarItem1 and toolbarItem2.
5. Add the first script to toolbarItem1; add the second script to toolbarItem2.
6. Save the template.

When you click toolbarItem1, toolbarItem2 is disabled. When you click toolbarItem1 again,
toolbarItem2 is enabled.

Insert an Excel File
The following example inserts an Excel file into a File Section.
import clr clr.AddReference('System.Windows.Forms')
from System.Windows.Forms import OpenFileDialog from System.Windows.Forms
import DialogResult clr.AddReference('System')
from System import Array
fd = OpenFileDialog()
fd.Filter = 'Excel Files|*.xls;*.xlsx' if fd.ShowDialog() ==

DialogResult.OK:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 117

Chapter 8: Scripting in BIOVIA Workbook

filePaths = Array.CreateInstance(object, 1) filePaths[0] = fd.FileName
fileSection = editor.ActiveDocumentSection filePackages =
fileSection.BuildersManager.BuildExternalFilesPackages(filePaths,False)

fileSection.Files.InsertRange(0, filePackages, True)

To run this script:
1. Login to Workbook as a user with the SectionTemplate.Editor permission.
2. Create a new experiment template in Experiment Editor. Add a File Section.
3. On the Properties pane of the section, configure (click) the Dynamic Toolbars property.
4. Add a toolbar, and create a toolbar item, for example, Insert Excel file.
5. Add the script to the toolbar item.
6. Save the template.

When you click the toolbar item, the Open File dialog prompts you to select an Excel file. The
selected file is displayed in the File Section.

Add a Section to an Experiment
The following example creates a File Section and adds it to the current experiment.
from Symyx.Framework.Vault import VaultWorkspace, VaultObjectType, DataScope
from Symyx.Notebook import Document, DocumentSection
Get the FileSection template def getSectionTemplate(title):
sectionList = VaultWorkspace.Current.Get
(VaultObjectType.DocumentSectionTemplate, DataScope.Minimal)
sectionTemplate = sectionList.FindByTitle(title) if sectionTemplate is not
None:
sectionTemplate = VaultWorkspace.Current.Get(sectionTemplate.VaultId,
DataScope.All)
return sectionTemplate
Create a FileSection
fileSectionTemplate = getSectionTemplate("File") newSection =
DocumentSection.Create(fileSectionTemplate) newSection.Title = "Attachments"
Add the FileSection to the current experiment owner.Document.Add
(newSection)

To run this script:
1. Log in to Workbook as a user with the SectionTemplate.Editor permission.
2. In the Experiment Editor create a new experiment template.
3. Add a section.
4. On the Properties pane of the section, select the Dynamic Toolbars property to configure the

change.
5. Add a toolbar, and create a toolbar item, for example, Add Attachment Section.
6. Add the script to the toolbar item.
7. Save the template.

When you click the toolbar item, the script will add a new File Section called Attachments.
8. Save and reopen the experiment to see the new section.

Page 118 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

Error Handling in Scripts
Ensure that your scripts perform proper error-handling. To catch exceptions, use try-except-finally
statements. Also, initially check for non-null or valid input before performing an operation or calculation.
An unhandled exception in your script might prevent subsequent scripts from executing or might cause
subsequent scripts to fail.
To catch all exceptions, place your code in a try block, display an error message in the except block, and
place cleanup code in the finally block to continue with all event processing. For example:
import clr clr.AddReference('System.Windows.Forms')

from System.Windows.Forms import *
try:

x=1/0 except:
MessageBox.Show('An exception occurred');

finally:
\ This code runs whether there is an exception or not.
MessageBox.Show('Put any clean up code here.')

You could display exceptions in the except block:
import clr clr.AddReference('System.Windows.Forms')

from System.Windows.Forms import *
x=1/0 except Exception, inst:

MessageBox.Show(inst.ToString());

\ This code runs whether there is an exception or not.
MessageBox.Show('Put any clean up code here.')

If you want to catch a specific exception, display an error message for that exception in the except block:
import clr

clr.AddReference('System.Windows.Forms')
from System.Windows.Forms import *

try:
x=1/0 except ZeroDivisionError:

MessageBox.Show('A divide by zero exception occurred');
finally:

\ This code runs whether there is an exception or not.
MessageBox.Show('Put any clean up code here.')

Cancel an Action
To trap an error in a defined event such as OnLockingSection event, cancel the action, for example,
cancel locking the section by setting e.Cancel to True and letting the Experiment Editor display the
error to the user by setting e.CancelReason in the except block.
For example:
import clr

clr.AddReference('System.Windows.Forms')
from System.Windows.Forms import *

try:
x=1/0

except Exception, inst:
e.Cancel = True
e.CancelReason = inst.ToString()

finally:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 119

Chapter 8: Scripting in BIOVIA Workbook

\ This code runs whether there is an exception or not.
MessageBox.Show('Put any clean up code here.')

The section is not locked. Any other scripts associated with the event continues to run.

Raising an Exception
To catch and raise an exception from a script, invoke raise in the except block.
For example:
import clr clr.AddReference('System.Windows.Forms')
from System.Windows.Forms import *
try:

x=1/0 except Exception, inst:
raise inst

finally:
\ This code runs whether there is an exception or not.
MessageBox.Show('Put any clean up code here.')

This halts all script execution and event processing. For example, the section is not locked.

sys.exit
Any exit code returned from IronPython using the sys.exit() call is ignored. It is assumed that the
script author intended to exit early. If the script author intends to abnormally end from a script, the
script should throw an exception.

Generate Unique IDs
You can grant Workbook client users the ability to generate unique IDs for items associated with a
Workbook document such as sample, batch, material, equipment, experiment.
The Symyx.Notebook.Vault.NotebookWorkspace class provides two methods that generate
unique IDs:

Use GenerateUniqueIds, recommended for performance reasons, if you need multiple unique
IDs. Themethod reduces the number of iterations needed to retrieve and save to the database.
Use the # generatemethod to generate a specified number of IDs;
active_workspace.GenerateUniqueIds('SEQUENCE_NAME', <this_many>)

Use the GenerateUniqueIdmethod when a single ID is needed.
Use the # generate a single ID, and requires a roundtrip to the database for one ID;
active_workspace.GenerateUniqueId('SEQUENCE_NAME')

Sequence Name for Unique IDs
Material sections include a script that automatically generates SAMPLE ids.

Note: The sequence increases for each generated ID, however values are not contiguous. The server
handles requests on a first-come, first-served basis, as a result, multiple users might see IDs values
increase quickly.

Your organization can associate a sequence namewith a set of unique IDs. Your organization also
determines howmany sequences there are as well as their names.

Page 120 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

SEQUENCE_NAME is a valid Oracle namewith up to 26 ASCII characters. Underscores (_) are allowed in
the sequence name,and spaces are not allowed. The sequence is automatically created the first time the
call is made with this argument value without database administrator (DBA) intervention.

Note: The SEQUENCE_NAMEmaps to an Oracle sequence, VID_SEQUENCE_NAME.

ID Formatting
You can format the IDs any way you want. The formatting is done in the script just before it is associated
with the object.
For example, to generate a sequence with the following formatting pattern:
"S-0000001", "S-0000002", "S-0000003"

Use the following Iron Python code:
sampleIdProperty.Value = "S-" + sampleId.ToString().PadLeft(7, '0')

Generate SampleID Example
The following example sets the SampleID for selected rows in a Table Section. Themethod is used to
generate the SampleID values for the selected rows. If the Document.Autoname property is assigned, it
is used as a prefix.
from System import String
from Symyx.Framework.Vault import VaultWorkspace from
Symyx.Framework.WinForms import MessageBox

section = editor.ActiveDocumentSection
document = editor.Document

the function that sets the ID to a given row in the table section
def SetSampleId(row, sampleId):
sampleIdProperty = row.Properties['SampleIdentification']['SampleId']
autoname = document.Autoname
if String.IsNullOrEmpty(sampleIdProperty.Value):

if not String.IsNullOrEmpty(autoname):
sampleIdProperty.Value = String.Format

('{0}-{1}', autoname, sampleId)
else:

sampleIdProperty.Value = sampleId;
the main body of the script that
#1) obtains IDs for all rows selected in the table in a single call
#2) iterates over each selected row and calls the method above
#3) reports any errors to the user
#

if active_workspace.IsOnline:
if not section.IsLocked:

if not editor.IsReadOnly:
rows = section.GetSelectedRows()
if rows.Length > 0:

sampleId = active_workspace.GenerateUniqueIds
('SAMPLE', rows.Length)

rowIndex = 0
for row in rows:

SetSampleId(row, sampleId[rowIndex])
rowIndex = rowIndex + 1

BIOVIA Workbook 2021 • SDK Developers Guide | Page 121

Chapter 8: Scripting in BIOVIA Workbook

section.View.RefreshData()
else:

MessageBox.Show
('Not available when document is opened ReadOnly')

else:
MessageBox.Show('Not available when section is locked')

else:
MessageBox.Show('Not available when working offline')

To run this script, add the SampleIdentification property set to a Table Section, and add the script
to the OnSaving event of the section. Enter some data in the Table Section, select a few rows, and save
the experiment. You should see generated IDs in the Sample ID fields.

List Variables in Scope
To learn which variables are in scope, use the following script to display a window that lists the variables
in scope and excludes the built-in variables.
from System.Windows.Forms import MessageBox as MB

s = ""
s = str(globals().keys())
s.strip('[]')
pos = s.IndexOf(' builtins__')
s = s.replace(',', '\n')
MB.Show(s.Substring(1, pos-2))

Add a Dictionary to a Recipe Section
The following Python example script associates the "Weigh" vocabulary with the selection of terms
associated with this operation. The script adds a PropertyDictionary property in the Recipe section. The
script inserts data from the EquipmentID column of the Equipment section into a drop-down list box
(the dictionary) for the fields for Top-Loading Balance and Analytical Balance.
if operation.Name == "Weigh" and (property.Key == "Top-Loading Balance" or
property.Key == "Analytical Balance"):
sender is the current Recipe section and ParentContainer is the
document for section in
sender.ParentContainer.Sections:
if section.Title == "Equipment": target = section

break else:
raise RuntimeError, "SourceTable section not found"

rowid = 100
for row in target.GetRows(): dic_id = str(rowid)
dictionary[dic_id] = row.PropertySets

["Equipment"]["EquipmentId"].DisplayValue
rowid = rowid + 1

Content History for a Control
Workbook does not create a history for changes to the content in a form when the content was
updated by a script associated with a form control. Workbook History does not record changes to
content (text, data) in the following Symyx.Notebook.Forms.IModifiableWidget controls
(CheckBox, ComboBox, ListBox, PictureBox) if that change was done by a script.
Changes to the content of a TextBox are recorded.

Page 122 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

You can associate an IronPython script with a control event such as a button click event to record the
changes to the content of a ComboBox. The following IronPython script shows an example.
import clr

clr.AddReference("Symyx.Framework")
from Symyx.Framework.History

import ContentHistoryEntry from System.Globalization
import CultureInfo from System import String

def getContext(baseFormName, widgetName):
context name looks like: baseForm1.widgetName
context = String.Format

(CultureInfo.CurrentCulture,"{0}.{1}",baseFormName, widgetName)
return context

def formatDescription(control, lastText):
currentText = control.Text
if lastText is None or lastText == "":

lastText = "<empty>"
if currentText is None or currentText == "":

currentText = "<empty>"
desc = String.Format(CultureInfo.CurrentCulture,

"{0} was changed from {1} to {2}", control.DisplayName,
lastText, currentText)

return desc
description looks like: widgetName was changed from Delhi to Mumbai

def addContentHistory(lastText, control):
if ActiveForm.ParentSection is not None and

ActiveForm.ParentSection.PendingContentHistory is not None:
context = getContext(ActiveForm.DisplayName, control.DisplayName)
desc = formatDescription(control, lastText)
contentHistory = ContentHistoryEntry(context, desc)
ActiveForm.ParentSection.PendingContentHistory.Add(contentHistory)
tbCity = ActiveForm.Controls["tbCity"]
cmbCities = ActiveForm.Controls["cmbCities"]

if cmbCities.Items.Contains(str(tbCity.Text)):
lastText = cmbCities.Text
capture the original text or content
cmbCities.SelectedIndex = cmbCities.Items.IndexOf

(str(tbCity.Text))
addContentHistory(lastText, cmbCities)

Form Control Content History
Workbook History does not record a change to content within the following
Symyx.Notebook.Forms.IModifiableWidget controls if the change is done by a script: CheckBox,
ComboBox, ListBox, PictureBox.

Note: Changes to the content of a TextBox are recorded by default.

The following IronPython script can be associated with, say, a button click event, to record changes to
the content of a ComboBox.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 123

Chapter 8: Scripting in BIOVIA Workbook

import clr
clr.AddReference("Symyx.Framework")

from Symyx.Framework.History
import ContentHistoryEntry from System.Globalization
import CultureInfo from System import String

def getContext(baseFormName, widgetName):
context name looks like: baseForm1.widgetName

context = String.Format(CultureInfo.CurrentCulture,
"{0}.{1}",baseFormName, widgetName)

return context

def formatDescription(control, lastText):
currentText = control.Text
if lastText is None or lastText == "":

lastText = "<empty>"
if currentText is None or currentText == "":

currentText = "<empty>"
desc = String.Format(CultureInfo.CurrentCulture,

"{0} was changed from {1} to {2}", control.DisplayName,
lastText, currentText)

return desc

description looks like: widgetName was changed from Delhi to Mumbai
def addContentHistory(lastText, control):

if ActiveForm.ParentSection is not None and
ActiveForm.ParentSection.PendingContentHistory is not None:

context = getContext(ActiveForm.DisplayName, control.DisplayName)
desc = formatDescription(control, lastText)
contentHistory = ContentHistoryEntry(context, desc)
ActiveForm.ParentSection PendingContentHistory.Add(contentHistory)

tbCity = ActiveForm.Controls["tbCity"]
cmbCities = ActiveForm.Controls["cmbCities"]

if cmbCities.Items.Contains(str(tbCity.Text)):
lastText = cmbCities.Text
capture the original text or content
cmbCities.SelectedIndex = cmbCities.Items.IndexOf(str(tbCity.Text))
addContentHistory(lastText, cmbCities)

ELN Assembly Cache
The ELN Assembly Cache (EAC) is a core service in the Symyx Framework that provides dynamic access to
custom .NET assemblies and the types within them. In concept, it is similar to the Global Assembly
Cache (GAC) in the .NET Framework, except that the ELN Assembly Cache can also resolve versioned
types by downloading custom assemblies that implement them from BIOVIA Vault Server. Its primary
service is to instantiate an object that corresponds to a .NET-style assembly-qualified class name, such
as the following:
"Symyx.Notebook.Sections.Background, Symyx.Notebook, Version=6.1.0.580,
Culture=neutral, PublicKeyToken=b77a5c561934e089"

Page 124 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

When an assembly-qualified object is requested by an application, the Assembly Cache:
First checks if that specific version of the implementing assembly has been loaded into the current
AppDomain.
If not currently loaded, the EAC checks in a local store for the specific version of the assembly that
implements that type.
If the EAC does not find the assembly and the application is online, for example, the Vault server is
network-accessible, the EAC requests the assembly from Vault and saves the assembly in the local
store.

Whether the assembly was found locally or downloaded from Vault, the assembly is dynamically loaded,
and an object of the requested type is instantiated and returned.
A request for the assembly-qualified class Symyx.Notebook.Sections.Backgroundwhile online,
causes the Assembly Cache to:

Determine if version 6.1.0.580 of Symyx.Notebook.dll has been loaded.
If not, determine if version 6.1.0.580 of Symyx.Notebook.dll can be found in the local store.
If not, request version 6.1.0.580 of Symyx.Notebook.dll from Vault and save it in the local store.
Dynamically load version 6.1.0.580 of Symyx.Notebook.dll using the provided public key token.

Instantiate and return an object of type Symyx.Notebook.Sections.Background.
When an application is not online, the application is only allowed to request types in assemblies found
in the local store. Attempting to retrieve an instance that is not in the local store, while the server is
offline, throws an AssemblyNotFoundException.
Assemblies are stored in a private location on the local disk, using a hierarchical version naming scheme
similar to that used by the Global Assembly Cache.
If you published an assembly to Vault, you can use the Assembly Cache to retrieve that assembly and
use it in your implementation. This is useful when you want to invoke a third-party assembly from an
IronPython script that you use with Workbook. The GetAssemblymethod of
Symyx.Framework.Extensibility.AssemblyCache gets the specified assembly from the Symyx
Assembly Cache. If necessary, the GetAssemblymethod downloads the assembly from Vault.
The following IronPython example gets an assembly from the Assembly Cache, and adds a reference to
the cache so that a script can use the script's namespace:
import clr clr.AddReference("mycompany.product.UI")
from Symyx.Framework.Extensibility
import AssemblyCache
assemblyName = "mycompany.product.UI, Version=1.0, Culture=neutral,
PublicKeyToken=5779810541ea1fbe"
assembly = AssemblyCache.GetAssembly(assemblyName) clr.AddReference
(assembly)
from mycompany.product.UI import *

The AssemblyCache also provides CreateInstancemethods for creating an instance of specified
types. The following C# example shows how to create an instance of the sample assembly used in the
previous example:
string typeName = @"mycompany.product.UI, Version=1.0, Culture=neutral,
PublicKeyToken=5779810541ea1fbe";
object instance = AssemblyCache.CreateInstance<object>(typeName);

BIOVIA Workbook 2021 • SDK Developers Guide | Page 125

Chapter 8: Scripting in BIOVIA Workbook

Release Memory
If you subclass VaultObject, VaultElement, VaultContainer, Document, DocumentSection, or any other
Framework or Workbook object subclass, then to ensure unused memory is properly released:
Implement the IDisposable interface as indicated by theMicrosoft guidelines.
Call the Symyx.Framework.Vault.VaultObject.DeleteAllObjects() from within the
Disposing(true) call; illustrated in the following C# examples.
The following Foo class implements the IDisposable interface:
public class Foo : VaultObject, IDisposable
{

public Foo() : base(VaultObjectType.User)
{
// additional constructor code
}

#region IDisposable members
public void Dispose()
{

Dispose(true);
GC.SuppressFinalize(this);

}
#endregion

...

For a sealed class, implement the Disposemethod as follows:
private void Dispose(bool disposing)
{

if (disposing)
{

// dispose of all managed objects
DeleteAllObjects();

}
}

For a virtual class, implement the Disposemethod as follows:
protected virtual void Dispose(bool disposing)
{

if (disposing)
{

// dispose of all managed objects
DeleteAllObjects();

}
}

The following Bar class overrides the base Disposemethod in the Foo class. The Bar.Disposemethod
disposes themanaged object named myObject and then calls the base Disposemethod in Foo:
public class Bar : Foo
{

// create an object (this is for illustration purposes only)
Bar myObject = new Bar();
protected override void Dispose(bool disposing)
{

if (disposing)

Page 126 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 8: Scripting in BIOVIA Workbook

{
// dispose of all managed objects
myObject = null;>

}
// apply disposal to the parent class
base.Dispose(disposing);

}
}

Omit Vault Object Content Compression
The Framework normally compresses content after the Vault objects have been written to the stream
using the WriteContent(Stream stream)method. However, content compression can be omitted
by overriding the OmitContentCompression property in a derived Vault object class:
public override bool OmitContentCompression
{

get { return true; }
}

This indicates that content compression can be omitted when saving the content for this instance. You
should generally omit compression if the data is already compressed or if the amount of data is very
small, less than 100 bytes.
XML type content such as XML-based serializers like the DataContractSerializer benefit greatly
from compression, so you should always leave them compressed.

Prevent Concurrent Updates
To protect Vault objects from concurrent updates, you must check out objects from Vault. This means
that if an object is checked out by a user, modification to that object can only be performed by that
user.
However, a check out is not required to update an object. For example, the Administration tool allows
edits to users and groups which are directly saved against Vault. This gives application developers either
option as needed.

Debug the Framework
See the Symyx.Notebook.Application.exe.config file for information on how to enable log4net
for debugging.

Debug a Remote Service
Use the remote debugging tools for Visual Studio to debug a Vault service. For more information and to
download the tools, see Remote Debugging (http://msdn.microsoft.com/en-us/library/bt727f1t.aspx).

WCF Tracing for Vault Diagnostics
You can enableWindows Communication Foundation (WCF) tracing to use Vault system diagnostics.
The output log file fromWCF tracing can contain details about authentication errors. You can activate
WCF tracing by editing the Symyx.Notebook.Application.exe.config file on the client or the
web.config file on the Vault Server computer. In the configuration section, add a
system.diagnostics element such as the following:
<system.diagnostics>

<sources>

BIOVIA Workbook 2021 • SDK Developers Guide | Page 127

Chapter 8: Scripting in BIOVIA Workbook

<source name="System.ServiceModel" switchValue="All">
<listeners>

<add name="traceListener"
type="System.Diagnostics.XmlWriterTraceListener"
initializeData= "c:\log\wcfVault.svclog" />

</listeners>
</source>

</sources>
</system.diagnostics>

For more information, see theMicrosoft documentation for Configure Tracing.

Script From External Assemblies
The Python script editor embedded within Workbook works for creating small scripts that are less likely
to change. For larger scripts that aremore likely to require enhancements and maintenance over time,
separate and encapsulate the custom code in to a .NET DLL or assembly.
When you use an external .NET assembly with your script, you can:

Use the rich editing capabilities of the Integrated Development Environments (IDEs) such as
Microsoft Visual Studio.
There are free and inexpensive IDEs available that you can use for editing and debugging the scripts,
using any of the programming languages supported by .NET, including C# and VB.NET.
Avoid updating scripts in older documents.
If you update a script on a document template, only documents created after the updates contain
the updated script. Existing documents continue to use the older script. New documents created by
cloning old documents continue to use the older script. If your script invokes a .NET assembly, the
most recent version of the assembly is used. By updating and re-distributing the assembly, you can
propagate code changes immediately to all users, and for all documents including existing
documents, allowing you to retire the old code.
Deploy custom codemore efficiently.
Use the built-in capability ofWorkbook to publish .NET assemblies to the Vault server, and to deliver
the assemblies to the client computers, without any manual intervention.
Simplify a potentially complex script into a simple script.
A script that uses a .NET assembly only needs to load the assembly and create an instance of its
custom object in onemethod call, and then call the custom object's methods for processing.

Use an External .NET Assembly
To use an external .NET assembly in your script, call the CreateInstanceFromLatestAssembly
method of the AssemblyCache class. The AssemblyCache class is in the
Symyx.Framework.Extensibility namespace which is included in the Symyx.Framework.dll.
The following example shows a script that uses an external .NET assembly:
Import AssemblyCache
from Symyx.Framework.Extensibility import AssemblyCache
Create the .NET object containing your custom code.
my_object = AssemblyCache.CreateInstanceFromLatestAssembly

("CompanyName.ProjectName.ClassName, CompanyName.ProjectName")
Pass Notebook script objects to the "MethodName" on

Page 128 | BIOVIA Workbook 2021 • SDK Developers Guide

http://msdn.microsoft.com/en-us/library/ms733025(v=vs.110).aspx

Chapter 8: Scripting in BIOVIA Workbook

the custom object
my_object.MethodName(active_workspace, editor, sender, e)

CreateInstanceFromLatestAssembly Method
The AssemblyCache provides services related to retrieving assemblies from Vault, downloading them
to the local computer, and creating objects from them. The CreateInstanceFromLatestAssembly
method combines these services:

If the assembly has been used during the user’s current session, it uses the currently loaded
assembly.
If the assembly exists in theWorkbookworking directory, the assembly is used.
If the assembly has not been loaded, it quickly searches Vault to determine the latest version of the
assembly. In offlinemode, the latest version of the assembly that has been previously downloaded
from Vault is used.
If the latest version of the assembly has not been downloaded, themethod downloads it from Vault
to the local computer.
In offlinemode, this step is skipped.
Loads the assembly, creates an object from it, and returns the object.

The AssemblyCache.CreateInstanceFromLatestAssemblymethod accepts a string containing a
partially qualified type name, for example, CompanyName.ProjectName.ClassName,
CompanyName.ProjectName. The string used in the preceding example specifies that the assembly to
be searched and loaded is CompanyName.ProjectName.dll, and the object to be created is
CompanyName.ProjectName.ClassName.
The string passed to the AssemblyCache.CreateInstanceFromLatestAssemblymethod is
partially qualified because it does not include all of the information needed for .NET to identify the
assembly. Themethod does not specify which version of the assembly to use because themethod
determines which version is the latest and gets it from Vault.

Create Custom .NET Assembly
1. Acquire access to VaultADMStoreManager.exe or ask your system administrator to use the

VaultADMStoreManager.exe to download theWorkbook Client package.
2. Get the list of profiles using the following command:

VaultADMStoreManager /vault <server.Domain>
<Domain\User> Password list-profiles

Example 1
F:\Downloads\SN6.7 installers & Documentation\SymyxNotebook6.7_
SP1\sp2\VaultDeploymentUtility\VaultADMStoreManager /vault vm-avs66 vm-
avs66\vault.admin "" list-profiles
Password: ******
V6.x.0.744-Offline
V6.x.0.744-Offline-PerfLog
V6.x.0.744-Roaming
[...]

Select the profile you want to use for your working directory Command:
>VaultADMStoreManager /vault
<server.Domain>

BIOVIA Workbook 2021 • SDK Developers Guide | Page 129

Chapter 8: Scripting in BIOVIA Workbook

<Domain\User> Password generate
<Profile Name>
<Folder Name>

Example 2
F:\Downloads\Workbook installers & Documentation\Workbook
\2017\VaultDeploymentUtility\VaultADMStoreManager>VaultADMStoreManager
/vault vm-avs66 vm-avs66\vault.admin "" generate 2017-Citrix
"f:\temp\2017-Citrix"
Password: ******

Create a .NET project
Choose an IDE to create your .NET project. There are free or low cost .NET IDEs available that are capable
of compiling code written in different programming languages. TheMicrosoft Visual Studio Express
editions are free versions of Visual Studio capable of compiling code written in Visual Basic.NET (VB.NET)
or C#.
Use an IDE that supports debugging external applications. Microsoft Visual Studio Express does not
support debugging. While you can use any .NET language or IDE, for the purposes of this tutorial the
VB.NET in Visual Studio, and C# in #develop are used.
For information about Visual Studio, see http://www.microsoft.com/visualstudio/en-us/products or
#develop.
If you are new to .NET programming, take some time to learn the basics of your IDE, such as how to
create projects, edit source files, and compile. In the rest of this topic, we assume knowledge of these
basics, and discuss some of the key concepts necessary for programming with theWorkbook SDK.
If the .NET Framework 3.5.2 or 4.5.1 is not set, the IDE ignores references to Workbook DLLs leading to
type not found compilation errors wherever Workbook classes are used. If you forgot to reference the
Workbook DLLs, you can change it later from the Project Properties screen.
If you are creating an EXE assembly, in Advanced Compiler Settings, set the Target CPU to x86 to direct
the compiler to create a 32-bit EXE. On 64-bit operating systems, the IDE might set the value to Any CPU
by default causing the build target to compile as a 64-bit executable. Workbook DLLs are 32-bit binaries,
building a 64-bit executable could cause compilation or run time errors.

Sign Your Assembly
You should sign the assembly by creating a new strong name key file or by using an existing one. Some
organizations have a single strong name key file that is used for all assemblies and applications. Do not
check the Delay sign only option.

Writing Classes and Methods

Naming Conventions
When naming your .NET assembly, Microsoft recommends that you follow the naming convention
CompanyName.ProjectName.dll, with as many qualifiers as necessary. For example, if the custom
assembly is for the AnalyticalWorkbook project at Acme Pharmaceutical Company, name the assembly
Acme.ELN.dll or Acme.ELN.Analytical.dll.
Microsoft also recommends that the first part of a namespacematches the assembly name. For
example, an assembly named Acme.ELN.dll should contain namespaces like
Acme.ELN.ImportUtilities or Acme.ELN.Import.Utilities. An assembly named

Page 130 | BIOVIA Workbook 2021 • SDK Developers Guide

http://www.microsoft.com/visualstudio/en-us/products
http://www.icsharpcode.net/OpenSource/SD/Default.aspx

Chapter 8: Scripting in BIOVIA Workbook

Acme.ELN.Analytical.dllwould contain namespaces like
Acme.ELN.Analytical.ImportUtilities or Acme.ELN.Analytical.Import.Utilities.

Adding references to Workbook assemblies
In your .NET project, add references to theWorkbook assemblies your code needs. You need to
reference the Symyx.Framework.dll and Symyx.Notebook.dll. Some assemblies called from
PropertySet scripts might only require the Symyx.Framework.dll. If you require other references
such as Symyx.Windows.dll, the IDE provides hints about additional requirements. TheWorkbook
assemblies are included in the BIOVIAWorkbook SDK.
To work with sections in your .NET assembly, see BIOVIAWorkbook Sections.

Define a Class
In your .NET project, add the classes that contain your custom code implementation. You can use any
namespaces, class names, method names, and assembly names that meet your requirements.
Your project must contain a class to instantiate in a Workbook script. You must contain the class in an
assembly that is loaded from theWorkbook script.
The class name and partially qualified assembly namemust be passed to the
AssemblyCache.CreateInstanceFromLatestAssemblymethod which is invoked by the
Workbook script.
The following shows the sampleWorkbook script that calls the
AssemblyCache.CreateInstanceFromLatestAssemblymethod.
my_object = AssemblyCache.CreateInstanceFromLatestAssembly

("CompanyName.ProjectName.ClassName, CompanyName.ProjectName")
my_object.MethodName(active_workspace, editor, sender, e)

The following example shows a sample Visual Basic .NET code that implements the
CompanyName.Project.ClassName class.
Imports Symyx.Notebook.ApplicationManagement
Imports System.Windows.Forms
Imports Symyx.Notebook.Vault
Public Class ClassName

Public Sub MethodName(activeWorkspace As NotebookWorkspace,
editor As IDocumentEditor, sender As Object, e As EventArgs)

MessageBox.Show(editor.Title)
End Sub

End Class

Use document.Title to refer to the title of a document. Use editor.Title to refer to the title bar of
a window.
The following shows a sample C# code that implements the CompanyName.Project.ClassName
class:
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using Symyx.Notebook.ApplicationManagement;
using Symyx.Notebook.Vault;
namespace CompanyName.ProjectName
{

public class ClassName

BIOVIA Workbook 2021 • SDK Developers Guide | Page 131

Chapter 8: Scripting in BIOVIA Workbook

{
public void MethodName(NotebookWorkspace activeWorkspace,

IDocumentEditor editor, Object sender, EventArgs e)
{

MessageBox.Show(editor.Title);
}

}
}

In Visual Basic .NET, the root namespace is not shown in the code window as it is in C#. You view root

namespace from the Application tab on the Project Properties window.

Define a Method
When defining a method to call from aWorkbook script, include theWorkbook script variables as
method parameters. You must also include the objects that are not used by themethod. For example,
define activeWorkspace as a method parameter even if themethod does not use it. If you don’t include
it in your method parameters, you cannot use the parameter with existing documents in the future.
Different script variables are available to themethod depending on the event that is captured. For a list
of event-specific script variables, see Scripting Variables.
The following example shows a method signature for a toolbar button script.
In Visual Basic .NET:
Imports Symyx.Notebook.ApplicationManagement
Imports System.Windows.Forms
Imports Symyx.Notebook.Vault
Public Sub MethodName(activeWorkspace As NotebookWorkspace,

editor As IDocumentEditor, sender As Object, e As EventArgs)

In C#:
using System;
using System.Windows.Forms;
using Symyx.Notebook.ApplicationManagement;
using Symyx.Notebook.Vault;
public void MethodName(NotebookWorkspace activeWorkspace,

IDocumentEditor editor, Object sender, EventArgs e)

If you need to use aWorkbook section in your method, see the Sections for information about
referencing assemblies containing Workbook sections and for an example of a method that uses the File
section.

Page 132 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9:
Sections
To work with Workbook sections in your .NET assembly, use the supported interfaces implemented by
theWorkbook sections. The supported interfaces are contained in the Symyx.Framework.dll,
Symyx.Framework.*.dll, or Symyx.Notebook.dll, Symyx.Notebook.*.dll, or in the
Symyx.Notebook.Sections.<Section Name>.Extensibility.dll assemblies. In your .NET
project, add references to the appropriate assemblies.
Do not add references to section assemblies in your .NET assembly. Section assemblies refer to the
following assemblies, which you cannot reference:

Symyx.Notebook.ImageAnnotation.dll

Symyx.Notebook.Sections.Equipment.dll

Symyx.Notebook.Sections.ExternalFile.dll

Symyx.Notebook.Sections.Formulation.dll

Symyx.Notebook.Sections.Forms.dll

Symyx.Notebook.Sections.Materials.dll

Symyx.Notebook.Sections.ReactionScheme.dll

Symyx.Notebook.Sections.Reference.dll

Symyx.Notebook.Sections.SamplePreparation.dll

Symyx.Notebook.Sections.StructuredRecipe.dll

Symyx.Notebook.Sections.Table.dll

Symyx.Notebook.Sections.Text.dll

To prevent any possibility of changing existing experiment data, newer versions of section assemblies
generally do not replace older versions. Your codemight therefore have to execute against multiple,
different versions of these assemblies. But if you reference one of them directly, your code is
permanently bound to that version of the section. If so, attempting to run against other versions will
generate typemismatch errors.
Instead of referencing a version directly, access a Workbook section using the properties and methods
of its base class and implemented interfaces, which are defined in assemblies that you can reference.
The following are the assemblies that you can reference from your .NET assembly:

Symyx.Framework.Controls.dll

Symyx.Framework.dll

Symyx.Framework.EquationParser.dll

Symyx.Framework.MaterialInfoLookup.dll
Symyx.Framework.MaterialInfoLookup.XmlSerializers.dll

Symyx.Framework.Materials.dll

Symyx.Framework.Quantity.dll

Symyx.Framework.RAS.dll

Symyx.Framework.Reporting.dll

Symyx.Notebook.AnalyticalMaterials.dll

Symyx.Notebook.AnalyticalMaterialsContracts.dll

BIOVIA Workbook 2021 • SDK Developers Guide | Page 133

Chapter 9: Sections

Symyx.Notebook.Applications.FormEditor.dll

Symyx.Notebook.dll

Symyx.Notebook.Sections.ExternalFile.Extensibility.dll

Symyx.Notebook.Sections.Text.Extensibility.dll

Symyx.PipelinePilot.dll

Symyx.Windows.dll

The IExternalFileSection is themain interface defined in
Symyx.Notebook.Sections.ExternalFile.Extensibility.dll implemented by the file
section. In your assembly, add a reference to
Symyx.Notebook.Sections.ExternalFile.Extensibility.dll and access the file section as
shown in the following example.
Visual Basic .NET:
Imports Symyx.Notebook.ApplicationManagement
Imports Symyx.Notebook.Vault
Imports Symyx.Notebook.Sections.ExternalFile.Extensibility

Public Class ClassName

Public Function MethodName(ByVal activeWorkspace As NotebookWorkspace,
ByVal editor As IDocumentEditor, ByVal sender As Object,
ByVal e As EventArgs) As String

Dim fileSection As IExternalFileSection = TryCast
(editor.ActiveDocumentSection, IExternalFileSection)

If Not fileSection Is Nothing Then
Dim fileName As String = "C:\Temp\Test.pdf"
fileSection.AddFile(fileName)

Return fileName End If

Return "ActiveDocumentSection does not implement IExternalFileSection"
End Function
End Class

C# Example:
using System;
using Symyx.Notebook.ApplicationManagement;
using Symyx.Notebook.Vault;
using Symyx.Notebook.Sections.ExternalFile.Extensibility;

namespace CompanyName.ProjectName
{

public class ClassName
{

public string MethodName(NotebookWorkspace activeWorkspace,
IDocumentEditor editor, object sender, EventArgs e)

{
var fileSection = editor.ActiveDocumentSection as

IExternalFileSection;
if (fileSection != null)
{

Page 134 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

var fileName = @"C:\Temp\Test.pdf";
fileSection.AddFile(fileName); return fileName;

}
return "ActiveDocumentSection does not implement

IExternalFileSection";
}

}
}

For example, if you need to use the TableSection in the Symyx.Notebook.Sections.Table.dll
assembly, see its class description in the API Reference.
The TableSection inherits from the base class DocumentSection and implements the interfaces including
IEditable, IIndexableText, IChildData, and IReportable. You can access the TableSection
using the public properties and methods of its base class and implemented interfaces, which are defined
in assemblies that you can reference.
The summary list of TableSection members in the API Reference shows which methods and properties
are inherited from the supported base class and interfaces, as denoted by Inherited from
ClassOrInterface.
Currently, not all public properties and methods of the TableSection are accessible through interfaces,
so you cannot use them in your .NET assembly. However, you can use them in your Python script.

Clone an Experiment to the Latest Template Version
To take advantage of the latest scripts, sections, and template properties, you can use clone to latest to
update experiments that user older template versions. Clone to latest is available in Workbook version
6.8 and later.
Experiments created using earlier versions have parent templates. You can:

Update the relevant sections in the parent template to the latest version of the template.
Check out the experiment template, for example, a version 6.4 template.
Update all document sections with the newest versions.
Configure the new sections including scripts, mapping, toolbars, and conditional formatting.
Expand the set of insertable sections to include newest versions.
Delete unused sections.
Users can create child experiments by cloning sections from the source experiments.

Sections in a New Document
Get sections that are in both the Source Experiment and the Parent Templatematched by Name and
section type
Get unmatched sections that are only in the Source Experiment
Get unmatched sections that are only in the Parent Template
Get the set of insertable sections from the Parent Template Each section has a No Clone property
value.
If the Parent Template property value = true, the data comes from the Parent Template
If the Parent Template property value = false, the data comes from the Source Experiment

The Source Experiment No Clone property value is not relevant if false and:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 135

Chapter 9: Sections

Allow CloneWithout Data = true, the user can choose to include data or not
Allow CloneWithout Data = false, the user must include the data

If a section has been inserted into the Source Experiment, the user gets the option Do not Include
Section.

Forms and Tables
A Form (SN.form) could have a Parent Template. If it is, the new experiment or clone gets the version of
the Form that is in the Parent Template. If it is not, the clone gets the newest version of the Form.
Each form widget has a Cloneable property value:

If false in either the Parent Template or Source Experiment, the data comes from the Parent
Template.
If true in both Parent Template and Source Experiment, the data comes from the Source Experiment.

Table Sections: The new document maintains the Source Experiment column display settings ONLY IF
the user chooses to include the section data by using the following options:

Pinned columns
Selected set of columns to display
Right to left position of the columns
Ordered or Sorted mode

Insert Forms
This C# snippet shows how to insert a Form into the FormsSectionView.
using Symyx.Notebook.Sections.Forms;
namespace Symyx.Notebook.Examples
{

public class FormsSectionViewExamples
{

public static void InsertForm(Form form, FormsSection formsSection)
{

var view = formsSection.View as FormsSectionView;
view.InsertForm(form.VaultId, form.Version, form.Title);

}
}

}

Import Forms
This C# example shows how to import a form from a form (.snform) file and add it to a repository.
using System.IO;
using Symyx.Framework.Vault;
using Symyx.Notebook.Applications.FormEditor;
namespace Symyx.Notebook.Examples
{

public class FormEditorExamples
{

public static Form ImportForm(string path, Folder folder,
string title)

{

Page 136 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

var form = new Form
{

Title = title,
Definition = File.ReadAllText(path)

};
var formEditor = new FormEditor(form, false, false);
formEditor.UpdateFormData();
var repository = VaultWorkspace.Current.GetRepository

(folder.SourceRepositoryId);
repository.Add(form, folder);
return form;

}
}

}

Populate Form Controls
The samples\Symyx.SDK.Samples.DataCreation example is a C# project that also works with
form controls for a synthetic chemistry section.
The PopulateFormsSectionmethod sets synthetic information.
var syntheticInformation = backgroundForm.Controls

["SythenticInformation"].Controls;
syntheticInformation["textCompoundID"].Text = "SMMX-120998";
syntheticInformation["comboReaction"].Text = "Alkylation";
return formsSection;

Populate a Form Section
The source code file controls continues with the following code.
public static FormsSection PopulateFormsSection(Document document)
{

var formsSection = FindSingleSectionByTitle(document,
FORMS_SECTION_TITLE) as FormsSection;

if(formsSection == null)
{

formsSection = new FormsSection {Title = FORMS_SECTION_TITLE};
formsSection.ConvertToTemplate();
Repository.Add(formsSection, Folder);
formsSection = Repository.Get(formsSection.VaultId, DataScope.All)

as FormsSection;
document.Add(DocumentSection.Create(formsSection));
formsSection = FindSingleSectionByTitle(document,

FORMS_SECTION_TITLE) as FormsSection;
}
var view = formsSection.View as FormsSectionView;
view.InsertForm(Form.VaultId, Form.Version, Form.Title);
var backgroundForm = Iterator.Find

(Iterator.Cast<BaseForm>(view.Forms), f=> f.Title == Form.Title);
var corporateInformation = backgroundForm.Controls

["CorporateInformation"].Controls;
corporateInformation["textboxTitle"].Text =

"SMMX-1210998 Resynthesis";
corporateInformation["comboName"].Text = "Symyx 1";

BIOVIA Workbook 2021 • SDK Developers Guide | Page 137

Chapter 9: Sections

corporateInformation["comboDepartment"].Text = "Medicinal Chemistry";
corporateInformation["comboSite"].Text = "Camberley";
corporateInformation["textSummary"].Text = "Resynthesize SMMX-120998

on 150 mg scale.Need material for assays.";

(corporateInformation["typeResearch"] as CheckBox).Checked = true;
(corporateInformation["typeGXP"] as CheckBox).Checked = false;
(corporateInformation["typeOutsource"] as CheckBox).Checked = false;
(corporateInformation["typeOther"] as CheckBox).Checked = false;

var syntheticInformation = backgroundForm.Controls
["SythenticInformation"].Controls;

syntheticInformation["textCompoundID"].Text = "SMMX-120998";
syntheticInformation["comboReaction"].Text = "Alkylation";
return formsSection;

}

The form is imported from the Resource\SymyxForm.snform file. You can inspect the form in
Workbook using the Form Editor.
To import a form:
1. In Workbook, click the Notebook Explorer tab.
2. From Create >New Form.
3. From Create > Import Form to import the .snform file.
4. Verify that in the Import Form window, the name SymyxForm.snform is listed.

Populate a List Using Vault Vocabulary
Use code similar to the following to automatically update the values in list elements. The following
IronPython example is an onEdit script that ensures that every time the user starts editing the form, the
vocabulary is refreshed.
import clr clr.AddReference('Symyx.Framework') from Symyx.Framework import
Vault
cboProtocol = ActiveForm.Controls["gbxExptSummary"].Controls["cboProtocol"]

Find the vocabulary
vname = "Elements"
workspace = Vault.VaultWorkspace.Current
vocabularies = workspace.SiteRepository.Get

(Vault.VaultObjectTypes.Vocabulary, Vault.DataScope.All)
voc1 = vocabularies.FindByTitle(vname)
if voc1 != None:

clear the combo box
cboProtocol.Items.Clear()
Now add in the new vocabulary
vocPhrase = voc1.Phrases

for vs in voc1.Phrases:
if vs is not None:

cboProtocol.Items.Add(vs)

Form Examples
In the API Reference, the following items have sample code related to populating a form:

Page 138 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Namespaces > Symyx.Notebook.Applications.FormEditor > FormEditor > FormEditor Constructor
(Form, Boolean, Boolean)
Namespaces > Symyx.Notebook.Applications.FormEditor > FormEditor > UpdateFormData()
Namespaces > Symyx.Notebook.Sections.Forms > FormsSectionView > InsertForm(VaultId, Version,
string)
Namespaces > Symyx.Notebook.Sections.Forms.Widgets > CheckBox
Namespaces > Symyx.Notebook.Sections.Forms.Widgets > ComboBox
Namespaces > Symyx.Notebook.Sections.Forms.Widgets > GroupBox
Namespaces > Symyx.Notebook.Sections.Forms.Widgets > TextBox

Populate Widgets in Forms
The following C# example shows how to populate widgets in a form.
using Symyx.Framework.Collections;
using Symyx.Notebook.Forms;
using Symyx.Notebook.Sections.Forms;
using Symyx.Notebook.Sections.Forms.Widgets;
namespace Symyx.Notebook.Examples
{

public class FormsWidgetsExamples
{

public static BaseForm PopulateWidgets(FormsSectionView view,
string formTitle)

{
// Find the form in view by Title
var form = Iterator.Find(Iterator.Cast<BaseForm>(view.Forms),

f=> f.Title == formTitle);
// Get the child controls of CorporateInformation
var corporateInformation = form.Controls

["CorporateInformation"].Controls;
corporateInformation["textboxTitle"].Text = "SMMX-1210998

Resynthesis";
corporateInformation["comboName"].Text = "Symyx 1";
corporateInformation["comboDepartment"].Text = "Medicinal

Chemistry";
corporateInformation["comboSite"].Text = "Camberley";
corporateInformation["textSummary"].Text = "Resynthesize

SMMX-120998 on 150 mg scale. Need material for assays.";
(corporateInformation["typeResearch"] as CheckBox).Checked =true;
(corporateInformation["typeGXP"] as CheckBox).Checked = false;
(corporateInformation["typeOutsource"] as CheckBox).Checked = false;
(corporateInformation["typeOther"] as CheckBox).Checked = false;
// Get the child controls of SythenticInformation var
syntheticInformation = form.Controls

["SythenticInformation"].Controls;
syntheticInformation["textCompoundID"].Text = "SMMX-120998";
syntheticInformation["comboReaction"].Text = "Alkylation";
return form;
}

}
}

BIOVIA Workbook 2021 • SDK Developers Guide | Page 139

Chapter 9: Sections

References
The new document gets all references whether they exist in the source experiment or the parent
template.

Property Set Definitions
Property Variable Description

Cloneable

Allowed Permits cloning the data.

NotAllowed Restricts the ability to clone the data in the source experiment.

AllowedNotData Permits null values in the property setting.

AllowNulls

AllowNulls Permits null values in the property.

CannotBeNull Requires a value in the property; if the user tries to delete data and
check in, the original data displays in the cell when the file is checked
out.

ShouldNotBeNull Requires user input, a red x renders in the experiment until user fills
in a value.

AllowUpdates

Always always allows updates

Never never allows updates

Once Allows cloning the data one time in an experiment that contains
properties with this setting; updating the data in these properties is
not allowed. Once refers to the original data in the source experiment
prior to saving.

Until Saved Allows updates until saved.

Until Managed Allows updates until the experiment is checked into a managed
repository.

Limitations
The following versions are supported in versions 6.5 and later.

Clone to latest does not support a section being both upgraded to a newer version and renamed.
Reaction scheme sections that were previous un-linked cannot be cloned into a linked reaction
scheme section.
If the parent template had linked sections such as synthetic chemistry linked to parallel chemistry,
you cannot clone to latest if you remove the link. In addition, after cloning to latest, you must relink
those sections.

Page 140 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Clone to Latest Limitations
Clone to latest does not support upgrading and renaming a section to a newer version.
You cannont link previous unlinked reaction scheme sections and clone those section to a linked
reaction scheme section.
If the parent template had linked sections such as synthetic chemistry linked to parallel chemistry, you
cannot clone to latest if you remove the link. In addition, after cloning to latest, you must relink those
sections.

File Sections
An ExternalFileSection permits users to include formatted text within a Document. The following C#
snippet shows how to add an external file section to a document.
public static ExternalFileSection AddExternalFileSectionToDocument

(Document document)
{

ExternalFileSection externalFileSection = new ExternalFileSection();
document.Add(externalFileSection);

return externalFileSection;
}

The following C# example is more complete, and shows adding a file section to a document and then
manipulating the section's file content. The example is available in the
Symyx.Notebook.Sections.Externalfile.InsertFilemethod.
using System; using System.IO;
using Symyx.Notebook;
using Symyx.Notebook.Examples.Resources;
using Symyx.Notebook.Sections.ExternalFile;
using Symyx.Notebook.Sections.ExternalFile.Extensibility;
using System.Reflection;

namespace Symyx.Notebook.Examples.FileSection
{
public static class ExternalFileSectionExample
{
public static Document CreateExampleDocument()
{
Document document = CreateBlankDocument();
ExternalFileSection externalFileSection =

AddExternalFileSectionToDocument(document);
AddFilesToExternalFileSection(externalFileSection);
return document;

}
public static Document CreateBlankDocument()
{
Document documentTemplate = new Document();
return Document.Create(documentTemplate);

}
public static ExternalFileSection AddExternalFileSectionToDocument

(Document document)
{

BIOVIA Workbook 2021 • SDK Developers Guide | Page 141

Chapter 9: Sections

ExternalFileSection externalFileSection = new ExternalFileSection();
document.Add(externalFileSection);
return externalFileSection;

}
public static void AddFilesToExternalFileSection

(ExternalFileSection externalFileSection)
{
externalFileSection.AddFile(ImageFilePath);
externalFileSection.AddFile(PdfFilePath);
externalFileSection.AddFile(WordFilePath);
externalFileSection.AddFile(ExcelFilePath);
externalFileSection.AddFile(ExcelFilePath);
// Remove last file by index.
externalFileSection.RemoveFile(externalFileSection.Files.Count -1);
// Insert a file at the beginning.
ExternalFilePackage filePackage = externalFileSection.InsertFile

(0, RichTextFilePath);
// Remove first file by package.
externalFileSection.RemoveFile(filePackage);

}
static string ImageFilePath = EmbeddedResourceManager.GetResourcePath

("MagT.emf");
static string PdfFilePath = EmbeddedResourceManager.GetResourcePath

("PMPA diester - resynthesis.pdf");
static string WordFilePath = EmbeddedResourceManager.GetResourcePath

("test.doc");
static string ExcelFilePath = EmbeddedResourceManager.GetResourcePath

("Chart.xls");
static string RichTextFilePath =

EmbeddedResourceManager.GetResourcePath("varied.rtf");
}

}

Add and Remove Files
The following C# examples show how to add, insert, and remove files.
To add a file, use the Symyx.Notebook.Sections.ExternalFile.AddFilemethod.
externalFileSection.(ExcelFilePath);

To insert a file, use the Symyx.Notebook.Sections.ExternalFile.InsertFilemethod.
// insert file at beginning of package
ExternalFilePackage filePackage =

externalFileSection.InsertFile(0, RichTextFilePath);

To remove a file, use the Symyx.Notebook.Sections.ExternalFile.RemoveFilemethod.
// remove by package
externalFileSection.RemoveFile(filePackage);

You can also use:
// remove by index
externalFileSection.RemoveFile(externalFileSection.Files.Count - 1);

Page 142 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

If you require a signature policy for actions in a file section, setting the FileActionSignature property
displays a signature dialog for the user to complete before the action is saved.

Visualizations
To enable a computer to generate visualizations for the File Section:

Install the utility that calls the
Symyx.Notebook.Sections.ExternalFile.Extensibility.ExternalFilePackage.Gen

erateVisualizationmethod.
Install theWorkbook client that provides the BlackIce Printer driver as a Windows printer.
Ensure that the DynaPDF library, dynapdf.dll is present. Do one of the following:

Execute the utility fromWorkbook's bin directory.
Copy the dynapdf.dll to the directory with the utility executable.

Preview of a File
A visualization is a preview of the contents of a file. The namespace,
Symyx.Notebook.Sections.ExternalFile, supports the generation of a visualization through a
signature of the AddFilemethod in the ExternalFileSection class of the
Symyx.Notebook.Sections.ExternalFile namespace:
ExternalFileSection.AddFile(String, Boolean)

Where String represents the path of the file to add, and Boolean, if true, generates a visualization for
the file. For example,
ExternalFileSection.AddFile("c:\test\myFile.xls", true);

Preview Multiple Files
If you are adding multiple files to be visualized, add all of them by passing false as the value to the
argument that determines whether to generate a visualization.
Generate visualizations for all the files by calling GenerateVisualization() for each
ExternalFilePackage in ExternalFileSection.Files.

Checking for the Existence of Visualizations
The ExternalFilePackage.VisualizationStates enumeration in the
Symyx.Notebook.Sections.ExternalFile.Extensibility namespace describes the possible
states of a package's visualization such as the following:

Unknown
NoVisualizationSource
NoVisualizationSourceSelected
Present
GenerationNotAttempted
GenerationPreviouslyUnsuccessful

Required Software for Visualizations Utility
To enable a computer to generate visualizations for the File Section:

BIOVIA Workbook 2021 • SDK Developers Guide | Page 143

Chapter 9: Sections

1. Install your utility that calls the
Symyx.Notebook.Sections.ExternalFile.Extensibility.ExternalFilePackage.Gen

erateVisualizationmethod.
2. Install theWorkbook client that provides the BlackIce Printer driver as a Windows printer.
3. Verify the presence of the DynaPDF library, dynapdf.dll by doing one of the following:

a. Execute the utility fromWorkbook's bin directory.
b. Copy the dynapdf.dll to the directory containing the utility's executable file.

Create File Section with Table Rows
The following IronPython example shows how to:

Get selected rows from a table
Create a File section for each selected row in the table

from System.Windows.Forms import MessageBox
from Symyx.Framework.Vault import VaultWorkspace
from Symyx.Framework.Vault import VaultObjectTypes
from Symyx.Framework.Vault import DataScope

Get the active section (table)
activeSection = editor.ActiveDocumentSection
Get the currently selected rows from the table
selectedRows = activeSection.GetSelectedRows()
Get the current experiment document
ActiveDocument = editor.Document

Find the template for the external file section
SectionTemplates = active_workspace.Current.SiteRepository.Get

(VaultObjectTypes.DocumentSectionTemplate,DataScope.All)
for SectionTemplate in SectionTemplates : if

SectionTemplate.Title == "File" :
neededSection = SectionTemplate

For each selected row create an external file section for row
in selectedRows :

use the sample id field and the test type as the new section title
sampleid = row.PropertySets["Samples"]["SampleID"].Value.ToString()
test = row.PropertySets["Samples"]["Specification"].Value.ToString()

newSectionTemplate = neededSection.Clone(False)
newSectionTemplate.Title = sampleid + " - " + test;
ActiveDocument.Add(newSectionTemplate)

editor.RefreshView()

List the Property Set Definitions for a Table
This C# example shows how to get a list of the property set definitions in a table section.
// setting up the test case TableSection
ts = new TableSection();

Page 144 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

ICollection<PropertySetIdentifier> selectedPSDs =
ts.TableSectionProperties.GetValue<ICollection<PropertySetIdentifier>>
(TableSectionP roperty.SelectedPropertySetDefinitons);

selectedPSDs.Add(new PropertySetIdentifier("Test"));
selectedPSDs.Add(new PropertySetIdentifier("Test2"));

// listing psd's without knowing anything about them
foreach(PropertySetIdentifier identifier in selectedPSDs)
{

// the identifier can identify a PSD by its Key, identifier.Key,
// which is unique within a Vault Server
PropertySetDefinition aSelectedPropertySetDef =

PropertySetManager.GetDefinition(identifier.Key);
Debug.WriteLine("The table has columns corresponding to this PSD: " +

aSelectedPropertySetDef.Key);
foreach(PropertyClass propertyClass in aSelectedPropertySetDef)
{

Debug.WriteLine("The table has a column corresponding to this
PropertyClass: " + propertyClass.DisplayName);

}
}

List Values from a Table
The following IronPython script shows how to lists the values of table's rows.
from System import *
sectionSource = "Test Articles"
propertySetName = "TestArticles"
labelColName = "CompoundID"

find Table section that contains the source data
dictionarySource = None
for section in table.Document.Sections: if

section.Title == sectionSource:
dictionarySource= section
break

if (dictionarySource is not None) and (e.Property is not None):

only populate property CompoundID
if e.Property.Key == labelColName:
e.Items.Clear()

for row in dictionarySource.Rows:
if not row.PropertySets[propertySetName][labelColName].IsNull:
value = row.PropertySets[propertySetName][labelColName].Value.ToString()
e.Items.Add(value)

Invoke a Form and Add Rows
To add a row, use table.AddRow. The following IronPython example invokes the
Symyx.Notebook.Sections.Table.AddNewRowsForm to prompt the user for the number of rows
to add, and then uses table.AddRow() to add the rows.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 145

Chapter 9: Sections

from Symyx.Notebook.Sections.Table import AddNewRowsForm
from System.Windows.Forms import DialogResult
try:

addNew = AddNewRowsForm()
result = addNew.ShowDialog()
if result == DialogResult.OK:

i = 0
while i < addNew.RowCount:

table.AddRow()
i = i + 1

finally:
addNew.Dispose()

Tip: Turn off row re-sizing during insert to speed up multi-row operations.

Notes:
If you use this sample script for a custom toolbar item, owner is the only script variable that is
available. The owner variable represents the Table Section where the dynamic toolbar is defined. To
use this example in a custom toolbar script, insert the following line before table is first used:
table = owner

global table is not available in toolbar item scripts table = owner

newRow = table.AddRow() newRow.PropertySets["Material"]["Name"].Value =
"New Material"

Set Values in a Table
The following C# example combines two property set definitions and sets a specified configuration.
TableSection section_ = new TableSection();
var newList = new List<PropertySetIdentifier>();

// The rows of the table in the table section might use
// properties from more than one property set definition.
newList.Add(new PropertySetIdentifier(psd1.Key));
newList.Add(new PropertySetIdentifier(psd2.Key));

// Use this signature: SetValue(PropertyKey, Object)
section_.TableSectionProperties.SetValue
(TableSectionProperty.SelectedPropertySetDefinitons, newList);

// config1 might specify which columns to show or hide and
// the order of columns
section_.TableSectionProperties.SetValue
(TableSectionProperty.Configuration,config1);

Add a Property Set Definition
The following C# example adds a property set definition to a TableSection.
var document = new Document();
var tableSection = new TableSection();
tableSection.Title = "Tabular Data";

Page 146 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

document.Add(tableSection);

// most common: add a property set definition to the table section,
// is a visible part of the table
tableSection.TableSectionProperties
[TableSectionProperty.SelectedPropertySetDefinito ns].Add(new
PropertySetIdentifier(MaterialPropertySets.Material);

// also possible: add a property set definition that is only visible
// as a property to the table within a table section
tableSection.PropertySetDefinitions.Add[new PropertySetDefinition()];

Insert Rows
To add a row to a Table section using the .NET API, call the
Symyx.Notebook.Sections.Table.TableSection.AddRowmethod.
For example:
public IPropertySetHost AddRow()

Disable row resizing during insert to speed up multi-row operations.

TableSection Script Variables

Event: Row Removed
Script variable Description

e Symyx.Framework.Collections.ItemEventArgs<IPropertySetHost>

row Represents the object to remove

sender Symyx.Notebook.Sections.Table.TableSection

Event: After Record Weights
Script variable Description

e System.EventArgs

sender Symyx.Notebook.Sections.Table.TableSection

Event: Before Record Weights
Script variable Description

e Symyx.Notebook.Sections.Table.RecordWeightCancelEventArgs

sender Symyx.Notebook.Sections.Table.TableSection

BIOVIA Workbook 2021 • SDK Developers Guide | Page 147

Chapter 9: Sections

Event: Request Column Dictionary
Script variable Description

e Symyx.Framework.Properties.DictionaryEventArgs

row Represents the object containing the dictionary property

sender Symyx.Notebook.Sections.Table.TableSection

Event: Row Added
Script variable Description

e Symyx.Framework.Collections.ItemEventArgs<IPropertySetHost>

row Represents the object that was added

sender Symyx.Notebook.Sections.Table.TableSection

Event: Row Changed
Script variable Description

e Symyx.Framework.Properties.ValueChangedEventArgs

row Represents the object with changed property

sender Symyx.Notebook.Sections.Table.TableSection

Script with Table Section Properties
Each column in a Table Section corresponds to a property. A group of properties are defined in a
property set definition. A Table Section can use one or more property set definitions. Because a table
section can havemultiple property sets to access a property value in a row, use a two-part index:

The first key is the name of the property set.
The second key is the name of the property.

The following example shows how to specify and update a property value in a row. The first index is a
property set named, Dilutions, the second is a property named, SampleName.
row.PropertySets["Dilutions"]["SampleName"].Value = "test sample 145"

If a property belongs to a predefined property set such as theMaterial property set, you can use static
fields in its corresponding *Property class as property keys. For example, instead of specifying the
following for the Structure property in theMaterial property set:
row.PropertySets["Material"]["Structure"].Value

specify:
from Symyx.Framework.Material import MaterialProperty row.PropertySets
[MaterialProperty.Structure].Value

SeeMaterial-related property set definitions for a list of predefined property sets related to theMaterial
property set.
Your scripts can access properties and property sets as objects. The Framework also provides script
variables that represent the objects related to properties and property sets.

Page 148 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Access a Table and its Rows
The Symyx.Framework.Properties.IPropertySetHost object represents a row in a table in a
Workbook experiment containing table sections. Event handler scripts that are run on a table section
can manipulate rows by using the row script variable to access IPropertySetHost and its API. Scripts
can access a Symyx.Notebook.Sections.Table.TableSection object and its API by using the
table script variable.

Table Section Script Variables
The following are the script variables available to a Table Section script:

Variable Description

section Specifies the Symyx.Notebook.DocumentSection or a section.

Table Specifies the Symyx.Notebook.Sections.TableSection.

row Specifies the Symyx.Framework.Properties.IPropertySetHost representing a row
in the table.

owner Added by generic scripting and dynamic tool bars and is the object that has the property on
which the script is defined. The other scope variables are not present for the owner, but
might exists for the subject of the event.

Import and Export Data
The Symyx Framework provides the capability to transfer data to and from a Table Section by using:

View-based data transfer mechanism - a user can copy and paste data between separate grids such
as copying from and pasting to a TableSection.
Property-based data sharing - the property set is mediated with the object when it is imported or
exported. When importing or exporting a row, the object properties can be directly manipulated by
using Symyx.Framework.Properties.IPropertySetHost. The
Symyx.Framework.Properties.ImportExport.ImportExportData class is a data container
that can be used for data transfer, and inherits from IPropertySetHost.
Shared object reference - a direct reference to the underlying data object is used if multiple views are
sharing the samemodel.

The Symyx.Notebook.Sections.Table.TableSection class implements the
System.Framework.TabularData.ITabularData interface that:

Contains the Rows property. Each row in the Rows property is represented by an
IPropertySetHost.
Has methods for handling row data, such as methods for counting, adding, getting index of, getting
rows.
Implements the System.Framework.TabularData.IImportExportTabularData.

The IImportExportTabularData interface contains the following methods for importing and
exporting data (usingImportExportData), and for getting the schema of the data:
Schema GetSchema();
Schema GetSchema(bool includeReadOnlyProperties);
ImportExportDataList ExportAll();
ImportExportData Export(string id);
ImportExportData AddAndExport();

BIOVIA Workbook 2021 • SDK Developers Guide | Page 149

Chapter 9: Sections

void Import(IEnumerable<ImportExportData> dataToImport);
void Import(ImportExportData dataToImport);
void Update(IEnumerable<ImportExportData> updateData);
void Update(ImportExportData updateData);

A Schema, Symyx.Framework.Properties.ImportExport.Schema, is a property set definition
(PSD) containing all property set definitions of the data to import or export. The schema contains the
definition of the data (metadata) rather than data. For import and export purposes, each property in
the schema is represented by the
Symyx.Framework.Properties.ImportExport.ImportExportPropertyClass.
The ImportExportData object,
Symyx.Framework.Properties.ImportExport.ImportExportData, is a temporary
IPropertySetHost data storage object that conforms to the schema. ImportExportData is the object
that contains the data for importing or exporting.
The properties in a Schema include all the properties from all the property set definitions used by the
table. Optionally, you can exclude or include the read-only properties. The Schema class provides
methods for marking properties in the schema for inclusion or exclusion during the import process. The
following example imports only one property from a schema. The example uses the
Schema.ExcludeAllForImportmethod to exclude all properties, and the
ImportExportPropertyClass.Include property to specify only one property to be imported.
Get the schema of the table, and include only the Demo.Name property.
schema = table.GetSchema()
schema.ExcludeAllForImport() schema["Demo.Name"].Include = True
Create an ImportExportData for the schema.
importData = schema.CreateImportData()
Import the data. table.Import(importData)

Schemas for import do not have the read-only properties. Schemas for export can have the read-only
properties, but those cannot update the same row.

Import Summary Data
To create an object containing a table schema and data, use
Symyx.Framework.Properties.ImportExport.ImportExportData.
To import the ImportExportData object to a TableSection, use section.Import
(ImportExportData).
To access a property in an ImportExportData object, use the "
[propertySetName.propertyName]" format, for example, Material.Name.
The following example counts the number of times a name appeared in the rows of a Materials Section
table, and uses ImportExportData to import information into another Materials Section table called
Table2.
Create an enumeration

table = owner
a = {}

While iterating through the rows of a table,
count the occurence of each color for row in table.Rows:
name = row.PropertySets["Material"]["Name"].Value if a.has_key(name):
a[name] = a[name] + 1 else:
a[name] = 1
To make this script work, insert a Materials Section, and rename it to
"Table2".

Page 150 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Table2 will be the summary table. for section in table.Document.Sections:
if section.Title == "Table2": summary = section
break
else:
raise RuntimeError, "Table2 not found"
Clear the Summary table summary.Clear()
Get the schema of the Summary table schema = summary.GetSchema()
For each name in the enumeration, create an ImportExportData object,
update its Name and Comments properties,
and import that row into the Summary table. for key in a.keys():
importData = schema.CreateImportData() materialName = str(key) importData
["Material.Name"].Value = materialName
importData["Material.Comments"].Value = "# rows with " + materialName + ": "
+ str(a[key])
summary.Import(importData)
Display a completion message after the import. from System.Windows.Forms
import MessageBox
MessageBox.Show("Summary Import Complete. See summary rows in Table2
section.")

To run this script, add it to a custom toolbar item on aMaterials Section. To create the summary table,
insert another Materials Section and rename it to Table2. Add some rows with some repeating names
to the first Materials Section to summarize in Table2.

ImportExportData to Update Data
To update rows in a table, export the rows and use the table.Updatemethod. The following example
uses table.ExportAll() to export all rows of a table. It gets the IPropertySetHost.Id of the first
row, creates an ImportExportData object, sets its Id and Demo.Name properties, and uses
table.Update(importData) to update the row in the same table with the specified Id.
To access a property in an ImportExportData object, use the "
[propertySetName.propertyName]" format.
Export all rows of the table. table = owner
rows = table.ExportAll()
Get the Id of the first row, and display it.
id = rows[0].Id
import System System.Windows.Forms.MessageBox.Show(id)
Get the schema of the table, and include only the
Material.Name property.
schema = table.GetSchema()
schema.ExcludeAllForImport()
schema["Material.Name"].Include = True
Create an ImportExportData for the schema.
importData = schema.CreateImportData()
Set the Id and the Demo.Name property with a new value
importData.Id = id
importData.Data["Material.Name"].Value = "Hello World"
Update that row in the same table.
table.Update(importData)

To run this script, add it to a custom toolbar item on aMaterials Section.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 151

Chapter 9: Sections

Lock Imported Rows
To lock an imported row, set the ImportExportData.IsLocked property to true.
The following script creates an ImportExportData from the table, creates multiple rows for importing,
locks those rows, and imports them to the table.
Get the table
Table = owner
Get the schema
schema = Table.GetSchema()
Create the ImportExportData list
importList = schema.CreateImportData(3)
Set the values for multiple rows for i in (0,1,2):
importList [i]["Material.Name"].Value = "test material" + str(i)
importList [i]["Material.Comments"].Value = "test material comment" + str(i)
Lock the row
importList [i].IsLocked = True
Import the rows table.Import(importList)

To run this script, add it to a custom toolbar item on aMaterials Section. After this script executes, the
added rows are locked.

Prevent the Removal of Locked Rows
To prevent users from removing a row, check the row.IsLocked property and set e.Cancel to true.
if row.IsLocked:
e.Cancel = True
e.CancelMessage = "Cannot delete locked row."

To run this script, add it to the Removing Row Event Scripting on a Materials Section. Lock a row, and
attempt to delete it. You should see themessage from the script.

Export or Import All Table Rows
To export all rows, use table.ExportAll.
To import rows into a table, use table.Import. The following IronPython example uses
table.ExportAll() to export all rows from a table, and uses table.Import(rows) to import them
to a target table section. The following IronPython example exports all rows from the current table and
imports them to another table.
Find the target "Table2" section
for section in table.Document.Sections: if section.Title == "Table2":
target = section break
This "else:" belongs with the "for" loop, so keep it aligned with "for".
The "else:" executes if "break" is never called. else:
raise RuntimeError, "Table2 section not found"

Export all rows from the current table rows = table.ExportAll()
Import the rows to the target table target.Import(rows)
Display the number of imported rows
from System.Windows.Forms import MessageBox MessageBox.Show("Imported " +
rows.Length.ToString() + " rows into Table 2")

If you use this sample script for a custom toolbar item, owner is the only script variable that is available.
The variable owner represents the Table Section on which the dynamic toolbar is defined. To use this
example as a custom toolbar script, insert table = owner before table is first used.

Page 152 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Request Column Dictionary Event
The Table Section RequestColumnDictionary event occurs when a column that is defined with a
dictionary,ComboBox, is creating the list of values. For the RequestColumnDictionary event, you
can specify an IronPython script that dynamically builds a dictionary based on values in a column or
table. The RequestColumnDictionary event script, uses the e script variable that uses the
Symyx.Notebook.Sections.Table.DictionaryEventArgs arguments:

AllowFreeText to indicate if free text entry is allowed.
Property to represent the Symyx.Framework.Properties.Property containing the
ComboBox.
Items to represent the System.Collections.CollectionBase containing the items in the list.

Table Section Script Events
The Table Section provides scripting capabilities for the events described in the following table.

Event Description

AddingRow Occurs when a row is being added to the table.
The EventArgs type is
Symyx.Framework.Collections.PendingItemEventArgs<IProper

tySe tHost>, whose properties are:
e.Cancel - Indicates whether or not to cancel the pending action on the
item. If True, the CancelMessage displays and the user must press the
Escape key to cancel the action.
e.CancelMessage - Amessage describing why the pending action on the
item should be cancelled

RowAdded Occurs after a row is added to the table.
The EventArgs type is
Symyx.Framework.Collections.ItemEventArgs<IPropertySetHo

st>, whose property is:
e.Item - the row added

RemovingRow Occurs when a row is being deleted from the table.
The EventArgs type is
Symyx.Framework.Collections.PendingItemEventArgs<IProper

tySe tHost>, whose properties are:
e.Cancel - Indicates whether or not to cancel the pending action on the
item. If True, the CancelMessage displays and the user must press the
Escape key to cancel the action
e.CancelMessage - Amessage describing why the pending action on the
item should be canceled.

RowRemoved Occurs after a row is deleted from the table.
The EventArgs type is
Symyx.Framework.Collections.ItemEventArgs<IPropertySetHo

st>, whose property is:
e.Item - the row removed

BIOVIA Workbook 2021 • SDK Developers Guide | Page 153

Chapter 9: Sections

Event Description

RowChanged Occurs after a row changed.
The EventArgs type is
Symyx.Framework.Properties.ItemChangedEventArgs<IPropert

ySet Host>, whose properties are:
e.Key - the key of other object whose value was changed
e.NewValue - the new value of the changed property
e.NewValueIsNull - indicates whether or not the new value is null
e.OldValue - the old value of the changed property
e.OldValueIsNull - indicates whether or not the old value is null

RequestColumnDictiona
ry

Occurs for each dictionary-type property in the row.
The EventArgs type is
Symyx.Framework.Properties.DictionaryEventArgs, whose
properties are:

e.AllowFreeText - indicates whether or not free text entry is allowed
e.Items - the list of items contained in the dictionary
e.Property - the property

Page 154 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Event Description

SigningOptions Occurs if the property changed and the property contains Signing Options.
The EventArgs type is
Symyx.Framework.Properties.ValueChangingEventArgs, whose
properties are:

e.Cancel - Indicates whether or not to cancel the pending action on the
item. If True, the CancelMessage displays and the user must press the
Escape key to cancel the action
e.CancelMessage - Amessage describing why the pending action on the
item should be cancelled
e.NewValue - The new value of the changed property
e.NewValueIsNull - Indicates whether or not the new value is null
e.OldValue - the old value of the changed property
e.OldValueIsNull - Indicates whether or not the old value is null
e.AddValidationResult(ValidationResults) - Adds a list of
Symyx.Framework.Review.ValidationResult objects containing a
message and severity level
e.AddValidationResult(string, SeverityLevel) - Adds a message and
Symyx.Framework.Review.SeverityLevel
e.AddValidationResult(string)- Adds a message to be displayed as an
error

Use this event to add validation scripts for properties in a Table Section.
To handle validation errors, either:

Use e.Cancel = True (along with a e.CancelMessage) to prevent the
change altogether
or
Use e.AddValidationResult to add a validation message (visible in
Review) at either the Error, Warning, or Info level.

Table Section Event Variables
Event: Row Removed
Script variable Description

e Symyx.Framework.Collections.ItemEventArgs<IPropertySetHost>

row Represents the object to remove

sender Symyx.Notebook.Sections.Table.TableSection

Event: After RecordWeights
Script variable Description

e System.EventArgs

sender Symyx.Notebook.Sections.Table.TableSection

BIOVIA Workbook 2021 • SDK Developers Guide | Page 155

Chapter 9: Sections

Event: Before RecordWeights
Script variable Description

e Symyx.Notebook.Sections.Table.RecordWeightCancelEventArgs

sender Symyx.Notebook.Sections.Table.TableSection

Event: Request Column Dictionary
Script variable Description

e Symyx.Framework.Properties.DictionaryEventArgs

row Represents the object containing the dictionary property

sender Symyx.Notebook.Sections.Table.TableSection

Event: Row Added
Script variable Description

e Symyx.Framework.Collections.ItemEventArgs<IPropertySetHost>

row Represents the object that was added

sender Symyx.Notebook.Sections.Table.TableSection

Event: Row Changed
Script variable Description

e Symyx.Framework.Properties.ValueChangedEventArgs

row Represents the object with changed property

sender Symyx.Notebook.Sections.Table.TableSection

Table Section Script Examples
To run the example scripts:
1. Login to Workbook as a user with the SectionTemplate.Editor permission.
2. Create a new experiment template in Experiment Editor.
3. Add a Material Section.
4. On the Properties pane of the section, configure (click) the Dynamic Toolbars property.
5. Add a toolbar, and create a toolbar item, for example, Insert Excel file.
6. Add the script to the toolbar item.
7. Save the template.
8. Add data to theMaterial Section.
9. Click the toolbar item to run the script.

Get Table Schema
The following example gets the schema of a table and lists its properties:

Page 156 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

table = owner
schema = table.GetSchema() s = ""

for property_class in schema:
s = s + property_class.Key + " – " + property_class.TypeName

MessageBox.Show(s)

To run the script, add it to a custom toolbar item on aMaterials Section.

Access Rows, Property Sets, and Properties
To access the rows of a table, use table.Rows. To access the property sets used in a row, use
row.PropertySets. The following example uses table.Rows to iterate through the rows of a table. For
each row, it uses table.GetIndexOf(row) to display the row index, iterates through the property sets
(row.PropertySets) and displays all the property names (property.Key) and their values
(property.DisplayValue).
table = owner s = ""
Iterate through all rows in the table for row in table.Rows:

s = s + "Row #" + str(table.GetIndexOf(row)) + " -- "
Iterate through all property sets in each row for propertySet in
row.PropertySets:

if propertySet.Key != "Core":
s = s + "Property Set: " + propertySet.Key + "\r\n"

Iterate through all properties in each property set for property in
propertySet:

s = s + "" + property.Key + ":" + \ property.DisplayValue + "\r\n"
s = s + "\r\n"

Display the string from System.Windows.Forms import MessageBox
MessageBox.Shows

To run this script, add it to a custom toolbar item on aMaterials Section.

Invoke a Form and Add Rows
To add a row, use table.AddRow. The following example invokes
Symyx.Notebook.Sections.Table.AddNewRowsForm to prompt the user for the number of rows to add,
and then uses table.AddRow() to add the rows.
from Symyx.Notebook.Sections.Table import AddNewRowsForm
from System.Windows.Forms import DialogResult

table = owner try:
addNew = AddNewRowsForm() result = addNew.ShowDialog() if result ==

DialogResult.OK:
i = 0

while i < addNew.RowCount: table.AddRow()
i = i + 1

finally:
addNew.Dispose()

To run the script, add it to a custom toolbar item on aMaterials Section.

Update a Table Property
To update a property of a table, use SetValue on the table property. The following example uses
table.ExtendedProperties.GetValue(propName, defaultValue) to increment the value of
theMaxRowNumber property of a table, and uses table.ExtendedProperties.SetValue
(propName, defaultValue) to update the value ofMaxRowNumber.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 157

Chapter 9: Sections

This example also shows how to update the value of a field in a new row in a table. It sets the Value of
the Comments field of a new row in theMaterials Section table.
table = owner
maxRow = table.ExtendedProperties.GetValue("MaxRowNumber", 0) + 1 row =
table.AddRow()
row.PropertySets["Material"]["Comments"].Value = "test" + str(maxRow)
table.ExtendedProperties.SetValue("MaxRowNumber", maxRow)

To run the script, add it to a custom toolbar item on aMaterials Section.

Export and Importing all Rows
To export all rows, use table.ExportAll. To import rows into a table, use table.Import. The following
example uses table.ExportAll() to export all rows from a table, and uses table.Import(rows) to import
them to a target table section.
Find the target "Table2" section table = owner
for section in table.Document.Sections: if section.Title == "Table2":
target = section break
This "else:" belongs with the "for" loop, so keep it aligned with "for".
The "else:" executes if "break" is never called.
else:
raise RuntimeError, "Table2 section not found"
Export all rows from the current table rows = table.ExportAll()
Import the rows to the target table target.Import(rows)
Display the number of imported rows
from System.Windows.Forms import MessageBox
MessageBox.Show("Imported " + rows.Count.ToString() + " rows into Table 2")

To run the script, add it to a custom toolbar item on aMaterials Section.
To create the target table, insert another Materials Section and rename it to Table2. Add some rows to
the first Materials Section to export in to Table2.

Material Section Script Variables
TheMaterial Section uses the property set definition defined in the material property set definition. The
events and script variables that are defined in the Table Section are also available to theMaterial
Section.
The following table shows the script variables are available to theMaterial Section.

Property Description

Name Specifies a string containing the name of thematerial.

Density Specifies a Symyx.Framework.Quantity object containing the density of the
material.

Comments Specifies a string containing the comments about thematerial.

Structure Specifies a Symyx.Framework.Chemistry.Structure object representing the
structure contained in thematerial.

MF Specifies a string containing themolecular formula of thematerial.

MW Specifies a Symyx.Framework.Value object containing themolecular weight of the

Page 158 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Property Description

material.

Role Specifies a string containing the role of thematerial. By default, this property is hidden
from theMaterial Section table. To display it, select this property from the Column
Chooser dialog in theMaterial Section.

InitialAmount Specifies a Symyx.Framework.Quantity object containing the initial amount of the
material. By default, this property is hidden from theMaterial Section table. To display
it, select this property from the Column Chooser dialog in theMaterial Section.

Location Specifies a Symyx.Framework.Materials.Location object containing the
location of thematerial. This property is always hidden from theMaterial Section
table.

Parent Specifies a Symyx.Framework.Materials.Material object containing the parent
of thematerial. This property is always hidden from theMaterial Section table.

Preparation Specifies a Symyx.Framework.Materials.Preparation object containing the
instructions for preparing thematerial. This property is always hidden from the
Material Section table.

The Symyx.Framework.Materials namespace contains classes and interfaces that support the
objects used with theMaterial property set.

Material Property Set Definitions
Workbook provides several material-related property sets that are usable in table section such as in the
Material, Synthetic Chemistry, Analytic Chemistry, Reaction Materials, and Equipment sections. In a
Material section that already contains theMaterial property set, a template editor can insert the Actual
Amount, Container, and Equipment property sets, providing the ability to add related data about the
material.
The Symyx.Framework.Materials namespace provides the property set definitions. The keys or
names for the property set definitions are defined in the
Symyx.Framework.Materials.MaterialPropertySets. For each property set definition,
Symyx.Framework.Materials also provides a corresponding Property class,identified by its property
class key, that contains its properties,identified by their property keys. For example, for the
ActualAmount property set definition, the ActualAmountProperty class contains the Amount,
CalcMoles, Yield, CalcMass, and CalcVol properties.

Property set Keys Property class keys Property keys

ActualAmount ActualAmountProperty Amount
CalcMoles
Yield
CalcMass
CalcVol

Container ContainerProperty Type
Amount
Label

BIOVIA Workbook 2021 • SDK Developers Guide | Page 159

Chapter 9: Sections

Property set Keys Property class keys Property keys

Barcode
Capacity
TareWeight
Comments
Location
Material

Equipment EquipmentProperty EquipmentName
EquipmentId
Category
Classification
Department
EquipmentType
IntendedUse
LastCalibrationDate
LastServiceDate
Location
Manufacturer
Model
NextCalibrationDate
NextServiceDate
ReferenceNumber
Role
SerialNumber
Status

Material MaterialProperty For more information, seeMaterial Class
Properties.

MaterialRegistration MaterialRegistrationProperty Registered
SubstanceId
BatchId
NormalizedStructure
Response

Operation OperationProperty Name
Number
Notes
Icon
Observations
Category
ContentFields
IsActive
SelectedPropertySetDefinitio ns
UsedPropertySets
ExecutionState
TimeStamp

Page 160 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Property set Keys Property class keys Property keys

Phrase
Alerts

PlannedAmount PlannedAmountProperty CalcEquiv
Amount
CalcMass
CalcVolume
CalcMoles

ReactionMaterial ReactionMaterialProperty Label
LimitingReagent
NEMAKey
PurityConcentration
StoichiometricCoefficient
Step
StepId

ReactionStep ReactionStepProperty Description
Name
PathDescription
Name
Path
Step
Reaction

SampleIdentification SampleIdentificationProperty SampleId

UnitProcedure UnitProcedureProperty Name
Number
Description
Icon
Notes
Observations
Category
EnforceOrder
Location
TimeStamp
Repeatable
ExecutionState
Predecessors
Alerts

Use the property classes and keys to reference a specific property in a particular property set used in a
material-related section. For descriptions of the property keys listed above, see the corresponding
Property class documentation.
Because a material-related section uses the Table Section, a row in a material-related section
corresponds to a Symyx.Framework.Properties.IPropertySetHost object. The

BIOVIA Workbook 2021 • SDK Developers Guide | Page 161

Chapter 9: Sections

IPropertySetHost.PropertySets contains the property set definitions used in the section. To
reference a property in a particular row, use the following syntax:
row.PropertySets[MaterialPropertySets.propertySetKey]
[propertyClassKey.propertyName]

The row is an object that represents a row, IPropertySetHost, in the section.
The following example gets the Name property of a material on a row in a Material Section:
row = aSection.GetRow()aName = row.PropertySets
[MaterialPropertySets.Material][MaterialProperty.Name].Value

The following example sets theMW property values of rows in a Material Section:
rows = scSection.GetRows()
rows[0].PropertySets[MaterialPropertySets.Material]
[MaterialProperty.MW].Value;= Value (0, 0)
rows[1].PropertySets[MaterialPropertySets.Material]
[MaterialProperty.MW].Value = Value (115.131, 6)
rows[2].PropertySets[MaterialPropertySets.Material]
[MaterialProperty.MW].Value = Value (0, 0)

The following example shows another way of referencing a property in the property set. The
limitingReagentRM variable is initially assigned the ReactionMaterial property set. Subsequently, one of
its properties, ReactionMaterialProperty.LimitingReagent is referenced using the limitingReagentRM
variable.
rows[] is defined in preceding example
limitingReagent = rows[1] # Cyclohexane 6 significant figures of MW value
limitingReagentRM =\ limitingReagent.PropertySets
[MaterialPropertySet.ReactionMaterial]
limitingReagentRM[ReactionMaterialProperty.LimitingReagent].Value = True

Nullable for Primitive Types
If you are using the API to create an application that programmatically defines new property set
definitions, for best performance you should not create any PropertyClass using nullable types. In the
following example, use the standard, non-nullable integer (int) and not the nullable integer (int?).
var notRecommendedNullablePrimitive = new PropertyClass("Content",
AnalyticalPreparationProperty.DilutionFactor, typeof (int?));

Use:
var recommendedPrimitiveNotNullable = new PropertyClass("Content",
AnalyticalPreparationProperty.DilutionFactor, typeof (int));

Unless the AllowNulls property of the PropertyClass is set to false, the Property allows null values
even if defined with a non-nullable type.
To set the value to null, use propertySet.SetValue(propertyKey, null).

Material Section Script Examples
The following example is a material validation script for the Role property. In this example, e is the
EventArgs script variable, and material is the script variable representing the row in theMaterial
Section.
if e.NewValue and \
(material.Role is None or material.Role not in ('Sample', 'Standard')):

Page 162 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

e.Cancel = True
e.CancelMessage = "The role must be 'Sample' or 'Standard'."

To run this script, add it to the Signing Options event on a Materials section. To add the validation script
to the Signing Options event:
1. Click the ellipses button on the Signing Options event scripting property.
2. In the PropertySigningOptionsList window, click Add.
3. In the Applies To field, select a property, for example,Material > Role.
4. Add the script to the Validation > Custom Script property.

Access the Material Structure
The Material.Structure property contains a Symyx.Framework.Chemistry.Structure object.
The Structure object provides both theMolfile and Chime string formats. The following example displays
theMolfile string of the current structure:
from System.Windows.Forms import MessageBox
molfileString = material.Structure.Molfile
MessageBox.Show(molfileString)

Create a Review Message
The following script checks the expiry date in an AnalyticalMaterial property set and creates a review
message if the validation fails. An error is returned, if the ExpiryDate is expired, and a warning is
returned if the ExpiryDate is the current date.
from System import DateTime
from Symyx.Framework.Review
import SeverityLevel

try:
expiry = e.NewValue.PropertySets['AnalyticalMaterial'].GetValue

('ExpiryDate').Date
today = DateTime.Now.Date
expired already
if today.CompareTo(expiry) > 0 :

e.AddValidationResult('This sample expired on %s' % expiry.ToString
('D'), SeverityLevel.Error)

expired today
elif today.CompareTo(expiry) == 0 :

e.AddValidationResult('This sample expires today',
SeverityLevel.Warning)
except:

if this did not work, it is likely that the material
does not have an ExpiryDate property, so continue pass

To run this script:
1. Login to Workbook as a user with the SectionTemplate.Editor permission.
2. Create a new experiment template in Experiment Editor. Add a Table Section or any of thematerials-

related section.
3. On the Properties pane of the section, in the Property Sets property, select AnalyticalMaterial.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 163

Chapter 9: Sections

4. On the Signing Options event scripting property, add the script to the AnalyticalMaterial >
ExpiryDate property.

5. Enter a past date in the ExpiryDate on the table, and choose Tools > Run Review.
Amessage displays in the Review Results pane indicating that the date expired.

Scripting Material Import
TheMaterial section, the Synthetic Chemistry section, and the Analytical Materials section have a
material import feature. Users can invoke the Import Material dialog and search by name, CAS number,
or structure using the DiscoveryGate database.
You can modify the default behavior of thematerial import functionality in any section template using
an IronPython script that runs the BeforeImportMaterials event or the AfterImportMaterials
event.

When the end-user clicks on the Import Form toolbar button, Workbook fires the
BeforeImportMaterial event, and displays theMaterial Import dialog.

Note: If e.HideDefaultDialog is set to True, the process stops. In the initial execution of the before
import material script, only the e.HideDefaultDialog is used by the code.

The end-user selects a data source and enters search criteria such as the structure name, CAS
number, or a structure in the dialog. One or more results display in the dialog's table.

Note: The e.ImportedList contains a list of thematerials selected by the user in theMaterial
Import dialog. The script can modify the list, for example, you can write the script to modify name
to use a a standard capitalization.

The end-user selects one or more results for import and clicks the Import button, which fires the
BeforeImportMaterials event.
In the script's execution, the template editor has access to both the original list from the import
dialog and the imported materials in the table section, available as e.ImportedMaterials, for
example, the template editor could concatenated the chemical namewith the diluents name and the
concentration.
Workbook imports the selected materials into the section, and then fires the
AfterImportMaterial event. TheMaterial Import dialog closes.
If you enter a past date in the ExpiryDate on the table, and choose Tools > Run Review. You
should see a message in the Review Results pane indicating that the date expired.

For more information, see Import Materials in the BIOVIAWorkbook online help.
You can learn how to can set up material import from the DatabaseWeb Service through the
MaterialInfoManager LookupService. For more information, see the Vault Administrative Tools Guide
Application Permissions chapter.
Refer to the OnReview Script Example for a similar example.

BeforeImportMaterials Event Script Example
You could use a script to modify values such as changing to lowercase, truncating insignificant decimal
places, or converting currency.
The following IronPython script for the BeforeImportMaterials events blocks the default dialog and
posts a custom message box.
from Symyx.Framework.Properties import IPropertySetHost
from Symyx.Framework.Materials import Material

Page 164 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

from System import String
from System.Windows.Forms import MessageBox

MessageBox.Show('my custom dialog')
e.HideDefaultDialog = True

AfterImportMaterials Event Script Example
The following IronPython script for the synthetic chemistry section modifies the imported material
objects with the following line:
material.Name = material.Name.ToLower() + ' in ' +
diluentProperty.Value.ToString()

The statement changes the following:
Salicylic Acid to salicylic acid
The name of the chemical by concatenating the diluents information. The salicylic acid that has
Diluent='WATER' becomes Salicylic Acid in water.

e.ImportedList contains a list of thematerials selected by the user in theMaterial Import dialog. The
script can modify this list in place. For example, you can modify names to have a standard capitalization.
In this script execution, the template editor has access to both the original list from the import dialog,
and the imported materials within the table section, available as e.ImportedMaterials. For example,
you could concatenate the chemical namewith the diluent's name and the concentration.

Testing Examples
To test the examples:
1. Click the Synthetic Chemistry section.
2. Click the Import From list and choose the newly created option, Import From Test.
A new row is created and displays the incremented row count in the leftmost column.
Themost recently chosen option of the Import From dropdown list becomes the default.

Script Variables for Experiment and Common Section Events
Scripts that handle experiment editor events can be defined at the experiment or section level. The
experiment and each Workbook section has an Event Scripting property that can execute a script for the
following events:

OnApplicationClosing
OnApplicationLoaded
OnInsertingSection
OnLockingSection
OnMenuItemEnabledStatesUpdated
OnRemovingSection
OnSaving
OnSaved
OnSectionActivated
OnSectionDeactivated
OnSectionInserted

BIOVIA Workbook 2021 • SDK Developers Guide | Page 165

Chapter 9: Sections

OnSectionLocked
OnSectionRemoved
OnSectionUnlocked
OnToolBarButtonEnabledStatesUpdated
OnUnlockingSection

The following are the script variables that can be used for the events listed above. These script variables
are also available to custom toolbar scripts:

Script
variable

Represents

active_
workspac
e

Symyx.Notebook.Vault.NotebookWorkspace

editor Symyx.Notebook.ApplicationManagement.IDocumentEditor

Note: If you have the document or section, the Application property return the
IDocumentEditor editor.

sender Symyx.Notebook.ApplicationManagement.IDocumentEditor

e One of the following, depending on the corresponding event:
Symyx.Framework.ApplicationManagement.ApplicationLoadedEventArgs

Symyx.Notebook.ApplicationManagement.InsertingSectionEventArgs

Symyx.Notebook.ApplicationManagement.LockingSectionEventArgs

Symyx.Notebook.ApplicationManagement.SectionLockedEventArgs

Symyx.Notebook.ApplicationManagement.UnlockingSectionEventArgs

Symyx.Notebook.ApplicationManagement.SectionUnlockedEventArgs

Symyx.Notebook.ApplicationManagement.RemovingSectionEventArgs

Symyx.Notebook.ApplicationManagement.SectionRemovedEventArgs
Symyx.Notebook.ApplicationManagement.ToolBarButtonEnabledStatesUpda

tedEventArgs

Symyx.Notebook.ApplicationManagement.SectionActivatedEventArgs

Symyx.Notebook.ApplicationManagement.SectionDeactivatedEventArgs

Symyx.Notebook.ApplicationManagement.SavingEventArgs

Symyx.Notebook.ApplicationManagement.SavedEventArgs
Symyx.Notebook.ApplicationManagement.MenuItemEnabledStatesUpdatedEv

entArgs
Symyx.Notebook.ApplicationManagement.ApplicationClosingEventArgs

owner Symyx.Notebook.Document if script is defined at the experiment level, or the section
object if script is defined at the section level.

Script Variables for Events
You can define scripts that handle experiment editor events at the experiment or section level. The
experiment and each experiment section has an Event Scripting property that can execute a script for
the following events:

OnApplicationClosing
OnApplicationLoaded

Page 166 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

OnInsertingSection
OnLockingSection
OnMenuItemEnabledStatesUpdated
OnRemovingSection
OnSaving
OnSaved
OnSectionActivated
OnSectionDeactivated
OnSectionInserted
OnSectionLocked
OnSectionRemoved
OnToolBarButtonEnabledStatesUpdated
OnUnlockingSection

You can use the following script variables with the events listed above, and with custom toolbar scripts.

Script
Variable

Represents

active_
workspace

Symyx.Notebook.Vault.NotebookWorkspace

editor Symyx.Notebook.ApplicationManagement.IDocumentEditor

Note: If you have the document or section, the Application property returns the editor
, IDocumentEditor.

sender Symyx.Notebook.ApplicationManagement.IDocumentEditor

e One of the following:
Symyx.Framework.ApplicationManagement.ApplicationLoadedEventArgs
Symyx.Notebook.ApplicationManagement.InsertingSectionEventArgs
Symyx.Notebook.ApplicationManagement.LockingSectionEventArgs
Symyx.Notebook.ApplicationManagement.SectionLockedEventArgs
Symyx.Notebook.ApplicationManagement.UnlockingSectionEventArgs
Symyx.Notebook.ApplicationManagement.SectionUnlockedEventArgs

Symyx.Notebook.ApplicationManagement.RemovingSectionEventArgs
Symyx.Notebook.ApplicationManagement.SectionRemovedEventArgs
Symyx.Notebook.ApplicationManagement.ToolBarButtonEnabledStatesUpd
a tedEventArgs
Symyx.Notebook.ApplicationManagement.SectionActivatedEventArgs
Symyx.Notebook.ApplicationManagement.SectionDeactivatedEventArgs
Symyx.Notebook.ApplicationManagement.SavingEventArgs

Symyx.Notebook.ApplicationManagement.SavedEventArgs
Symyx.Notebook.ApplicationManagement.MenuItemEnabledStatesUpdatedE

v entArgs

Symyx.Notebook.ApplicationManagement.ApplicationClosingEventArgs

owner Symyx.Notebook.Document if script is defined at the experiment level, or the section
object if script is defined at the section level.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 167

Chapter 9: Sections

Workbook Sections
The following table lists theWorkbook sections and their object types.
Do not use the following sections in scripts:

Grouped Materials
Plate Layout
Reaction List
Spreadsheet

Section Object Type

Analytical
Materials

Symyx.Notebook.Sections.Materials.IMaterialsSection

Equipment Symyx.Notebook.Sections.Equipment.EquipmentSection

File Section Symyx.Notebook.Sections.ExternalFile.ExternalFileSection

Form
Section

Symyx.Notebook.Sections.Forms.FormsSection

Formulation
Section

Symyx.Notebook.Sections.Formulation

Grouped
Materials

For internal use only. Do not use this in your script

Materials Symyx.Notebook.Sections.Materials.IMaterialsSection

Plate Layout For internal use only. Do not use this in your script.

Preparation
s

Symyx.Notebook.Sections.SamplePreparation.SamplePreparationSectio
n

Text Section Symyx.Notebook.Sections.Text.TextSection

Reaction List For internal use only. Do not use this in your script.

Reaction
Scheme

Symyx.Notebook.Sections.ReactionScheme.ReactionSchemeSection

Reference Symyx.Notebook.Sections.Reference.ReferenceSection

Sample
Analysis
Table

Symyx.Notebook.Sections.Table.TableSection

Spreadsheet For internal use only. Do not use this in your script.

Synthetic
Chemistry

Symyx.Notebook.Sections.Materials.IMaterialsSection

Page 168 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Section Object Type

Table Symyx.Notebook.Sections.Table.TableSection

Except for Symyx.Notebook.Sections.Materials.IMaterialsSection, the namespaces
containing the section objects are found in namespace-name.dll assemblies located in the lib
directory of the ELN SDK installation. The
Symyx.Notebook.Sections.Materials.IMaterialsSection is in the Symyx.Notebook.dll
assembly.

Materials Section Event Script Variables
MaterialsSection inherits from TableSection, the following variables are available to theMaterials
Section:

Event: Before Import Materials
Script variable Represents

e Symyx.Notebook.Sections.Materials.ImportMaterialsEventArgs

sender Symyx.Notebook.Sections.Materials.MaterialSection

Event: After Import Materials
Script
variable

Represents

e Symyx.Notebook.Sections.Materials.ImportMaterialsEventArgs

sender Symyx.Notebook.Sections.Materials.MaterialSection

Event: Signing Options
Script variable Represents

properties Symyx.Framework.Properties.Property.PropertySet

host_object Symyx.Framework.Materials.Material

vault_object Symyx.Framework.Materials.Material

document_template Symyx.Notebook.Document

document_section Symyx.Notebook.Sections.Materials.MaterialsSection

table Symyx.Notebook.Sections.Materials.MaterialsSection

e Symyx.Framework.Properties.ValueChangingEventArgs

BIOVIA Workbook 2021 • SDK Developers Guide | Page 169

Chapter 9: Sections

Sample Preparation Section Script Variables
Event: Row Added
Script variable Description

e Symyx.Framework.Collections.ItemEventArgs<IPropertyS
etHost>

row The row object that was added

sender Symyx.Notebook.Sections.SamplePreparation.SamplePrep
arationSection

preparationSectionConcentra
tionUnit

Symyx.Framework.UnitKey for the calculated concentration

preparationSectionMassUnit Symyx.Framework.UnitKey for the calculated mass

preparationSectionVolumeU
nit

Symyx.Framework.UnitKey for the calculated volume

preparationSectionMaterialR
oles

Symyx.Framework.UnitKey for thematerial roles for the
preparation

Event: Removing Row
Script variable Description

e Symyx.Framework.Collections.PendingItemEventArgs<IPr
opertySetHost>

row The row object to be removed

sender Symyx.Notebook.Sections.SamplePreparation.SamplePrep
arationSection

preparationSectionConcentra
tionUnit

Symyx.Framework.UnitKey for the calculated concentration

preparationSectionMassUnit Symyx.Framework.UnitKey for the calculated mass

preparationSectionVolumeU
nit

Symyx.Framework.UnitKey for the calculated volume

preparationSectionMaterialR
oles

Symyx.Framework.UnitKey for thematerial roles for the preparation

Event: Row Removed
Script variable Description

e Symyx.Framework.Collections.PendingItemEventArgs<IPr
opertySetHost>

row The row object that was removed

Page 170 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Script variable Description

sender Symyx.Notebook.Sections.SamplePreparation.SamplePrep
arationSection

preparationSectionConcentra
tionUnit

Symyx.Framework.UnitKey for the calculated concentration

preparationSectionMassUnit Symyx.Framework.UnitKey for the calculated mass

preparationSectionVolumeU
nit

Symyx.Framework.UnitKey for the calculated volume

preparationSectionMaterialR
oles

Symyx.Framework.UnitKey for thematerial roles for the
preparation

Event: Component Added
Script variable Description

e Symyx.Framework.Collections.ItemEventArgs<IPropertyS
etHost>

row The row object that was added

sender Symyx.Notebook.Sections.SamplePreparation.SamplePrep
arationSection

preparationSectionConcentra
tionUnit

Symyx.Framework.UnitKey for the calculated concentration

preparationSectionMassUnit Symyx.Framework.UnitKey for the calculated mass

preparationSectionVolumeU
nit

Symyx.Framework.UnitKey for the calculated volume

preparationSectionMaterialR
oles

Symyx.Framework.UnitKey for thematerial roles for the preparation

Event: Removing Component
Script variable Description

e Symyx.Framework.Collections.PendingItemEventArgs<IPr
opertySetHost>

row The row object to be removed

sender Symyx.Notebook.Sections.SamplePreparation.SamplePrep
arationSection

preparationSectionConcentra
tionUnit

Symyx.Framework.UnitKey for the calculated concentration

preparationSectionMassUnit Symyx.Framework.UnitKey for the calculated mass

preparationSectionVolumeU Symyx.Framework.UnitKey for the calculated volume

BIOVIA Workbook 2021 • SDK Developers Guide | Page 171

Chapter 9: Sections

Script variable Description

nit

preparationSectionMaterialR
oles

Symyx.Framework.UnitKey for thematerial roles for the
preparation

Event: Component Removed
Script variable Description

e Symyx.Framework.Collections.PendingItemEventArgs<IPr
opertySetHost>

row The row object that was removed

sender Symyx.Notebook.Sections.SamplePreparation.SamplePrep
arationSection

preparationSectionConcentra
tionUnit

Symyx.Framework.UnitKey for the calculated concentration

preparationSectionMassUnit Symyx.Framework.UnitKey for the calculated mass

preparationSectionVolumeU
nit

Symyx.Framework.UnitKey for the calculated volume

preparationSectionMaterialR
oles

Symyx.Framework.UnitKey for thematerial roles for the preparation

Event: Audit Script
Script variable Description

e Symyx.Notebook.Sections.Materials.CustomAuditEventAr
gs

row The row object that the audit message applies to

sender Symyx.Notebook.Sections.SamplePreparation.SamplePrep
arationSection

preparationSectionConcentra
tionUnit

Symyx.Framework.UnitKey for the calculated concentration

preparationSectionMassUnit Symyx.Framework.UnitKey for the calculated mass

preparationSectionVolumeU
nit

Symyx.Framework.UnitKey for the calculated volume

preparationSectionMaterialR
oles

Symyx.Framework.UnitKey for thematerial roles for the
preparation

Page 172 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Event: Component Row Added
Script variable Description

e Symyx.Framework.Properties.ValueChangedEventArgs

row The row object with added component

sender Symyx.Notebook.Sections.SamplePreparation.SamplePrep
arationSection

preparationSectionConcentra
tionUnit

Symyx.Framework.UnitKey for the calculated concentration

preparationSectionMassUnit Symyx.Framework.UnitKey for the calculated mass

preparationSectionVolumeU
nit

Symyx.Framework.UnitKey for the calculated volume

preparationSectionMaterialR
oles

Symyx.Framework.UnitKey for thematerial roles for the
preparation

Event: Dilution Created
Script
variable

Description

preparation Symyx.Notebook.AnalyticalMaterials.Entities.AnalyticalPreparation

that has been created

dilution_
number

int for one based dilution number

is_serial boolean which designates whether the dilution is a serial dilution

is_retain_all boolean which when is_serial is true determines whether all dilutions are retained

owner Symyx.Notebook.Sections.Table.TableSection context in which this is
occurring

Event: Replicate Created
Script
variable

Description

preparation Symyx.Notebook.AnalyticalMaterials.Entities.AnalyticalPreparation

that has been replicated

replicate_
number

int for one based replicate number

owner Symyx.Notebook.Sections.Table.TableSection context in which this is
occurring

BIOVIA Workbook 2021 • SDK Developers Guide | Page 173

Chapter 9: Sections

Export Preparation Section Data
The example in this section shows how data from a Preparation Section can be exported into a comma-
separated value (CSV) file. In particular this example shows how to:

Get the active section
section = editor.ActiveDocumentSection

Get the property sets that are used in a component of a section, for example, the
SamplePreparationSectionProperty.SelectedPropertySetDefinitions:
from System.Collections.Generic import List as DotNetList
from Symyx.Notebook.Sections.SamplePreparation import
SamplePreparationSectionProperty
from Symyx.Framework.Properties import PropertySetManager

Get the PDSs for the preparation
preparationPsds = DotNetList[PropertySetDefinition]()
psIds =section.TableSectionProperties.GetValue

(SamplePreparationSectionProperty.Selected PropertySetDefinitions)
enumerator = psIds.GetEnumerator() while enumerator.MoveNext():
psId = enumerator.Current
defn = PropertySetManager.GetDefinition(psId)
if defn != None:

preparationPsds.Add(defn)

Go through the property set definitions and read each property key into an array, and then append
to a string buffer.
from System.Collections import ArrayList

ArrayList to save the property definition keys
defKeys = ArrayList()
ArrayList to save all columns headers for later usage
columnKeys = ArrayList()

columnKeys.Clear() defKeys.Clear()
br = StringBuilder()
defIndex = 0
while defIndex < psds.Count:

psds is the list of Preparation property set definitions
psd = psds[defIndex]
defIndex += 1
index = 0
while index < psd.Count:

pc = psd[index]
if pc.UserDisplay != UserDisplay.Hidden:

pc contains property key as column name
columnKeys.Add(pc.Key.ToString())
psd contains property set key
defKeys.Add(psd.Key.ToString())
Write column name to string buffer
br.Append(pc.Key.ToString() + ",")

index += 1
builder.AppendLine(br.ToString().TrimEnd(','))

Page 174 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Go through the array lists of property set keys and property keys, to get the each property value,
and write to a string buffer.
index = 0

columnKeys is ArrayList containing column names
while index < columnKeys.Count:
defKeys is ArrayList containing property set keys
defKy = defKeys[index]
colKy = columnKeys[index]
s = GetDataInStringHelper(host, defKy, colKy)
if not String.IsNullOrEmpty(s):

replace special characters.
s = s.Replace(",", "','")
s = s.Replace("\r", "|")
s = s.Replace("\n", "|") br.Append(s)

br.Append(",")
index += 1

builder.AppendLine(br.ToString())

def GetDataInStringHelper(host, setKy, propertyKy):
try:

Get the value of propertyKy in setKy
p = host.PropertySets[setKy][propertyKy]
if p.Value == None or p.ValueIsNull:

return String.Empty else:
s = p.Value.ToString()
return s

except Exception: return
String.Empty

The following example is the complete example script that exports Preparation data to a CSV file.
To run this script:
1. Login to Workbook as a user with the SectionTemplate.Editor permission.
2. Create a new experiment template in Experiment Editor.
3. Add a Preparations section. The experiment must include a Preparations section.
4. Add the script to a custom toolbar item.
5. Save the template.
6. Add some data in the Preparations section. When you click the toolbar item, the specified file in the

script will be generated (default filename and location is c:\SampleExport.csv).
You can change the script, for example, to export in tab delimited format by changing br.Append
(pc.Key.ToString() + ",") to br.Append(pc.Key.ToString() + "\t").
#==
Example to export SamplePreparationSection's data to a csv file.
#==
import clr clr.AddReference("System.Drawing")
clr.AddReference("System.Windows.Forms")
from System.Drawing import *
from System.IO import File

BIOVIA Workbook 2021 • SDK Developers Guide | Page 175

Chapter 9: Sections

from System import String
from System.Collections.Generic import List as DotNetList
from System.Windows.Forms import *
from System.Text import StringBuilder
from System.Collections import ArrayList
from Symyx.Notebook.AnalyticalMaterials import Entities
from Symyx.Notebook.AnalyticalMaterials.Entities import
AnalyticalPreparation, AnalyticalPreparationStep
from Symyx.Notebook.AnalyticalMaterials import *
from Symyx.Notebook.Sections.SamplePreparation import
SamplePreparationSectionProperty
from Symyx.Framework import Properties
from Symyx.Framework.Properties import Propert
from Symyx.Framework.Properties import PropertySetDefinition
from Symyx.Framework.Properties import PropertySet
from Symyx.Framework.Properties import PropertySetKey
from Symyx.Framework.Properties import PropertySetManager
from Symyx.Framework.Properties import UserDisplay

#==
Export data in SamplePreparationSection to a file in CSV file format.
<parma name="section">SamplePreparationSection.</param>
<param name="fileName">Name of the output file.</param>
<param name="exportComponents">True if export both preparations and
components. False if only export preparations.</param>
#===
def ExportToCsvFileFormat(section, fileName, exportComponents):

if section == None:
return False

masterRows = section.GetRows()
if masterRows == None or masterRows.Length == 0:

return False

psIds = None

Get the PDSs for the preparation
preparationPsds = DotNetList[PropertySetDefinition]()
psIds = section.TableSectionProperties.GetValue

(SamplePreparationSectionProperty.SelectedPropertySetDefinitions)
enumerator = psIds.GetEnumerator()

while enumerator.MoveNext():
psId = enumerator.Current
defn = PropertySetManager.GetDefinition(psId)
if defn != None:

preparationPsds.Add(defn)

Get the PSDs for the component
componentPsds = DotNetList[PropertySetDefinition]()
psIds = section.TableSectionProperties.GetValue

(SamplePreparationSectionProperty.AnalyticalS
tepSelectedPropertySetDefinitions)

enumerator = psIds.GetEnumerator()
while enumerator.MoveNext():

Page 176 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

psId = enumerator.Current
defn = PropertySetManager.GetDefinition(psId)
if defn != None:

componentPsds.Add(defn)

builder = StringBuilder()

export the master columns info.
preparationDefKeys = ArrayList()
preparationPropertyKeys = ArrayList()
CsvColumnsKeys(preparationPsds, preparationDefKeys,

preparationPropertyKeys, builder)

export the component columns info if needed.
componentDefKeys = ArrayList()
componentPropertyKeys = ArrayList()
if exportComponents:

CsvColumnsKeys(componentPsds, componentDefKeys, componentPropertyKeys,
builder)

export the data.
i = 0
while i < masterRows.Length:

sample = section.GetRow(i)
CsvData(sample, preparationDefKeys, preparationPropertyKeys, builder,

String.Empty)

if exportComponents and section.DetailRowsCount(i) > 0:
for detailRow in section.GetDetailRows(i):

CsvData(detailRow, componentDefKeys, componentPropertyKeys, builder,
"-")

i += 1

#write to file.
sw = File.CreateText(fileName) sw.Write(builder.ToString())
sw.Close()
MessageBox.Show("Finish exporting data to " + fileName + ".")
return True

#==
Exports the columns headers based on input key.
<param name="defKeys">ArrayList to save the property definition
keys.</param>
<param name="columnKeys">ArrayList to save all columns headers
for later usage.</param>
<param name="builder">The string builder for saving output.</param>
#==
def CsvColumnsKeys(psds, defKeys, columnKeys, builder):

if psds == None or psds.Count == 0:
return

columnKeys.Clear() defKeys.Clear()
br = StringBuilder() defIndex = 0

BIOVIA Workbook 2021 • SDK Developers Guide | Page 177

Chapter 9: Sections

while defIndex < psds.Count:
psd = psds[defIndex]
defIndex += 1
index = 0
while index < psd.Count:

pc = psd[index]
if pc.UserDisplay != UserDisplay.Hidden:

columnKeys.Add(pc.Key.ToString())
defKeys.Add(psd.Key.ToString())
br.Append(pc.Key.ToString() + ",")

index += 1
builder.AppendLine(br.ToString().TrimEnd(','))

#===
Exports the columns data
#
<param name="host">The host - it can be the preparation or the
component.</param>
<param name="defKeys">ArrayList to save the property definition
keys.</param>
<param name="columnKeys">ArrayList. See CsvColumnsKeys for
detail.</param>
<param name="builder">The string builder.</param>
<param name="upFront">Optional string before the component
data.</param>
#==
def CsvData(host, defKeys, columnKeys, builder, upFront):

if host == None or columnKeys == None or columnKeys.Count == 0:
return

if columnKeys.Count != defKeys.Count:
return

br = StringBuilder()
br.Append(upFront)
index = 0
while index < columnKeys.Count:

defKy = defKeys[index]
colKy = columnKeys[index]
s = GetDataInStringHelper(host, defKy, colKy)
if not String.IsNullOrEmpty(s):

relpace special characters.
s = s.Replace(",", "','")
s = s.Replace("\r", "|")
s = s.Replace("\n", "|")
br.Append(s)

br.Append(",")
index += 1

builder.AppendLine(br.ToString())

Page 178 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

#==
Helper
#==
def GetDataInStringHelper(host, setKy, propertyKy):

try:
p = host.PropertySets[setKy][propertyKy]
if p.Value == None or p.ValueIsNull:

return String.Empty
else:

s = p.Value.ToString()
return s

except Exception:
return String.Empty

#==
This script is executed from the DynamicToolBar in the section.
The section is an instance of SamplePreparationSection.
#==
section = editor.ActiveDocumentSection
ExportToCsvFileFormat(section, "c:\\SampleExport.csv", True)

Data Exported as CSV File
The following is the exported comma-separated-value (csv) data from the Preparation Section:
Name,Density,Structure,Role,Comments,InitialAmount,MW,MF,
FormattedMolFormula,Planned Amount,TotalAmount,FinalpH,Notes,
PreparationDate,LotNumber,Manufacturer,Grade,Expiry Date,
CorrectionFactor,SampleId,TargetReference Material,Description,
PlanAmount,Adjust,PlanConcentration,PlanMass,PlanVolume,
PlanDrugConcentration,ActualAmount,AdditionalActualAmount,
AdditionalAmountLot,ActualConcentration,DrugConcentration,
DilutionFactor
Calculation3,,,,,,,,,,1500 mL,,,,,,,,,,,
-Water,,,Total Volume,,,,,,,,,,,
-sample1,,,,,,,,52.4455 mg,,,,,,

Change the Scale Used In Calculations
You can customize the combination of units used for calculation values in a Formulation section.
Suppose you want to usemilligram and liter, which is a unit combination that is not available in the
existing scales.

Specify names for the custom values to name that aremeaningful to your team.
You can change the unit keys you specify such as UnitKey.MILLIGRAM and UnitKey.LITRE. The unit
key valuemust use the UnitKey enum type. For more information, see List of Units to choose from.
Use the same units defined for themass and volume as used in the get_event_handler and units_
match methods.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 179

Chapter 9: Sections

To change the scale:
1. In Workbook, open a Formulation Experiment and save it as a Template.
2. Select the Formulation section, and click View > Properties.
3. On the Experiment tab, in Event Scripting, select Scripts.
4. Select theOnApplicationLoaded event, and paste in a script that specifies a custom combination of

units. For more information, see Custom Scale.
5. Click OK and save the template.
6. Reload the application to fire the OnApplicationLoaded event.

The OnApplicationLoaded event fires when you reload the application.
7. Verify that your custom combination of units is available.

Script for Custom Scale
You can customize the combination of units used for calculation values in a Formulation section.
Suppose you want to usemilligram and liter, which is a unit combination that is not available in the
existing scales.
from Symyx.Framework import UnitKey
from Symyx.Notebook.Sections.Formulation import FormulationSection
from System.Windows.Forms import MessageBox

control = "ComboBox"
newScaleName = "MILLIGRAM, LITER"
propertySetDefinition = "FormulationSection"
propertySetDefinition_MassKey = CalculatedMassUnits"
propertySetDefinition_VolumeKey = "CalculatedVolumeUnits"

def get_event_handler(formulationSection):
def toolStripComboBox_SelectedIndexChanged(sender,e):

if (sender.SelectedItem.ToString().Equals(newScaleName)):
if (formulationSection.PropertySets.Contains(propertySetDefinition)

and formulationSection.PropertySets[propertySetDefinition].Contains
(propertySetDefini tion_MassKey)):

(formulationSection.PropertySets[propertySetDefinition]
[propertySetDefinition_Mas sKey]).Value = UnitKey.MILLIGRAM

if (formulationSection.PropertySets.Contains(propertySetDefinition)
and formulationSection.PropertySets[propertySetDefinition].Contains

(propertySetDefini tion_VolumeKey)):

(formulationSection.PropertySets[propertySetDefinition]
[propertySetDefinition_Vol umeKey]).Value = UnitKey.LITER
#formulationSection.View.RefreshAllDetailViews() return

toolStripComboBox_SelectedIndexChanged

def get_formulation_sections():
return [section for section in owner.Sections if isinstance(section,

FormulationSection)]

def units_match(formulationSection): return
formulationSection.PropertySets[propertySetDefinition]

Page 180 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

[propertySetDefinition_Mass Key].Value == UnitKey.MILLIGRAM \
and formulationSection.PropertySets[propertySetDefinition]

[propertySetDefinition_Volu meKey].Value == UnitKey.LITER

def configure_toolbar(formulationSection):

for bar in formulationSection.View.ToolBars:
for item in bar.Items:
if(item.GetType().ToString().Contains(control)):

comboBox = item

comboBox.Items.Add(newScaleName)
if units_match(formulationSection):

comboBox.Text = newScaleName
comboBox.SelectedIndexChanged += get_event_handler(formulationSection)

sections = get_formulation_sections()
for section in sections:

configure_toolbar(section)

Change the Scale of Calculated Values for a Formulation
You can customize the combination of units used for calculation values in a Formulation section.
Suppose you want to usemilligram and liter, which is a unit combination that is not available in the
existing scales.
1. In Workbook, open a Formulation Experiment, and save it as a Template.
2. Click the Formulation section, and click View > Properties.
3. On the Experiment tab, under Event Scripting, click Scripts.
4. Select theOnApplicationLoaded event and paste in a script that specifies a custom combination of

units. For more information, see Script for Custom Scale.
5. Click OK and save the template.
6. Reload the application to fire the OnApplicationLoaded event.
7. Verify that your custom combination of units such as MILLIGRAM and LITER is available.
8. In this example, newScaleName = "MILLIGRAM, LITER" was used, but you can set newScaleName to

any name you want.
9. The unit keys you specify such as UnitKey.MILLIGRAM and UnitKey.LITRE can be changed, but the

values must be of the UnitKey enum type. For more information, see the section entitled List of
Units to choose from.

10. The units defined for themass and volumemust be same in the get_event_handler and units_
match methods.

Script for Custom Scale
You can customize the combination of units used for calculation values in a Formulation section.
Suppose you want to usemilligram and liter, which is a unit combination that is not available in the
existing scales.

Unit Types
Chose appropriate units from the UnitKey enum.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 181

Chapter 9: Sections

Unit
Type

Description

UNDEFINED

Mass
Units

MILLIGRAM, GRAM, MICROGRAM, KILOGRAM

Volume
Units

MICROLITER, MILLILITER, LITER

Mass
Ratio

GG,MGMG, MILLIGRAMKG, NANOGRAMKG, MICROGRAMKG,
MASSPERCENT, GRAMPERHUNDREDGRAM, MASSFRACTION,
MILLIGRAMG, KGPERKG, KGPERG,KGPERHUNDREDGRAM, GRAMPERKG

DataCreation Example
Review this example to learn how to add data to Reaction Scheme and Synthetic Chemistry sections in a
document. The .NET solution for the Program.cs source code of this sample project is installed with
theWorkbook SDK in the Symyx.SDK.Samples.DataCreation example in the samples folder.
For details on how to set up and run the Symyx.SDK.Samples.DataCreation sample, navigate to
the sample directory and open Template Creation.mht in Microsoft Internet Explorer.
Program.cs contains the Mainmethod, which logs into Vault, gets the template, creates a new
document that is populated with a ReactionScheme, and adds that document to Vault.static void

Main(string[] args).
{
// Begin by enabling the application to get from Vault the latest
// versions of Workbook and Framework assemblies.
AssemblyCache.Initialize();
// Get the command line args, such as TemplateVaultPath.
// The args can be any of the ApplicationSettings ParseArguments(args);
// Set storage as offline or roaming from the application settings.
UserRepository.DefaultUserRepositoryStorageOption =
(UserRepository.UserRepositoryStorageOptions)Enum.Parse(typeof
(UserRepository.UserRepositoryStorageOptions),
ApplicationSettings.Default.UserRepositoryStorage);
// Authenticate the user from either application settings or the command
line.
LoginToVaultServer(ApplicationSettings.Default.Server,
ApplicationSettings.Default.UserName, ApplicationSettings.Default.Password);
// Set the template from the commandline or the applications settings.
Document template = GetTemplate();
// CreateDocument is most important method in this application.
Document document = CreateDocument(template);
// Finally, store the newly populated document to Vault in the folder
// that the commandline arg sets to either VaultId or VaultFolder.
AddDocumentToVault(document);
}

Page 182 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

CreateDocument Method
The CreateDocument method creates an empty document to import data into, and then fills in that
document by calling:
PopulateFormsSection(document);
PopulateMaterialsSection(materialsSection);
PopulateReactionSchemeSection(reactionSchemeSection, materialsSection);
AddNewTextSectionWithVariedRtf(document);
AddNewTextSectionWithRtfContainingImages(document);
AddNewTextSectionWithSamplePlainText(document);
AddNewTextSectionWithImage(document);
AddNewTextSectionWithStructure(document);
AddNewTextSectionWithTextAndStructure(document);
AddFileSectionWithAllDocumentTypes(document);

Here is the C# code:
public static Document CreateDocument(Document template)
{
Console.WriteLine("Creating experiment"); Document document =
Document.Create(template); document.Title = String.Format("{0}-{1}",
typeof(Program).FullName, Guid.NewGuid()); PopulateFormsSection(document);
var materialsSection = (MaterialsSection)document.Sections.Find(ds =>
ds.Title
== CHEMISTRY_SECTION_NAME);
PopulateMaterialsSection(materialsSection); var reactionSchemeSection =
(ReactionSchemeSection)FindSingleSectionByTitle(document, REACTION_
SECTION_NAME); PopulateReactionSchemeSection(reactionSchemeSection,
materialsSection);
AddNewTextSectionWithVariedRtf(document);
AddNewTextSectionWithRtfContainingImages(document);
AddNewTextSectionWithSamplePlainText(document); AddNewTextSectionWithImage
(document); AddNewTextSectionWithStructure(document);
AddNewTextSectionWithTextAndStructure(document);
AddFileSectionWithAllDocumentTypes(document);
Console.WriteLine("Creating experiment...done"); return document;

}

Reaction Scheme C# Examples
The following C# example shows how to:

Find the reaction scheme in a document
List the contents
Add a reaction
Add and remove reaction steps
Remove the reaction scheme

public void DocumentationTest()
{

Document template = new Document();
template.Add(new ReactionSchemeSection(){Title = "My Scheme"});

// To add a material section that could be linked to
// the reaction scheme section,

BIOVIA Workbook 2021 • SDK Developers Guide | Page 183

Chapter 9: Sections

template.Add(new MaterialSection());
Document document = Document.Create(template);

// Finding the reaction scheme in a document by looking in the
// document sections, which is what ds stands for

ReactionSchemeSection schemeSection = document.Find(ds => ds.Title == "My
Scheme") as ReactionSchemeSection;
//Listing the contents

IList<ReactionStep> stepsToBeRemoved=new List<ReactionStep>();
if (schemeSection != null)
{
ChemistryModel.ReactionScheme scheme = schemeSection.ReactionScheme;
string rxnFormatOne = ResourceLoader.LoadResource

("Symyx.Notebook.Sections.ReactionScheme.Tests.Reactions.
MultiStep.Experiment_186_1.Step1.rxn");

string rxnFormatTwo = ResourceLoader.LoadResource
("Symyx.Notebook.Sections.ReactionScheme.Tests.Reactions.
MultiStep.Experiment_186_1.Step2.rxn");
// In this case, we have aliased a namespace: using
//ChemistryModel = Symyx.Notebook.Sections.ReactionScheme.Chemistry;

ChemistryModel.ReactionStep reactionStepOne = new
ChemistryModel.ReactionStep();

reactionStepOne.Reaction.ReactionFile = rxnFormatOne;
// adding a reaction step

scheme.Add(reactionStepOne);
ChemistryModel.ReactionStep reactionStepTwo = new

ChemistryModel.ReactionStep(); reactionStepOne.Reaction.ReactionFile =
rxnFormatTwo;

scheme.Add(reactionStepTwo);
// Removing reaction steps:
// if the reaction steps has more than ten children
// (reactants or products), remove its steps

foreach (var step in scheme.Steps)
{
if(step.ChildrenCount>10)
{
stepsToBeRemoved.Add(step);

}
}

foreach (var step in stepsToBeRemoved)
{
scheme.Remove(step);

}
// clear the reaction scheme

scheme.Clear();
}

}

Locate the Reaction Scheme Section
The CreateDocumentmethod, called by Main, locates the reaction scheme section by calling
FindSingleSectionByTitle.
public static Document CreateDocument(Document template)
{

Page 184 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 9: Sections

Console.WriteLine("Creating experiment");
Document document = Document.Create(template);
document.Title = String.Format("{0}-{1}", typeof(Program).FullName,

Guid.NewGuid()); PopulateFormsSection(document);
var materialsSection = (MaterialsSection)document.Sections.Find(ds =>

ds.Title == CHEMISTRY_SECTION_NAME);
PopulateMaterialsSection(materialsSection);
var reactionSchemeSection =

(ReactionSchemeSection)FindSingleSectionByTitle(document,REACTION_SECTION_
NAME);

Locate a Reaction Step
The CreateDocument method calls the PopulateReactionSchemeSection method, which locates a
reaction step by calling Find for a step in the ReactionStep list.
public static void PopulateReactionSchemeSection(ReactionSchemeSection
reactionSection, MaterialsSection materialsSection)
{

var step1 = new List<ReactionStep>
(reactionSection.ReactionScheme.Steps).Find(s=> s.Name == "Step 1");

step1.Description = "Adenine alkylation in DMF, 140 C";
step1.DisplayReaction = ReadFile(@"Resources\HPA.rxn");
ReactionParticipantStep step1Reactant1 = newList<ReactionParticipantStep>

(step1.Reactants)[0];

Add a Reaction Step
Use Find because we already have a first step:
var step1 = new List<ReactionStep>
(reactionSection.ReactionScheme.Steps).Find(s => s.Name == "Step 1");

You must construct the other steps.
var step2 = new ReactionStep();

If your template already has steps, you can find them, and do not need to construct them.

Add a Reaction From a File
Use Find to get the first step.
var step1 = new List<ReactionStep>
(reactionSection.ReactionScheme.Steps).Find(s => s.Name == "Step 1");
step1.Description = "Adenine alkylation in DMF, 140 C";
step1.DisplayReaction = ReadFile(@"Resources\HPA.rxn");
ReactionParticipantStep step1Reactant1 = new List<ReactionParticipantStep>
(step1.Reactants)[0]; [...]

Assign the content of the reaction file to the DisplayReaction property, and then import legacy data
to the row.
PopulateReactionSchemeSection adds a reaction file by reading in the rxnfile to a
DisplayReaction, and then calling ModifyRow to update the fields.
step2.DisplayReaction = ReadFile(@"Resources\PMPA diethyl ester.rxn");
ReactionParticipantStep step2Reactant1 = new List<ReactionParticipantStep>
(step2.Reactants)[0];
ModifyRow(step2Reactant1.Material, "(2R)-1-(6-aminopurin-9-yl)propan-2-ol",

BIOVIA Workbook 2021 • SDK Developers Guide | Page 185

Chapter 9: Sections

null, null, new Quantity(95.50, 4, UnitKey.MASSPERCENT), true, null, "C",
null, new Quantity(190.0, 4, UnitKey.MILLIGRAM), new Quantity(190.0, 4,
UnitKey.MILLIGRAM), new Quantity(0.9391, 5, UnitKey.MILLIMOLE), new Value
(1.000, 4), new Measurement(new Value(190.0, 4), UnitKey.MILLIGRAM), new
Quantity(0.9391, 5, UnitKey.MILLIMOLE));
ReactionParticipantStep step2Reactant2 = new List<ReactionParticipantStep>
(step2.Reactants)[1];
ModifyRow([...])

Link Corresponding Materials Section
The reaction scheme section can have a linked materials section.
The CreateDocumentmethod calls the PopulateReactionSchemeSectionmethod that associates
a reactionSchemeSectionwith a materialsSection, as shown in the following example:
PopulateReactionSchemeSection(reactionSchemeSection, materialsSection);

Add a Material Using AddRow
Reaction and materials are linked as follows:
var materialsSectionMaterial = materialsSection.Materials.Find
(participantStep.MaterialId);

The first row for materials exists in theMaterials section. As a result, Workbook uses the ModifyRow
method modify to enable adding thematerial details. You can also use the AddRowmethod, as follows:
public static void PopulateMaterialsSection(MaterialsSection
materialsSection)

Modify a Material
The reaction file puts some of the values in thematerials row. To import from a legacy location, the data
about a reaction file that is external to the rxnfile.
You can use the PopulateReactionSchemeSectionmethod to modify thematerial used in a
reaction step.
public static void ModifyStepMaterial(ReactionSchemeSection reactionScheme,
MaterialsSection materialsSection, ReactionParticipantStep participantStep,
string name, string structureFilename, string role, Quantity? purity, bool?
lr, int? sc, string label, string step, Quantity? planAmount, Quantity?
planCalcMass, Quantity? planCalcMoles, Value? planCalcEquiv, Measurement
actAmount, Quantity? actCalcMoles)

Page 186 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 10:
Build and Debug a Custom .NET Assembly
When building your custom .NET assembly in an IDE, you might need to debug the assembly.
To debug your assembly:

Set the Build Output Path to the folder containing the Symyx.Notebook.Application.exe.
Make the Symyx.Notebook.Application.exe the start up program in the IDE.
Run the project from within the IDE to launch Workbook.
Set a breakpoint in the IDE, run the scripts that calls your assembly.
The IDE stops before it executes the breakpoint line.
From within the debugger, you can read all of the properties of the objects passed to your method.

Visual Studio supports Edit and Continue that enables typing and executing changes without the need
to stop the debugging session and re-compile.
The open source #develop enables editing from within the debugger, but does not execute the changes
until you have stopped debugging and recompiled them.

IronPython Script For Calling a Custom Assembly Example
The following example illustrates using an IronPython script to call a custom .NET assembly. The
example shows importing custom records into any section based on aMaterials section such as a
section for Synthetic Chemistry, Analytical Materials, Formulation Materials, or RecipeMaterials.

Set Up the Example
To set up the example:
1. Create a Microsoft Visual Studio class library project named TestImportHooks with a class named

ImportDataTestClass.
2. Add the following References:

Symyx.Framework
Symyx.Framework.Controls
Symyx.Notebook
Symyx.Notebook.Sections.Table
symyx.windows
System System.Core System.Data
System.Data.DataSetExtensions System.Windows.Forms System.Xml
System.Xml.Linq

3. Paste the following code:
using System;
using Symyx.Windows;
using System.Windows.Forms; using Symyx.Framework.Vault;
using Symyx.Notebook.Sections.Table;

namespace TestImportHooks

BIOVIA Workbook 2021 • SDK Developers Guide | Page 187

Chapter 10: Build and Debug a Custom .NET Assembly

{
/// <summary>
/// Demonstrate that the hooks allow us to attach a menu item to the
/// import and to use a click event on that item to import data.
/// The section used MUST be a table section with the sample
identification PSD applied.
/// Compile with .NET Framework 3.5.1 or 4.5.2 into an assembly named
TestImportHooks.
/// </summary>

public class ImportDataTestClass : ToolStripMenuItem
{

private int invokeCount_;
private TableSection tableSection_;

/// <summary>
/// Set up the menuItem
/// </summary>
/// <param name="section"></param> public void SetUp(TableSection
section)

{
tableSection_ = section;
Text = "Import From TestCase"; ToolTipText = "Click me to import

data"; Click += ImportHooksTestClass_Click;
}

/// <summary>
/// Demonstrate import using external code.
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>

void ImportHooksTestClass_Click(object sender, EventArgs e)
{

var view = tableSection_ != null ? tableSection_.View as
DefaultTableSectionView : null;

if (view != null)
{

read
// Accumulate a series of records to import
// from file or a service. The data is
// an integer that is incremented.

++invokeCount_; // increment the number to display for new row

// You might use
// fixed mapping like this or use a mapping dialog.

var row = view.Table.CreateBlankRow(); if (row != null)
{

apply

Page 188 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 10: Build and Debug a Custom .NET Assembly

display a number
// Iterate through the collected records,
// the mapping, and add the values row.PropertySets.SetValue("SampleId",
invokeCount_); //

var newRow = view.Table.AddRow() as VaultObject; if (newRow != null)
{

newRow.CopyFrom(row as VaultObject);
}
}

// Make the most recently used menu item the default
view.SetAsDefaultImportButton(this);

}
}

/// <summary>
/// Clean up.
/// </summary>
/// <param name="disposing"></param>

protected override void Dispose(bool disposing)
{

base.Dispose(disposing);>
Click -= ImportHooksTestClass_Click;

}
}

}

4. Copy the newly created TestImportHooks.dll to the bin subdirectory of your Workbook client
application.

5. Add the IronPython script that calls your custom assembly. Use the following:
import System
import clr
aso = System.Reflection.Assembly.LoadFrom('TestImportHooks.dll')
clr.AddReference('TestImportHooks')
from TestImportHooks import ImportDataTestClass

menuItem = ImportDataTestClass()
menuItem.SetUp(sender.ActiveDocumentSection)
sender.ActiveDocumentSection.View.AddToImportDropDown(menuItem)

6. Select the OnSectionActivated event.
To restrict the script to a specific section, your codemust check the name of the section. This example
does not check the section name.

Test the Example
To test the example:
1. In Workbook, click the Synthetic Chemistry section.
2. Click the Import From list, and select Import From TestCase.

A row is created that displays the incremented row count in the leftmost column.

Note: The item most recently chosen from the Import From list becomes the default.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 189

Chapter 10: Build and Debug a Custom .NET Assembly

C# Code for Importing Custom Data
using System;
using Symyx.Windows;
using System.Windows.Forms;
using Symyx.Framework.Vault;
using Symyx.Notebook.Sections.Table;

namespace TestImportHooks
{
/// <summary>
/// Demonstrate that the hooks allow us to attach a menu item to the
/// import and to use a click event on that item to import data.
/// The section used MUST be a table section with the sample
/// identification PSD applied.
/// Compile with .NET Framework 3.5.1 or .NET 4.5.2 into an assembly named
/// TestImportHooks.
/// </summary>

public class ImportDataTestClass : ToolStripMenuItem
{

private int invokeCount_;
private TableSection tableSection_;

/// <summary>
/// Set up the menuItem
/// </summary>
/// <param name="section"></param>
public void SetUp(TableSection section)
{

tableSection_ = section;
Text = "Import From TestCase";
ToolTipText = "Click me to import data";
Click += ImportHooksTestClass_Click;

}

/// <summary>
/// Demonstrate import using external code.
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
void ImportHooksTestClass_Click(object sender, EventArgs e)
{

var view = tableSection_ != null ? tableSection_.View as
DefaultTableSectionView : null;

if (view != null)
{

read
// Accumulate a series of records to import from file or a
// service. Use the following data:
// an integer we increment.
++invokeCount_;
// increment the number to display for new row

Page 190 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 10: Build and Debug a Custom .NET Assembly

// You might have fixed mapping like this or a mapping dialog.
var row = view.Table.CreateBlankRow();
if (row != null)
{

// Here you would iterate through the collected records,
//apply the mapping and add the values
row.PropertySets.SetValue("SampleId", invokeCount_);
// display a number
var newRow = view.Table.AddRow() as VaultObject;
if (newRow != null)
{
newRow.CopyFrom(row as VaultObject);

}
}
// Make the most recently used menu item the default
view.SetAsDefaultImportButton(this);

}
}

/// <summary>
/// Clean up
/// </summary>
/// <param name="disposing"></param>
protected override void Dispose(bool disposing)
{
base.Dispose(disposing);
Click -= ImportHooksTestClass_Click;

}
}

}

Publish a Custom .NET Assembly
After you have tested your .NET assembly and profiled its performance, see Script Performance Profile,
you can publish the .NET assembly for deployment. Publishing an assembly upload the assembly to
Vault. Once published the custom assembly is immediately accessible by all Workbook client computers,
use caution when publishing changes to your production server.

Call an External Assembly with IronPython
import System
import clr
aso = System.Reflection.Assembly.LoadFrom('TestImportHooks.dll')
clr.AddReferenc('TestImportHooks')
from TestImportHooks import ImportDataTestClass
menuItem = ImportDataTestClass()
menuItem.SetUp(sender.ActiveDocumentSection)

sender.ActiveDocumentSection.View.AddToImportDropDown(menuItem)

BIOVIA Workbook 2021 • SDK Developers Guide | Page 191

Chapter 10: Build and Debug a Custom .NET Assembly

AssemblyCache.Publish Method
You can create a program that uses the AssemblyCache.Publishmethod to publish your assemblies
to BIOVIA Vault Server.
1. Create a console application and change the target .NET version to .NET 3.5.1 or 4.5.2. Set the

Target CPU to X86.
2. Add the following Workbook assemblies to the bin folder of your .NET assembly:

Symyx.Framework.dll

Accelrys.AEP.Authentication.dll

3. Add the following lines of code to the application:
In Visual Basic .NET:
Imports Symyx.Framework.Vault
Imports Symyx.Framework.Extensibility

Module Module1
Sub Main()

LogIn()
Publish()

End Sub

Sub Publish()
Dim assembly = System.Reflection.Assembly.LoadFile("D:\Projects\Visual

Studio\CompanyName.ProjectName\CompanyName.ProjectName\bin\Debug\Company
Name.Proj ectName.dll")

If (AssemblyCache.IsPublished(assembly)) Then
Throw New ApplicationException("Assembly has already been

published. Increment the assembly version number and try again.")
Else

AssemblyCache.Publish(assembly)
End If

End Sub

Sub LogIn()
Dim workspace = New VaultWorkspace("servername")
Dim loginState = workspace.Login("domain\username", "password")

If (loginState = AuthenticationState.Yes) Then
workspace.MakeCurrentWorkspace()

Else
Throw New ApplicationException("Login failed.")

End If
End Sub

End Module

In C#
using System;
using Symyx.Framework.Extensibility;
using Symyx.Framework.Vault;

Page 192 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 10: Build and Debug a Custom .NET Assembly

namespace CompanyName.AssemblyPublisher
{

class Program
{

public static void Main(string[] args)
{

LogIn();
Publish();

}

private static void Publish()
{

var assembly = System.Reflection.Assembly.LoadFile
(@"D:\Projects\Visual
Studio\CompanyName.ProjectName\CompanyName.ProjectName\bin\Debug\Company
Name.ProjectName.dll");

if (AssemblyCache.IsPublished(assembly))
{

throw new ApplicationException(@"Assembly has already been
published. Increment the assembly version number and try again.");

}
else
{

AssemblyCache.Publish(assembly);
}

}

private static void LogIn()
{

var workspace = new VaultWorkspace(@"servername");
var loginState = workspace.Login(@"domain\username", @"password");

if (loginState == AuthenticationState.Yes)
{

workspace.MakeCurrentWorkspace();
}
else
{

throw new ApplicationException(@"Login failed");
}

}
}

}

4. Replace the assembly path with the path to your assembly.
5. Replace server name, domain\user name, and password with your login credentials.
6. After your compile and build the console application, you can use the application to publish your

assembly to BIOVIA Vault Server.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 193

Chapter 10: Build and Debug a Custom .NET Assembly

List Assemblies in Vault
Assemblies published to Vault are stored in the Site repository as VaultObjects whose Titles are the fully
qualified type names of the assemblies. You can use a Console Application to list the assemblies in the
Site repository similar to the one you used for publishing assemblies in with the AssemblyCache.Publish
method. This example uses the ListAssemblies method:
Visual Basic .NET:
Sub ListAssemblies()
Dim assemblies = VaultWorkspace.Current.SiteRepository.Get
(VaultObjectTypes.Assembly, DataScope.Minimal)

For Each assembly As VaultObject In assemblies Console.WriteLine
(assembly.Titlep)Next

Console.WriteLine("Press any key to continue...") Console.ReadKey()

End Sub

C#:
private static void ListAssemblies()

{
var assemblies = VaultWorkspace.Current.SiteRepository.Get

(VaultObjectTypes.Assembly, DataScope.Minimal);

foreach (var assembly in assemblies)
{

Console.WriteLine(assembly.Title);
}
Console.WriteLine(@"Press any key to continue..."); Console.ReadKey

();
}
}

Publishing Referenced .NET Assemblies
When you are using a .vozip file or using the AssemblyCache.Publish method to publish your
assembly, if your assembly contains a reference to another .NET assembly, then publishing your
assembly also publishes the referenced assembly.
When theWorkbook client loads the CompanyName.ProjectName.dll, the
CompanyName.ProjectName.CommonFunctions.dll is also downloaded.
If the referenced version of CompanyName.ProjectName.CommonFunctions.dll already exists in
Vault, then CompanyName.ProjectName.CommonFunctions.dll is not published, and
CompanyName.ProjectName.dll is linked with the existing
CompanyName.ProjectName.CommonFunctions.dll. TheWorkbook client loads that
CompanyName.ProjectName.CommonFunctions.dllwith CompanyName.ProjectName.dll.
When publishing assemblies it is important that all referenced assembly version numbers are correct. If
CompanyName.ProjectName.CommonFunctions.dll has changed, then apply new version number
at the time you publish CompanyName.ProjectName.dll.

Page 194 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 10: Build and Debug a Custom .NET Assembly

Publish a New Version of a .NET Assembly
To make changes available to end users, you must publish the new version. Do this from the Assembly
Information screen in Visual Studio.

Note: By default, #develop generates a new version number with every compile. The same version
number cannot be used more than once.

Unpublish an Assembly
Vault has no facility to remove or unpublish a .NET assembly. For this reason and others, it is important
to maintain a copy of the source code for every .NET assembly version that you publish. To back out a
published version, get the copy of the earlier version, and then recompile and republish that earlier
version. When you recompile the earlier version, it is assigned a new version number.

List of Assemblies in Vault
Assemblies published to Vault are stored in the Site repository as VaultObjects fully qualified type names
of the assemblies as titles. You can use a console application to list the assemblies in the Site repository
similar to the one you used for publishing assemblies.

In Visual Basic .NET
Sub ListAssemblies()

Dim assemblies = VaultWorkspace.Current.SiteRepository.Get
(VaultObjectTypes.Assembly, DataScope.Minimal)

For Each assembly As VaultObject In assemblies
Console.WriteLine(assembly.Title)

Next

Console.WriteLine("Press any key to continue...")
Console.ReadKey()

End Sub

In C#
private static void ListAssemblies()
{

var assemblies = VaultWorkspace.Current.SiteRepository.Get
(VaultObjectTypes.Assembly, DataScope.Minimal);

foreach (var assembly in assemblies)
{

Console.WriteLine(assembly.Title);
}
Console.WriteLine(@"Press any key to continue...");
Console.ReadKey();

}

BIOVIA Workbook 2021 • SDK Developers Guide | Page 195

Chapter 11:
Workflow Designer
Aworkflow is a sequence of activities that achieve a specific organizational goal. For example, a workflow
can define how documents are reviewed, approved, and archived. Aworkflow can also send
notifications to reviewers and create a task list for reviewers.
TheWorkflowDesigner allows you to create a workflow. The workflow appears in the design pane, the
toolbox pane contains the workflow activities, and the properties pane shows an activity’s properties.
For more information, see theWorkflowDesigner Help.
Aworkflow contains a number of activities. Example activities include InvokeWebServiceActivity
and HandleExternalEventActivity. The ActivityBase class is the base class and is the
fundamental building block for the activities available in WorkflowDesigner. You can create your own
custom workflow activities to perform a task that is not present in the supplied activities.

Vault objects
Workflow interacts with Vault workspaces and other objects. The SDK Help describes themethods and
properties for working with a Vault workspace, see the Symyx.Framework.Vault.Workspace class,
and the Vault objects, see the Symyx.Framework.Vault.VaultObject class in the.

Custom Workflow Activities
You create a custom workflow activity to perform a task that cannot be done using one of the standard
activities listed in theWorkflowDesigner toolbox. The example in this section shows a simple custom
workflow activity that sets a Vault object description, and illustrates how you use the C# workflow
activity template that ships with the Symyx Framework SDK.
For more information, see how to send a message to a Microsoft MSMQ queue in the product
documentation. For more information about Vault workflows, see Vault Workflow in the Vault Server
Administrative Tools Guide.

Prerequisites
You should be familiar with:

Microsoft Visual Studio
Microsoft C# programming
Microsoft Windows system administration
TheWorkflowDesigner
The Administration Console
Notebook Explorer
The SDK

Before you can create a custom workflow activity, you must install:
Microsoft .NET Framework 3.5 SP1 or 4.5.2
Microsoft Visual Studio 2010 or later.

Page 196 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 11: Workflow Designer

The SDK
TheWorkflowDesigner

If you want to run the example, you must also have access to a server running:
Vault
Microsoft MSMQ

Create a Custom Workflow Activity
The OnExecutemethod in the code contains the custom activity functionality. The OnExecutemethod is
called when the activity is run by the Vault Workflow service. The class also contains a call to the
GetLoggermethod that writes messages to the log. For more information, see Change the Logging
Level.
WorkflowDesigner requires placing your dll in the C:\Program Files\Symyx\SymyxWorkflow

Designer<version_number>\Designer folder.
The Symyx.Workflow.ExampleActivity custom workflow activity is located in the SDK samples
folder.

Note: If a custom workflow activity name does not end with the word Activity, an error displays when
you open the workflow in theWorkflowDesigner.

1. Start Visual Studio.
2. Choose File >New > Project.
3. Verify that the Project types tree is expanded, and the Visual C# > Symyx >

Symyx.Workflow.ExampleActivity is visible.

Note: The Symyx.Workflow.ExampleActivity template is added after you install the Symyx
Framework SDK.

4. Click Symyx.Workflow.ExampleActivity.
5. Enter a Name, for example, Symyx.Workflow.MyExampleActivity.

The name of the activity assembly must match the pattern of Symyx.Workflow.*Activity. The file
names Symyx.Workflow.MyExampleActivity.dll and
Symyx.Workflow.PutStageInFormActivity.dll are valid, but a name like
Symyx.SDK.Workflow.MyExampleActivity.dll is not valid.

6. Specify a Location, for example, C:\MyExampleActivity.
7. Verify that the Solution Name is correct, for example, Symyx.Workflow.MyExampleActivity.
8. Click OK.
9. In the Solution Explorer, right-click ExampleActivity.cs, and change the file name to

MyExampleActivity.cs.
10. In the Solution Explorer, double-click Properties.
11. Click Application.
12. Verify that the Assembly name is set to Symyx.Workflow.MyExampleActivity.
13. Verify that theDefault namespace is set to Symyx.Workflow.
14. Verify that the Target Framework is set to .NET Framework 3.5.1 or 4.5.2
15. In the Solution Explorer, right-clickMyExampleActivity.cs, and choose View Code.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 197

Chapter 11: Workflow Designer

16. Examine the code that contains the definition of the MyExampleActivity class.
17. Choose File > Save All.
18. In the Solution Explorer, double-click Properties.
19. Click Application > Assembly Information.
20. Set the title, for example, MyExampleActivity.
21. Set the left three numbers of the Assembly Version number to 1.0.0.
22. Set the right number to 1.

Note: Every time you compile a new version of the assembly included in a published workflow,
you must increment the right number of the version by one to ensure that the latest dll is loaded
for your activity by the Vault Workflow service.

23. Click OK.
24. In the Solution Explorer, double-click Properties > Signing.
25. Select Sign the assembly.
26. ChooseNew, enter the file name, for example, MyExampleActivity.snk.
27. Remove the check from the password protection option, and click OK.
28. Verify that Delay sign only is not selected.

Configure the Build Location for Your DLL
To configure Visual Studio to build the dll directly in the \\Workflow Designer\Designer folder:
1. In the Solution Explorer, double-click Properties.
2. Choose Build.
3. Set theOutput path to C:\Program Files\Symyx\Symyx Workflow Designer <version_

number>\Designer.
4. Click OK.

Note: If you do not want to set the Output path as specified in the previous steps, you must
copy the activity DLL to C:\Program Files\Symyx\Symyx Workflow Designer

<version_number>\Designer after you have built the dll. You might want to do that if you
are running WorkflowDesigner on a different computer from Visual Studio.

5. Choose File > Save All.
6. Choose Build > Build Solution.
7. Verify that a dll named, Symyx.Workflow.MyExampleActivity.dll, was saved in the

C:\Program Files\Symyx\Symyx Workflow Designer <version_number>\Designer

folder.

Custom Activity OnExecute Method
The OnExecutemethod in the code contains the custom activity functionality. The OnExecute
method is called when the activity is run by the Vault Workflow service. The MyExampleActivity class
also contains a call to the GetLoggermethod that writes messages to the log
The OnExecutemethod sets the description of the Vault object currently processed by theWorkflow
service to set by MyExampleActivity, for example, after processing a document object, the
document’s description is updated.

Page 198 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 11: Workflow Designer

namespace Symyx.SDK.Workflow
{
/// <summary>
/// Example activity
/// </summary>
[ToolboxItem(typeof(ActivityToolboxItem))]
[Description("MyExampleActivity")]
public class MyExampleActivity: ActivityBase
{
#region privates
private static readonly log4net.ILog log = log4net.LogManager.GetLogger

(System.Reflection.MethodBase.GetCurrentMethod(). DeclaringType);
#endregion privates
/// <summary>
/// Initializes a new instance of <see cref="MyExampleActivity"/>
/// </summary>
public MyExampleActivity()
{
Name = "MyExampleActivity";

}

/// <summary>
/// The OnExecute method is run when the custom activity is run
/// by the Vault Workflow service.
/// </summary>
/// <param name="context">The context for the activity
/// execution.</param>
protected override void OnExecute(ActivityExecutionContext context)
{
try
{
// get the current Vault object being processed by the Workflow
// service from the Workspace object
VaultObject exampleObject = Workspace.Get(new VaultId

(ActivityObjectId), DataScope.Properties);
if (exampleObject != null)
{
// update the Vault object description and save it to Vault
exampleObject.Description = "set by MyExampleActivity";
Workspace.Update(exampleObject, SaveBehavior.PropertiesOnly);

}
}
catch (Exception ex)
{
if (log.IsErrorEnabled)
{
log.ErrorFormat(string.Format("MyExampleActivity failed to processed

OnExecute for object ID {0}",ActivityObjectId), ex);
}

}
}

}
}

BIOVIA Workbook 2021 • SDK Developers Guide | Page 199

Chapter 11: Workflow Designer

The following line in the previous code saves the updated object to Vault:
Workspace.Update(exampleObject, SaveBehavior.PropertiesOnly);

Configure Workflow Designer to Use a Custom Activity
1. Using a text editor.
2. Open the Symyx.Workflow.Designer.exe.config file located in WorkflowDesigner

installation folder.
3. Add Symyx.SDK.Workflow.MyExampleActivity.dll to the ReferencedAssemblies

section of the Symyx.Workflow.Designer.exe.config file:
<setting name="ReferencedAssemblies" serializeAs="Xml">

<value>
<ArrayOfString xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<string>Symyx.Workflow.BasicEvents.dll</string>
...
<string>Symyx.SDK.Workflow.MyExampleActivity.dll</string>

</ArrayOfString>
</value>

</setting>

4. Add the name of the DLL to the ToolboxItems section of the
Symyx.Workflow.Designer.exe.config file:
<setting name="ToolboxItems" serializeAs="Xml">

<value>
<ArrayOfString xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<string>System.Workflow.Activities.CallExternalMethodActivity,

System.Workflow.Activities</string>
...
<string>Symyx.SDK.Workflow.MyExampleActivity,

Symyx.SDK.Workflow.MyExampleActivity</string>
</ArrayOfString>

</value>
</setting>

The first Symyx.SDK.Workflow.MyExampleActivity contains the Symyx.SDK.Workflow
namespace plus the MyExampleActivity class name . The second
Symyx.SDK.Workflow.MyExampleActivity contains the assembly DLL name.

5. Save and close the file.
6. Start WorkflowDesigner.
7. Verify that MyExampleActivity is displayed in the toolbox.

Add a Custom Activity to a Workflow
Note: If a custom workflow activity name does not end with the word Activity, an error displays when
you open the workflow in theWorkflowDesigner.

To add a custom activity:

Page 200 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 11: Workflow Designer

1. In WorkflowDesigner, open an existing workflow.
2. Click Yes in response to the error to load the activity.

If you are opening a workflow that contains a custom activity, an error displays stating that the
activity is not loaded.

3. Double-click an activity.
4. Drag and dropMyExampleActivity from the toolbox to a position inside the activity.
5. In Properties, click the ... button next to ActivityObjectId.
6. Select ObjectID and click OK to bind ActivityObjectId.

The ID represents the Vault object that is processed by theWorkflow service when the workflow is
run. For example, if the workflow processes a document, then the custom activity updates the
description of that document.

7. Save the workflowwith a different name from the original workflow file.

Custom Workflow Activity Example
The example shows how to create and execute a custom workflow activity named the Print Report
activity. The example works as follows:
When a document is created in Notebook Explorer, a workflow containing the Print Report activity is
run. The Print Report activity sends a message to a Microsoft MSMQ queue.
TheMSMQmessage is read by a program named the Print Report Console. The Print Report Console
then runs a program named the Report Printer.
The Report Printer generates a PDF containing the document details, using a layout specified in a report
template.
In the Print Report custom workflow activity, the dependency properties do the following:

Record theMicrosoft MSMQ queue namewhere the request to print the report is sent.
Record the report template ID.
The report template contains the layout for the PDF report. You can also use a report definition ID.

The Report queue name property is dependency property with two parts:
An object of the class DependencyProperty.
A string with get and set methods for the DependencyProperty object.

The following example defines a DependencyProperty public static object named QueueNameProperty.
public static DependencyProperty QueueNameProperty =
DependencyProperty.Register("QueueName", typeof(string), typeof
(PrintReportActivity), new PropertyMetadata(@".\Private$\PrintReports"));

The following example defines a string named QueueName that is exposed to WorkflowDesigner. The
object contains get and set methods for QueueNameProperty, for example:
[Description("Report queue name")] [Category("Dependency Properties")]
[Browsable(true)]
[DesignerSerializationVisibility(DesignerSerializationVisibility.Visible)]
public string QueueName
{
get { return (string)GetValue(QueueNameProperty); }
set { SetValue(QueueNameProperty, value); }
}

BIOVIA Workbook 2021 • SDK Developers Guide | Page 201

Chapter 11: Workflow Designer

Compile and Publish a Workflow
1. ChooseWorkflow > Publish Workflow.
2. Click Compile.
3. Click Publish.
4. Log in to BIOVIA Vault Server, and click OK.
5. Enter a title and description for your workflow.
6. Click OK.

Note: You cannot re-publish a workflow that uses the same name as another workflow in the Vault
database. You must copy your existing workflow files, rename them, and then compile and publish
the newworkflowwith the new name. You must also create a newworkflow association for the new
workflow.

Change the Vault Logging Level
Vault provides logging features that enable you to debug workflows.
To add logging for the Symyx.SDK namespace:
1. Using a text editor, open the Symyx.Workflow.Service.exe.config configuration file located

in the folder in which the workflow service is installed
2. Go to the log4net section in the configuration file.
3. Locate the following section within the log4net section:

<logger name="Symyx.Workflow">
<level value="ERROR"/>
<appender-ref ref="Symyx.Workflow.FileLogger.Debug"/>

</logger>

4. Add the following appender and logger sections immediately after the previous logger section, and
set the log level you want, for example, DEBUG:
<appender name="Symyx.SDK.FileLogger.Debug"
type="log4net.Appender.RollingFileAppender, log4net, Version=1.2.10.0,
Culture=neutral, PublicKeyToken=1b44e1d426115821">

<param name="File" value="C:\VaultLogs\Symyx.SDK.log"/>
<param name="AppendToFile" value="true"/>
<param name="MaxSizeRollBackups" value="10"/>
<param name="MaximumFileSize" value="500000"/>
<param name="RollingStyle" value="Size"/>
<param name="StaticLogFileName" value="true"/>
<layout type="log4net.Layout.PatternLayout">

<param name="ConversionPattern" value="%-5p %d [%t] %c [%x] -
%m%n"/>

</layout>
</appender>

<logger name="Symyx.SDK">
<level value="DEBUG"/>
<appender-ref ref="Symyx.SDK.FileLogger.Debug"/>

</logger>

You can also enable debug logging for the Symyx.Workflow namespace by setting the level to DEBUG:

Page 202 | BIOVIA Workbook 2021 • SDK Developers Guide

Chapter 11: Workflow Designer

<logger name="Symyx.Workflow">
<level value="DEBUG"/>
<appender-ref ref="Symyx.Workflow.FileLogger.Debug"/>

</logger>

Enter the following commands in a command window:
net stop "Vault Workflow Service"
net stop " Vault Message Processing Service"
net start "Vault Message Processing Service"
net start "Vault Workflow Service"

The SDK log file is located in the C:\VaultLogs\Symyx.SDK.log, that contains log messages after
you run a workflow containing the Print Report activity or any other class in the Symyx.SDK
namespace.
The file is located in the SymyxWorkflow file at C:\VaultLogs\SymyxWorkflow.log.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 203

Appendix A:
Potentially Breaking API Changes in Workbook
2018
IMPORTANT! If you are upgrading from a pre-2018 release ofWorkbook, it is important to retest your
customizations to ensure that they still work correctly.

Workbook 2018 contained some potentially breaking API changes related to DevExpress APIs.
DevExpress is a third-party product used in Workbook to handle certain UI elements. To support the
.NET 4 runtime environment introduced in Workbook 2018, it was necessary to upgrade from
DevExpress 8.2.6 to DevExpress 16.1.8.
As a consequence of this upgrade, BIOVIA found the following:

Objects previously compiled using DevExpress 8.2.6must be recompiled using DevExpress 16.1.8.
Some code that uses DevExpress objects without directly referencing the DevExpress DLLs still works,
but some does not, depending on how the DevExpress objects are used. Some differences in
behavior are obvious, but others aremore subtle.

These issues might necessitateminor modifications, recompilation, and redeployment of your
customizations.
This appendix provides some observations that might help you with this effort.

Cannot Populate Container Until DevExpress Constructor Completes
The DevExpress constructor, which triggers the "Initialize" or "OnInitialize" methods, must now be
completed before the associated container can be populated with data. The 'OnInitialize' methods are
not explicitly called, but they are attached to the control's constructor.
Example: Pre-2018
The following example code that worked in previous releases will no longer work with Workbook 2018 or
later:
public class PageWithControls : PropertyPage
{

private DevExpress.XtraGrid.GridControl _gridControl1;

// This constructor is called when the page is requested. It builds the
page, and calls helpers to build each component as needed.

public PageWithControls()
{

Title = "Bad Page";
Control = new CustomizedGridControl();

}
}

public class CustomizedGridControl : DevExpress.XtraGrid.GridControl
{

// This constructor is called when a CustomizedGridControl is added to
the page currently being built.

public CustomizedGridControl()
{

_gridControl1 = new DevExpress.XtraGrid.GridControl()

Page 204 | BIOVIA Workbook 2021 • SDK Developers Guide

Appendix A: Potentially Breaking API Changes in Workbook 2018

{
// CSS, size, margins, titles, event handlers, etc.

};
_gridControl1.DataSource = new List<string>() { "Value1", "Value2",

"Value3" }; // this line is the problem, as it's assigning data inside the
constructor

}
}

Example: Updated for 2018 - Approach 1
In the following example, the code has been updated by assigning the data after the constructor is
complete:
public class PageWithControls : PropertyPage
{

private DevExpress.XtraGrid.GridControl _gridControl1;

// This constructor is called when the page is requested. It builds the
page, and calls helpers to build each component as needed.

public PageWithControls()
{

Title = "Good Page";
Control = new CustomizedGridControl();
// The control has now been initialized, so we can assign data to it

here
_gridControl1.DataSource = new List<string>() { "Value1", "Value2",

"Value3" };
}

}

public class CustomizedGridControl : DevExpress.XtraGrid.GridControl
{

// This constructor is called when a CustomizedGridControl is added to
the page currently being built.

public CustomizedGridControl()
{

_gridControl1 = new DevExpress.XtraGrid.GridControl()
{

// CSS, size, margins, titles, event handlers, etc.
};

}
}

Example: Updated for 2018 - An Alternate Approach
In the following example, the code has been updated by overriding the 'OnInitalize' method to
populate the data there:
public class PageWithControls : PropertyPage
{

private DevExpress.XtraGrid.GridControl _gridControl1;

// This constructor is called when the page is requested. It builds the
page, and calls helpers to build each component as needed.

public PageWithControls()

BIOVIA Workbook 2021 • SDK Developers Guide | Page 205

Appendix A: Potentially Breaking API Changes in Workbook 2018

{
Title = "Alternative Good Page";
Control = new CustomizedGridControl();

}

// This is called when the PageWithControls() constructor is 'done'
protected override void OnInitialize()
{

base.OnInitialize();
// Initialization is complete, so we can assign data to the control

now
_gridControl1.DataSource = new List<string>() { "Value1", "Value2",

"Value3" };
}

}

public class CustomizedGridControl : DevExpress.XtraGrid.GridControl
{

// This constructor is called when a CustomizedGridControl is added to
the page currently being built.

public CustomizedGridControl()
{

_gridControl1 = new DevExpress.XtraGrid.GridControl()
{

// CSS, size, margins, titles, event handlers, etc.
};

}
}

Namespace Replacements
The following namespaces were officially replaced, but without changing functionality.

Obsolete Namespace Replacement Namespace

GridView.ShowGridMenu GridView.PopupMenuShowing

GridView.GridMenuEventArgs GridView.PopupMenuShowingEventArgs

XtraTreeList.TreeListMenuEventArgs XtraTreeList.PopupMenuShowingEventArgs

Changes to Menu Item List Creation
Items that were previously created with an initial 'hidden' attribute are no longer created until they are
needed. They are also now removed when no longer needed.
This change could affect scripts that modify contextual menus without first checking whether themenu
options they attempt to modify actually exist.

GridView Methods Require Additional Parameters
GridView.CalcRowHeight() now requires a fourth parameter that must be equal to the row's
level. It might be necessary to use other methods such as viewInfo.CalcRowHeight(graphics,
rowHandle, 0, sectionGridView.GetRowLevel(rowHandle)) in place of this method,
which was intended to be internal.
GridView.GetGridCellInfo() now requires a RowHandle and a Column, instead of a

Page 206 | BIOVIA Workbook 2021 • SDK Developers Guide

Appendix A: Potentially Breaking API Changes in Workbook 2018

RowHandle and a Column Index.
Some grid-related methods still require a RowHandle as a parameter, even though many events no
longer provide row handles. In some cases, you can use ListSourceRowIndex. If you know the
RowIndex, you can also use View.GetRowHandle(index).

Deprecated Events andMethods
RowHandle is deprecated for some events and replaced with ListSourceRowIndex.
XtraVerticalGrid.SingleRecordViewInfo.GetRowIndentWidth()method no longer
exists. Use the SingleRecordViewInfo.RowIndentWidth property instead.

EditorContainer.RepositoryItems Renamed as ExternalRepository
Existing methods and scripts that use this property must be renamed. Other code changes might be
required.

RepositoryItemCheckedComboBoxEdit.ShowAllItemCaption Renamed as
SelectAllItemCaption
This change is for clarity and does not change functionality.

tree.OptionsBehaviour.DragNodes Renamed and Changed to Boolean
This property has been renamed as tree.OptionsBehaviour.DragNodesMode and changed to an
enum from a Boolean. DragNodesMode.None is equivalent to setting DragNodes = false in
previous version.

Exceptions Sometimes Thrown when Operating on non-UI Thread
DevExpress grid now throws an exception when certain operations are performed on a non-UI thread.
This exception was not thrown in the previous version.
Workbook code has been adjusted where this problem has been found.
Any code that performs grid updates on a background thread will need to bemodified to ensure
updates occur on the UI thread.

Some Grid Methods Now Clear Status Data
Some Grid methods nowwill clear status data (like selected rows, focused row, etc.).
Examples include GridView.ClearGrouping() and GridColumn.Group().
If needed, save these values before calling themethods, and reassign using GridView.SelectRow
(rowHandle), GridView.FocusedRowHandle = rowHandle, and so on.

BIOVIA Workbook 2021 • SDK Developers Guide | Page 207

	Chapter 1: BIOVIA Workbook SDK
	BIOVIA Workbook and Vault Server Architecture
	Framework Applications Overview
	Symyx Framework Class Libraries

	Chapter 2: BIOVIA Vault Server
	Accessing Vault
	VaultWorkspace Class
	VaultServer Class
	Connecting to a Vault Server Endpoint
	Verifying that Vault Services are Running
	Authentication and Logging in to Vault
	Security Permissions
	Log in to Vault Example

	VaultRepository Class
	User Repository
	Folders
	Retrieve Vault Users List Example

	Vault Objects
	Vault Object Base Classes
	Vault Object Flags Property
	Vault Object Core Properties
	Set Properties in VaultObject.ExtendedProperties
	Use Data Scope to Set Information
	Retrieve Vault Users Example
	Retrieve a Vault Object using Vault ID or Vault URI
	Create a Batch For Identity Requests
	Retrieve and Cast a Vault Object
	Identity Requests Scope
	Retrieve Vault Objects by Object Type
	Search for a Vault User Example
	Retrieve Vault Assemblies
	Use GetMembers For Context Retrieval
	Retrieve Vault Folders
	Retrieve Hierarchy of Vault Folders Example
	Use Vault Query Service to Get Vault IDs
	Convert Vault IDs
	Vault Object References and Associations
	Vault URIs
	Scheme
	Authority
	Path
	Query
	Fragment

	Vault Object Annotations
	Add and Remove an Annotation

	Create and Delete Vault Objects
	Package Vault Objects in VOZIP Files
	Create a Vault Object Package Example
	Add an Object to a Vault Object Package
	List Objects in a Vault Object Package
	Publish Using a VOZIP File
	Delete an Object From a Vault Object Package
	Read and Write to a Vault Object
	Display DLL Assembly Dependencies

	Chapter 3: Users and Security
	Classes Supporting Users Settings and Preferences
	Access User Profiles
	Permissions
	Explicit Permissions
	Implicit Permissions
	Application Permissions

	Chapter 4: Properties
	Property Set Editor
	Property Set Definitions
	Property Event Handlers
	Property and Vault Object Variables
	Property Class and PropertySetDefinition Variables
	Variable Aliases
	Validation Script Variables for Value Changing Handlers
	CalculateValueHandler Script Variables
	ValueSelectionsProvider Script Variables
	Property Dictionaries
	Dictionary Providers Types
	Dictionary Scripts Examples
	ValueSelectionsProvider Script Variables

	Chapter 5: Materials
	Material Classes and Interfaces
	Material Class
	Material Properties
	Material as a Mixture

	DensityCalculation Class
	Materials Calculations
	Conversions
	Calculating Molecular Weight Example
	Materials Sections C# Example

	Measurement Class
	Validate a Measurement
	Convert Amounts

	Container Class
	Preparation Class

	Chapter 6: Documents
	Find a Template Example
	Create a Document from a Template
	Get a Document
	Adding, Inserting, and Removing Document Sections
	Insert a Section Between Other Sections
	Remove a Section
	Text Sections Example
	Add Text Sections and Set Plain Text
	Add Data to a Text Section
	Check the Section Type
	Scale an Image

	Chapter 7: Query Service for Searching
	RAS Data Schema
	Query Form Data
	Search Results
	Create a Custom Query Builder Using Metadata
	Custom Vault Objects Indexing
	Full-text Search Indexing
	IIndexableText Implementation Example

	Custom Indexing
	Creating a New Search Type
	SampleIDSearchExtension
	Build Queries
	Search Extension Development Best Practices
	Search Extension Configuration

	Chapter 8: Scripting in BIOVIA Workbook
	Workbook Objects
	Python Scripting
	Script Performance Profile
	Document Toolbar Scripting
	Optimize Scripts
	Form Editor Scripting
	FormSection Events
	FormSection Script Variables
	FormSection Events Script Variables
	Access Widgets
	OnReview Script Example
	OnValidate Script Example

	Add Scripts to an Experiment Template
	Experiment Editor Events
	Experiment Editor Event Scripts
	Experiment Editor Events Script Variables
	Get the Active Section
	Access Menu Items
	Menu Item Property Changes
	Menu Item Names

	Access Workbook Toolbar Items
	Section Toolbars and Toolbar Items
	Access Workbook Toolstrips
	Check User Permissions and Disable a Section Example
	Remove the Active Section
	Rename the Active Section
	Add a Button to a Toolstrip

	Custom Toolbar Scripting
	Custom ToolStripButton Example
	Assign a Script to a Toolbar Button
	Interaction Between Scripts
	Insert an Excel File
	Add a Section to an Experiment

	Error Handling in Scripts
	Cancel an Action
	Raising an Exception
	sys.exit

	Generate Unique IDs
	Sequence Name for Unique IDs
	ID Formatting
	Generate SampleID Example

	List Variables in Scope
	Add a Dictionary to a Recipe Section

	Content History for a Control
	Form Control Content History

	ELN Assembly Cache
	Release Memory
	Omit Vault Object Content Compression
	Prevent Concurrent Updates

	Debug the Framework
	Debug a Remote Service
	WCF Tracing for Vault Diagnostics

	Script From External Assemblies
	Use an External .NET Assembly
	CreateInstanceFromLatestAssembly Method
	Create Custom .NET Assembly
	Create a .NET project
	Sign Your Assembly

	Writing Classes and Methods
	Naming Conventions
	Adding references to Workbook assemblies
	Define a Class
	Define a Method

	Chapter 9: Sections
	Clone an Experiment to the Latest Template Version
	Sections in a New Document
	Forms and Tables
	Insert Forms
	Import Forms
	Populate Form Controls
	Populate a List Using Vault Vocabulary
	Form Examples
	Populate Widgets in Forms

	References
	Property Set Definitions
	Clone to Latest Limitations
	File Sections
	Add and Remove Files
	Visualizations
	Required Software for Visualizations Utility
	Create File Section with Table Rows
	List the Property Set Definitions for a Table
	List Values from a Table
	Invoke a Form and Add Rows
	Set Values in a Table
	Add a Property Set Definition
	Insert Rows

	TableSection Script Variables
	Script with Table Section Properties
	Access a Table and its Rows
	Import and Export Data
	Import Summary Data
	ImportExportData to Update Data
	Lock Imported Rows
	Prevent the Removal of Locked Rows
	Export or Import All Table Rows
	Request Column Dictionary Event
	Table Section Script Events
	Table Section Event Variables
	Table Section Script Examples

	Material Section Script Variables
	Material Property Set Definitions
	Nullable for Primitive Types
	Material Section Script Examples
	Access the Material Structure
	Create a Review Message
	Scripting Material Import
	BeforeImportMaterials Event Script Example
	AfterImportMaterials Event Script Example
	Testing Examples

	Script Variables for Experiment and Common Section Events
	Script Variables for Events
	Workbook Sections
	Materials Section Event Script Variables
	Sample Preparation Section Script Variables

	Export Preparation Section Data
	Data Exported as CSV File
	Change the Scale Used In Calculations
	Script for Custom Scale
	Change the Scale of Calculated Values for a Formulation
	Unit Types

	DataCreation Example
	CreateDocument Method
	Reaction Scheme C# Examples
	Locate the Reaction Scheme Section
	Locate a Reaction Step
	Add a Reaction Step
	Add a Reaction From a File

	Link Corresponding Materials Section
	Add a Material Using AddRow
	Modify a Material

	Chapter 10: Build and Debug a Custom .NET Assembly
	IronPython Script For Calling a Custom Assembly Example
	C# Code for Importing Custom Data
	Publish a Custom .NET Assembly
	Call an External Assembly with IronPython
	AssemblyCache.Publish Method
	List Assemblies in Vault
	Publishing Referenced .NET Assemblies
	Publish a New Version of a .NET Assembly
	Unpublish an Assembly
	List of Assemblies in Vault
	In Visual Basic .NET
	In C#

	Chapter 11: Workflow Designer
	Vault objects
	Custom Workflow Activities
	Prerequisites
	Create a Custom Workflow Activity
	Configure the Build Location for Your DLL
	Custom Activity OnExecute Method

	Configure Workflow Designer to Use a Custom Activity
	Add a Custom Activity to a Workflow
	Custom Workflow Activity Example

	Compile and Publish a Workflow
	Change the Vault Logging Level

	Appendix A: Potentially Breaking API Changes in Workbook 2018
	Namespace Replacements
	Changes to Menu Item List Creation
	GridView Methods Require Additional Parameters
	Deprecated Events and Methods
	EditorContainer.RepositoryItems Renamed as ExternalRepository
	RepositoryItemCheckedComboBoxEdit.ShowAllItemCaption Renamed as SelectAllItem...
	tree.OptionsBehaviour.DragNodes Renamed and Changed to Boolean
	Exceptions Sometimes Thrown when Operating on non-UI Thread
	Some Grid Methods Now Clear Status Data

