
REFERENCE GUIDE
BIOVIA DIRECT 2021

Copyright Notice

©2020 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo,
CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3DVIA, 3DSWYM, BIOVIA,
NETVIBES, IFWE and 3DEXCITE, are commercial trademarks or registered trademarks of Dassault
Systèmes, a French "société européenne" (Versailles Commercial Register # B 322 306 440), or its
subsidiaries in the U.S. and/or other countries. All other trademarks are owned by their respective
owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written
approval.

Acknowledgments and References

To print photographs or files of computational results (figures and/or data) obtained by using Dassault
Systèmes software, acknowledge the source in an appropriate format. For example:

"Computational results were obtained by using Dassault Systèmes BIOVIA software programs.
BIOVIA Direct was used to perform the calculations and to generate the graphical results."

Dassault Systèmes may grant permission to republish or reprint its copyrighted materials. Requests
should be submitted to Dassault Systèmes Customer Support, either by visiting
https://www.3ds.com/support/ and clicking Call us or Submit a request, or by writing to:

Dassault Systèmes Customer Support
10, RueMarcel Dassault
78140 Vélizy-Villacoublay
FRANCE

https://www.3ds.com/support/

Contents
Chapter 1: Reference List, By Name 1

Chapter 2: General Operators and Functions 3

General Operators 3

readbinaryfile 3

readfile 4

stringsegment 6

tempclob 9

writebinaryfile 10

writefile 12

writetempclob 13

General Functions 14

mdlaux.chimetoclob 15

mdlaux.clobtochime 16

mdlaux.clobtogzip64 17

mdlaux.errors 17

mdlaux.externalcommand 18

mdlaux.gzip64toclob 24

mdlaux.readbinaryfile 24

mdlaux.readfile 24

mdlaux.stringsegment 24

mdlaux.tempclob 25

mdlaux.version 25

mdlaux.writebinaryfile 25

mdlaux.writefile 25

mdlaux.writetempclob 25

Chapter 3: Molecule-Specific Operators and Functions 26

Molecule-Specific Operators 26

chime 27

chime_string 28

chime_string_seg 28

flexmatch 29

flexmatchhighlight 33

flexmatchtimeout 34

BIOVIA Direct 2021 • Reference Guide | Page i

Contents

fmla_eq 35

fmla_like 35

fmlalike 35

fmlamatch 37

helm 38

helm2 40

inchi 41

Syntax 41

Return value 42

Usage 42

Example 42

Comments 42

inchiauxinfo 42

Syntax 43

Return value 43

Usage 43

Example 43

Comments 44

inchikey 44

isgeneric 45

isnostruct 46

isotopicformula 47

isrna 48

issequence 49

iupacname 50

makeclob 52

mol 53

molchime 54

molfile 55

molfile_string 56

molfile_string_seg 57

molfmla 58

molgzip64 60

molimage 61

molkeys 63

Page ii | BIOVIA Direct 2021 • Reference Guide

Contents

molnemakey 64

molsim 67

molwt 69

molwtmax 70

molwtmin 71

molwtrange 72

monoisotopicmass 74

numspecifics 75

overlap 76

overlaptimeout 79

pctoverlap 80

readmol 81

sequencesearch 81

sequencetext 83

similar 83

similarity 86

smiles 86

sss 88

sss_highlight_chime 93

sss_highlight_molfile 94

ssshighlight 95

ssssequenceids 97

ssstimeout 98

writemol 99

xhelm 99

Molecule-Specific Functions 100

mdlaux.getsavedmolname 101

mdlaux.helm 102

mdlaux.helm2 104

mdlaux.helmtomolfile 105

mdlaux.inchi 107

mdlaux.inchiauxinfo 109

mdlaux.inchikey 110

mdlaux.inchitomolfile 112

mdlaux.isgeneric 114

BIOVIA Direct 2021 • Reference Guide | Page iii

Contents

mdlaux.isnostruct 115

mdlaux.isotopicformula 115

mdlaux.isrna 117

mdlaux.issequence 118

mdlaux.iupacname 119

mdlaux.iupacnametomolfile 121

mdlaux.mol 122

mdlaux.molchime 122

mdlaux.molfile 122

mdlaux.molfmla 122

mdlaux.molimage 123

mdlaux.molkeys 125

mdlaux.molname 128

mdlaux.molnemakey 128

mdlaux.molwt 132

mdlaux.molwtmax 133

mdlaux.molwtmin 134

mdlaux.monoisotopicmass 135

mdlaux.numspecifics 137

mdlaux.rownemakey 138

mdlaux.sequencetext 139

mdlaux.setmolname 140

mdlaux.sgroupfields 141

mdlaux.smiles 142

mdlaux.smilestomolfile 143

mdlaux.xhelm 144

Chapter 4: Reaction-Specific Operators and Functions 147

Reaction-Specific Operators 147

hasnostructs 147

ncomponents 148

rinchi 149

rinchiauxinfo 151

rinchikey 153

rss 154

rsshighlight 160

Page iv | BIOVIA Direct 2021 • Reference Guide

Contents

rsstimeout 161

rxn 162

rxnautomap 165

rxnautomapchange 168

rxnautomapstatus 169

rxnchime 170

rxnctrsim 171

rxnfile 172

rxnflexmatch 173

rxnflexmatchtimeout 176

rxngzip64 177

rxnimage 178

rxnkeys 180

rxnmol 182

rxnmolsim 183

rxnsim 184

rxnsmiles 189

rxnstringsegment 190

Reaction-Specific Functions 193

mdlaux.automap 193

mdlaux.hasnostructs 196

mdlaux.rinchi 196

mdlaux.rinchiauxinfo 198

mdlaux.rinchikey 200

mdlaux.rinchitorxnfile 201

mdlaux.rxnimage 204

mdlaux.rxnkeys 206

mdlaux.rxnsmiles 209

mdlaux.smilestorxnfile 210

Chapter 5: Examples 213

Flexmatch Search 213

Substructure Search 215

Molecule Formula Search 217

Molecule Similarity Search 218

Reading a Molfile 219

BIOVIA Direct 2021 • Reference Guide | Page v

Contents

Retrieving Molfile Structures 219

Retrieving Chime Structures 220

Structure Registration 220

Reaction Flexmatch Search 222

Reaction Substructure Search 223

Reaction Similarity Search 226

Writing a File 228

Fetching Reactions Using the Rxnfile Format 228

Reading a Rxnfile 230

Fetching Reactions Using the Chime Format 231

Reaction Registration 234

Chapter 6: Molecule Searches 236

Flexmatch Search 236

Flexmatch Search of Generic Structures 237

Flexmatch Search of Biopolymer Sequence Structures 237

Substructure Search 237

Substructure Search of Generic Structures 238

Substructure Search of Biopolymer Structures 238

Similarity Search 238

Types of Similarity 238

Molecule Formula Search 239

Chapter 7: Reaction Searches 241

Reaction Flexmatch Search 241

Reaction Substructure Search 242

Reaction Similarity Search 242

Types of Similarity 242

Degrees of Similarity 243

Chapter 8: Specifying the Query Structure 244

Molfile 244

Chimestring 245

BLOB (Binary Large Object) 246

CLOB (Character Large Object) 247

HELM String 247

SMILES String 247

Appendix A: RDCAPPS Procedures 248

Page vi | BIOVIA Direct 2021 • Reference Guide

Contents

Using the RDCAPPS Procedures 248

ReadRxnRDF 248

ReadMolRDF 250

MakeMolXrefTrigger 252

BIOVIA Direct 2021 • Reference Guide | Page vii

Chapter 1:
Reference List, By Name
The following is an alphabetic reference listing of all Direct functions and operators:

chime mdlaux.isotopicformu
la

mdlaux.writefile rxnchime

chime_string mdlaux.isrna mdlaux.writetemp
clob

rxnctrsim

chime_string_seg mdlauxissequence mdlaux.xhelm rxnfile

flexmatch mdlaux.iupacname mol rxnflexmatch

flexmatchhighlight mdlaux.iupacnametomo
lfile

molchime rxnflexmatchtim
eout

flexmatchtimeout mdlaux.mol molfile rxngzip64

fmla_eq mdlaux.molchime molfile_string rxnimage

fmla_like mdlaux.molfile molfile_string_
seg

rxnkeys

fmlalike mdlaux.molfmla molfmla rxnmol

fmlamatch mdlaux.molimage molgzip64 rxnmolsim

hasnostructs mdlaux.molkeys molimage rxnsim

helm mdlaux.molname molkeys rxnsmiles

inchi mdlaux.molnemakey molnemakey rxnstringsegmen
t

inchikey mdlaux.molwt molsim sequencesearch

isgeneric mdlaux.molwtmax molwt sequencetext

isnostruct mdlaux.molwtmin molwtmax similar

isotopicformula mdlaux.monoisotopicm
ass

molwtmin similarity

isrna mdlaux.numspecifics molwtrange smiles

issequence mdlaux.readbinaryfil
e

monoisotopicmass sss

iupacname mdlaux.readfile ncomponents sss_highlight_
chime

makeclob mdlaux.rownemakey numspecifics sss_highlight_
molfile

mdlaux.automap mdlaux.rxnimage overlap ssshighlight

BIOVIA Direct 2021 • Reference Guide | Page 1

Chapter 1: Reference List, By Name

mdlaux.chimetoclob mdlaux.rxnkeys overlaptimeout ssssequenceids

mdlaux.clobtochime mdlaux.rxnsmiles pctoverlap ssstimeout

mdlaux.clobtogzip6
4

mdlaux.sequencetext readbinaryfile stringsegment

mdlaux.errors mdlaux.setmolname readfile tempclob

mdlaux.externalcom
mand

mdlaux.sgroupfields readmol writebinaryfile

mdlaux.getsavedmol
name

mdlaux.smiles rss writefile

mdlaux.gzip64toclo
b

mdlaux.smilestomolfi
le

rsshighlight writemol

mdlaux.hasnostruct
s

mdlaux.smilestorxnfi
le

rsstimeout writetempclob

mdlaux.helm mdlaux.stringsegment rxn xhelm

mdlaux.helmtomolfi
le

mdlaux.tempclob rxnautomap

mdlaux.inchi mdlaux.version rxnautomapchange

mdlaux.inchikey mdlaux.writebinaryfi

le

rxnautomapstatus

mdlaux.isgeneric

mdlaux.isnostruct

Page 2 | BIOVIA Direct 2021 • Reference Guide

Chapter 2:
General Operators and Functions
This chapter contains the reference listings for the functions and operators that are not specific to
molecules or reactions. Use the functions and operators in this chapter when working with molecules,
reactions, or both.

General Operators
All operators described in this chapter have corresponding package function names. Use the package
function name instead of the operator name in situations where the operator is not allowed. For
example, you must use the package function name in a PL/SQL assignment statement, because PL/SQL
assignment statements do not accept operators. The package function uses the same syntax as the
operator.
For example, in a PL/SQL assignment, use the package function name for readbinaryfile, which is
mdlaux.readfile:
query := mdlaux.readfile('/home/user/rxnfiles/rss1.rxn');

For all operators in this chapter, the corresponding package function name is mdlaux, followed by the
function name.

readbinaryfile
Copies the contents of a binary file on disk to a temporary BLOB.

Syntax
readbinaryfile(file)

Parameter Description

file A VARCHAR2 string that contains the full path and the name of the file. This file must:
- Be readable by the extproc process started by Oracle
- Be located on the Oracle server. Note that this computer is not necessarily the same
computer as the client.

Return value
A temporary BLOB that contains the contents of the specified file.

Usage
select dbms_lob.getlength(readbinaryfile('/disk-location/file-
location/filename'))
from dual;

Alternatively, in PL/SQL:
binaryvalue := mdlaux.readbinaryfile('/disk-location/file-
location/filename');

Example
The following example stores a binary image file in a table:

BIOVIA Direct 2021 • Reference Guide | Page 3

Chapter 2: General Operators and Functions

insert into image_table(image_blob)
values(readbinaryfile('/home/user/myimage.png'));

The following example updates a binary image file in a table:

update moltable set imagefile = readbinaryfile
('/home/user/mol100.png')
where cdbregno = 100;

Comments
Specify the full path of the file to be read. Because Oracle uses a single operating system account to
execute the Direct cartridge, it cannot use the attributes in the operating system environment of an
application user, such as user profile, working directory, and environment variables. This means that
you cannot use environment variables to specify the location of the file. The specified file must
include the full path (and not a relative path).
The file to be read must have correct permissions. Because Oracle uses a single operating system
account to execute the Direct cartridge, this account must have correct permissions to read the
specified file.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"blob":

if (((oracle.sql.BLOB)blob).isTemporary()){
((oracle.sql.BLOB)blob).freeTemporary();
}

See also
mdlaux.readbinaryfile

writebinaryfile

BIOVIA Direct Developers Guide > Using Direct > Accessing Files

readfile
Copies the contents of a file on disk to a temporary CLOB.

Syntax
readfile(file)

Parameter Description

file A VARCHAR2 string that contains the full path and the name of the file. This file must:
- Be readable by the extproc process started by Oracle
- Be located on the Oracle server. Note that this computer is not necessarily the same
computer as the client.

Return value
A CLOB that contains the contents of the specified file. The CLOB includes line-feed characters (0x0a)

that separate the lines in the specified file. readfile stores the return value in a temporary CLOB.

Page 4 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

Synonyms
readmol

Usage

select readfile('/disk-location/file-location/filename')
from dual;

Alternatively, in PL/SQL:

rxnvalue = mdlaux.readfile('/disk-location/file-
location/filename');

Example
The following example returns the contents of a file:

select readfile('/opt/BIOVIA/Direct/examples/rxnfiles/test.txt')
from dual;

The following PL/SQL example uses the package function name mdlaux.readfile to read the
contents of a reaction file, and use it to perform a reaction substructure search:
DECLARE

candidate BLOB;
query CLOB;
match NUMBER;

BEGIN
candidate := mdlaux.rxn(

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rxn');
query := mdlaux.readfile(

'/opt/BIOVIA/direct2021/examples/rxnfiles/query3.rxn');
select rss(candidate,query) into match from dual;

END;

Comments
Specify the full path of the file to be read. Because Oracle uses a single operating system account to
execute the Direct cartridge, it cannot use the attributes in the operating system environment of an
application user, such as user profile, working directory, and environment variables. This means that
you cannot use environment variables to specify the location of the file. The specified filemust
include the full path (and not a relative path).
The file to be read must have correct permissions. Because Oracle uses a single operating system
account to execute the Direct cartridge, this account must have correct permissions to read the
specified file.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

BIOVIA Direct 2021 • Reference Guide | Page 5

Chapter 2: General Operators and Functions

See also
mdlaux.readfile

writefile

writebinaryfile

readbinaryfile

BIOVIA Direct Developers Guide >Using Direct > Accessing Files

stringsegment
Returns a VARCHAR2 string that contains up to 4000 characters of a CLOB.

Syntax
stringsegment([tempclob-number,] clob)
stringsegment(tempclob-number)

Parameter Description

tempclob-
number

ANUMBER from 0 to 4 that specifies the temporary CLOB that stores the input clob. If
you do not specify tempclob-number in your initial call to stringsegment, the default is
0. If the reaction contains more than 4000 characters, use stringsegment(0) to get the
next portion of the CLOB .

clob A CLOB that contains the string to be copied to the temporary CLOB. The stringsegment
(clob) syntax is equivalent to stringsegment(0, clob). Be sure to use zero, stringsegment
(0), when fetching subsequent segments.

Return value
The stringsegment([tempclob-number,] clob) syntax returns VARCHAR2 data that contains the
first 4000 characters of a CLOB.
The stringsegment(tempclob-number) syntax returns VARCHAR2 data that contains the next 4000
characters. This operator will return NULL if there are no more characters left in the CLOB.

Synonyms
rxnstringsegment

Usage
select stringsegment(tempclob-number,clob)

[, other-column-data]
from tablename
where condition;
select stringsegment(clob)

[, other-column-data]
from tablename
where condition;
select stringsegment(tempclob-number)
from dual;

Example
The following example uses stringsegment to get the first 4000 characters of the Chime
representation of a reaction:

Page 6 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

select stringsegment(1, rxnchime(rctab))
from samplerx_reaction
where rxnmdlnumber = 'RXCI94070168';

The next example uses stringsegment to return the next portion of the same Chime string from the
preceding example. The Chime string is less than 4000 characters, so this statement returns a NULL:

select stringsegment(1)
from dual;

The following is another example that uses stringsegment to get the first 4000 characters of the
rxnfile representation of a reaction. The default number for the temporary CLOB is 0 (zero):

select stringsegment(rxnfile(rctab))
from samplerx_reaction
where rxnmdlnumber = 'RXCI94070168';

The next example uses stringsegment to return the next portion of the same rxnfile. Note that the
number for the temporary CLOB is 0 (zero):

select stringsegment(0)
from dual;

Comments
Use stringsegment if your application does not support CLOBs. If your application supports
CLOBs, use an operator that returns CLOBs instead.
The temporary CLOB is freed when the Oracle session is disconnected. If an application disconnects
from Oracle before retrieving all data, the remaining data is lost. The application cannot retrieve the
data in a subequent session.
Repeatedly call stringsegment to retrieve reactions or molecules that exceed 4000 characters.
The initial call must use the syntax:

stringsegment([tempclob-number,] rxnclob)

The subsequent calls must use the following syntax. Repeatedly call stringsegment using this
syntax until stringsegment returns NULL or a string whose length is less than 4000. Use the same
tempclob-number that you used in the initial call.

stringsegment(tempclob-number)

For the initial call to stringsegment, the tempclob-numberi parameter can be an arbitrary number
from 0 to 4. For subsequent calls to stringsegment, the tempclob-number parameter must be the
same as what you used in the initial call. If you did not specify a tempclob-number parameter in the
initial call, the tempclob-number parameter in the subsequent call must be 0 (zero).
Although it is possible to write a query that contains multiple calls to stringsegment,BIOVIA does not
recommend it. Oracle does not necessarily call the operators in the order they appear in the SELECT
statement. For example, do not call stringsegment(tempclob-number, clob) and stringsegment
(tempclob-number) in a single SELECT statement, where tempclob-number is the same for both calls.
The syntax stringsegment(tempclob-number, clob) saves the data in a temporary CLOB, and the
syntax stringsegment(tempclob-number) reads the contents of the temporary CLOB. If Oracle
calls stringsegment(tempclob-number) first, you will get the contents of an old temporaryCLOBthat
might have been created in a separate operation.

BIOVIA Direct 2021 • Reference Guide | Page 7

Chapter 2: General Operators and Functions

It is more reliable to issue separate SELECT statements for each segment, as shown in the following
example. Note that this example uses the default number 0 (zero) for the temporary CLOB:
DECLARE

strseg VARCHAR2(4000);
bigstr VARCHAR2(32000);
numval NUMBER;

BEGIN
SELECT STRINGSEGMENT(RXNFILE(rctab)) INTO bigstr
FROM samplerx_reaction
WHERE rxnmdlnumber = 'RXCI94070168';
LOOP

SELECT STRINGSEGMENT(0) INTO strseg FROM dual;
IF strseg IS NULL THEN EXIT; END IF;
bigstr := bigstr || strseg;

END LOOP;
END;

Use the same number to identify the same temporary CLOB in one Oracle session. The
stringsegment operator shares the package-level, session-duration temporary CLOBs with the
tempclob and writetempclob operators. Make sure that you use the correct, corresponding
numbers in order to referencemultiple temporary CLOBs within one Oracle session. The following
example shows how corresponding numbers are used to referencemultiple temporary CLOBs:

DECLARE
str1 varchar2(4000);
str2 varchar2(4000);
bigstr1 varchar2(32000);
bigstr2 varchar2(32000);

BEGIN
--Fetch the first segments of the:
--unhighlighted Chime string (temp CLOB #1)

 --highlighted Chime string (temp CLOB #2)
select stringsegment(1, rxnchime(rctab)),

stringsegment(2, rsshighlight(99))
into bigstr1, bigstr2
from samplerx_reaction
where rss(rctab,

'/opt/BIOVIA/direct/examples/rxnfiles/rssq1.rxn',
99
)=1;

--Fetch the rest of the Chime strings:
--unhighlighted Chime string (temp CLOB #1)
--highlighted Chime string (temp CLOB #2)
loop

select stringsegment(1)
stringsegment(2)

into str1, str2 from dual;
if str1 is NULL and str2 is NULL then exit; end if;
bigstr1 := bigstr1 || str1;
bigstr2 := bigstr2 || str2;

end loop;
END;

Page 8 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

See also
writetempclob

Examples of Fetching Reactions Using the Rxnfile Format
Examples of Fetching Reactions Using the Chime Format

tempclob
Creates a session-duration temporary CLOB. Alternatively, tempclob returns a session-duration
temporary CLOB that was constructed by a previous call to writetempclob or tempclob operator.

Syntax
tempclob([tempclob-number,] clob)

tempclob(tempclob-number)

Parameter Description

tempclob-
number

ANUMBER from 0 to 4 that specifies the temporary CLOB that stores the input clob, or
the temporary CLOB that was constructed by an earlier call to the writetempclob or
tempclob operators.
Specify only the tempclob-number to get the contents of a temporary CLOB that was
constructed by an earlier call to the writetempclob or tempclob operators.
If you do not specify tempclob-number, the default tempclob-number is 0.

rxnclob A CLOB that contains the data to be copied to the temporary CLOB.

Return value
A session-duration temporary CLOBwhich is a copy of an input CLOB. The return value is one of the five
session-duration temporary CLOBs, identified by a number from 0 to 4. The tempclob operator
returns NULL if the tempclob-number is out of range.

Usage
select tempclob(tempclob-number,rxnclob)
from tablename
where condition;

select tempclob(rxnclob)
[, other-column-data]

from tablename
where condition;

select tempclob(tempclob-number)
from dual;

Example
The following example uses tempclob to create a session-duration temporary CLOB that contains a
Chime representation of a reaction. The default number for the temporary CLOB is 0 (zero):

select tempclob(rxnchime(rctab))
from samplerx_reaction
where rxnmdlnumber = 'RXCI94070168';

BIOVIA Direct 2021 • Reference Guide | Page 9

Chapter 2: General Operators and Functions

The next example uses tempclob to return the content of the temporary CLOB that was created in the
previous example. Note that the number for the temporary CLOB is 0 (zero):

select tempclob(0)
from dual;

The following is another example that uses tempclob to get the reaction that the writetempclob
operator stored in a temporary CLOB, and uses this reaction in a reaction substructure (rss) query.
The number for the temporary CLOB is 1:
select writetempclob(1, query-string, 0) from dual;
select writetempclob(1, next-query-string, 1) from dual;
select writetempclob(1, last-query-string, 1) from dual;
select rxnmdlnumber
from samplerx_reaction
where rss(rctab, tempclob(1))=1;

Comments
To store a CLOB reaction or molecule into a session-duration temporary CLOB, use the syntax:
tempclob(tempclob-number, rxnclob).

To get the contents of a session-duration temporary CLOB, use the syntax: tempclob(tempclob-
number). This temporary CLOBwas constructed by an earlier call either to the writetempclob
operator, or tempclob(tempclob-number, rxnclob).
Use writetempclob to write the temporary CLOB, then use tempclob to get the temporary CLOB.
You can use the tempclob operator in conjunction with the writetempclob operator to specify a
query in an application that cannot handle CLOBs. Use the writetempclob operator to construct
the temporary CLOB, then use the tempclob operator to reference the temporary CLOB in the
SELECT statement. For example:
select writetempclob(query-string, 0) from dual;
select writetempclob(next-query-string, 1) from dual;
select writetempclob(last-query-string, 1) from dual;
select rxnmdlnumber
from samplerx_reaction
where rss(rctab, tempclob(0))=1;

Use the same number to identify the same temporary CLOB in one Oracle session. Make sure that
you reference the correct temporary CLOB numbers between these operators.

See also
writetempclob
Examples of Fetching Reactions Using the Rxnfile Format
Examples of Fetching Reactions Using the Chime Format
BIOVIA Direct Developers Guide > Using Direct > Copying String Segments into a Temporary CLOB

writebinaryfile
CopiesBLOBdata to a file in a disk location.

Syntax
writebinaryfile(blobdata, file)

Page 10 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

Parameter Description

blobdata A BLOB to be written to file.

file A VARCHAR2 string that contains the full path and the name of the output binary file. Use
the appropriate file extension for the type of binary data to be written. Note that this file
will be written on the Oracle server, which is not necessarily the same computer as the
client.

Return value
The NUMBER 1 indicates that Direct wrote the file successfully

Usage
select writebinaryfile(
blobdata,
'/disk-location/file-location/filename'

)
from tablename
where condition;

select writebinaryfile(
blobdata,'/disk-location/file-location/filename'
)

from dual;

Example
The following example uses writebinaryfile to write a molecule image as a .PNG file. Note that it
uses the molimage operator to get the BLOB image of a structure field.
select writebinaryfile(

molimage(ctab),
'/home/user/mol100.png')

from sample2d
where cdbregno = 100;

Comments
Because Oracle uses a single operating system account to execute the Direct cartridge:

Specify the full path of the file to be written. Direct cannot use the attributes in the operating system
environment of an application user, such as user profile, working directory, and environment
variables. This means that you cannot use environment variables to specify the location of the file.
The specified filemust include the full path.
The Direct account and the file location must have correct permissions. The operating system
account that executes Direct must have correct permissions to write the file in the specified location.
Additionally, the file or the specified location of the file must have the correct write permission (must
allow anyone to write in it).

The file to be written will have read permissions. When the writebinaryfile operator creates the file,
it assigns permissions to the file so that it is readable by everyone.
If the specified file already exists, the writebinaryfile operator replaces the existing file.

See also
mdlaux.writebinaryfile

BIOVIA Direct 2021 • Reference Guide | Page 11

Chapter 2: General Operators and Functions

readfile

readbinaryfile

BIOVIA Direct Developers Guide > Using Direct> Accessing Files

writefile
Copies CLOB or BLOB data to a file in a disk location.

Syntax
writefile(data, file)

Parameter Description

data A CLOB or BLOB to be written to file. If data is a CLOB, the output file will be a text file. If
data is a BLOB, the output file will be a binary file (equivalent to writebinaryfile).

file A VARCHAR2 string that contains the full path and the name of the output file. Note that
this file will be written on the Oracle server, which is not necessarily the same computer as
the client.

Return value
The NUMBER 1 indicates that Direct wrote the file successfully

Usage
select writefile(
data,'/disk-location/file-location/filename.rxn'
)

from tablename
where condition;

select writefile(
data,'/disk-location/file-location/filename'
)

from dual;

Example
The following example uses writefile to write a structure into

/opt/BIOVIA/direct/examples/rxnfiles/regno100.rxn.
select writefile(

rxnfile(rctab),
'/opt/BIOVIA/direct/examples/rxnfiles/regno100.rxn')

from samplerx_reaction
where rxnmdlnumber = 'RXCI94070168';

The following example uses writefile to write a the contents of a temporary CLOB to a file.
select writefile(

tempclob(1),
'/opt/BIOVIA/direct/examples/rxnfiles/output.txt')

from dual;

The next example writes a group ofmolfiles:

Page 12 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

select cdbregno,
writefile(molfile(ctab),
'/home/user/mol' || TO_CHAR(cdbregno) || '.mol')
from sample2d;

Comments
Because Oracle uses a single operating system account to execute the Direct cartridge:

Specify the full path of the file to be written. Direct cannot use the attributes in the operating system
environment of an application user, such as user profile, working directory, and environment
variables. This means that you cannot use environment variables to specify the location of the file.
The specified file must include the full path.
The Direct account and the file location must have correct permissions. The operating system
account that executes BIOVIA Direct must have correct permissions to write the file in the specified
location. Additionally, the file or the specified location of the file must have the correct write
permission.

The file to be written will have read permissions. When the writefile operator creates the file, it
assigns permissions to the file so that it is readable by everyone.
If the specified file already exists, the writefile operator replaces the existing file.

See also
mdlaux.writefile

writebinaryfile

readfile

readbinaryfile

BIOVIA Direct Developers Guide > Using Direct > Accessing Files

writetempclob
Initializes with a string, or appends a string to, a session-duration temporary CLOB.

Syntax
writetempclob([tempclob-number,] string, init-append)

Parameter Description

tempclob-
number

A NUMBER from 0 to 4 that specifies the temporary CLOB that stores the input string.
If you do not specify tempclob-number, the default tempclob-number is 0.

string A VARCHAR2 string that contains the string to be copied to the temporary CLOB.

init-append A NUMBER that indicates whether to initialize with or append string into the
temporary CLOB. Possible values are:
0 - Initialize the temporary CLOBwith string
1 (or any non-zero value) - Append string into the temporary CLOB

Return value
The NUMBER 1 indicates that the temporary CLOBwas created. The number 0 indicates that the number
specified to reference the temporary CLOB is out of range.

BIOVIA Direct 2021 • Reference Guide | Page 13

Chapter 2: General Operators and Functions

Usage
select writetempclob(tempclob-number,string,init-append)
from dual;
select writetempclob(string,init-append)
from dual;

Example
The following example uses writetempclob to copy segments of a query reaction string into a
temporary CLOB, and use this reaction in a reaction substructure (rss) query. The number for the
temporary CLOB is 1:

select writetempclob(1, query-string, 0) from dual;
select writetempclob(1, next-query-string, 1) from dual;
select writetempclob(1, last-query-string, 1) from dual;

Comments
If a client application cannot create LOBs, use writetempclob to create a temporary CLOB on the
server. You can use the writetempclob operator in conjunction with the tempclob operator in an
application that cannot create or send CLOBs. Use the writetempclob operator to construct the
temporary CLOB on the server, then use the tempclob operator to get the contents of the temporary
CLOB. For example:
select writetempclob(query-string, 0) from dual;
select writetempclob(next-query-string, 1) from dual;
select writetempclob(last-query-string, 1) from dual;
select rxnmdlnumber
from samplerx_reaction
where rss(rctab, tempclob(0))=1;

The temporary CLOB is freed when the Oracle session is disconnected. If an application disconnects from
Oracle before retrieving all data, the remaining data is lost. The application cannot retrieve the data in a
subequent session.
Use the same number to identify the same temporary CLOB in one Oracle session. The writetempclob
operator shares the package-level, session-duration temporary CLOBs with the stringsegment and
tempclob operators. Make sure that you reference the correct temporary CLOB numbers between
these operators.

See also
tempclob

BIOVIA Direct Developers Guide > About Direct

General Functions
Some functions described in this chapter have corresponding operators. The function and its
corresponding operator behave identically to each other. For example, the readfile operator and
the mdlaux.readfile function do the same thing. In these cases, the description of the operator
appears under General Operators. The General Functions section lists the name of the function and then
references the description in General Operators.
Use the package function name instead of the operator name in situations where the operator is not
allowed. For example, you must use the package function name in a PL/SQL assignment statement,
because PL/SQL assignment statements do not accept operators. The package function uses the same
syntax as the operator.

Page 14 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

For example, in a PL/SQL assignment, use the package function name for readbinaryfile, which is
mdlaux.readfile:

query := mdlaux.readfile('/home/user/rxnfiles/rss1.rxn');

mdlaux.chimetoclob 15
mdlaux.clobtochime 16
mdlaux.clobtogzip64 17
mdlaux.errors 17
mdlaux.externalcommand 18
mdlaux.gzip64toclob 24
mdlaux.readbinaryfile 24
mdlaux.readfile 24
mdlaux.stringsegment 24
mdlaux.tempclob 25
mdlaux.version 25
mdlaux.writebinaryfile 25
mdlaux.writefile 25
mdlaux.writetempclob 25

mdlaux.chimetoclob
Converts a Chime string to the molfile or rxnfile string representation of the structure.

Syntax
mdlaux.chimetoclob(chimeclob)

Parameter Description

chimeclob A CLOB that contains the Chime string representation of a molecule or reaction.

Usage
select mdlaux.chimetoclob(chimeclob) from dual;

Return value
A CLOB that contains themolfile or rxnfile string representation of the input Chime structure. The CLOB
includes line-feed characters (0x0a) that separate the lines within themolfile or rxnfile. If
mdlaux.chimetoclob fails, it returns NULL.

Example
The following example converts a Chime string that is stored in a file into a rxnfile string:

select mdlaux.chimetoclob(
readfile('/opt/BIOVIA/direct/examples/rxnfiles/rxnchime.txt')
)
from dual;

Or, in PL/SQL:
molfile_clob := MDLAUX.CHIMETOCLOB(chime_clob);

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.

BIOVIA Direct 2021 • Reference Guide | Page 15

Chapter 2: General Operators and Functions

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

mdlaux.clobtochime
Converts a molfile or rxnfile string into the Chime string representation of the structure.

Syntax
mdlaux.clobtochime(molrxnclob)

Parameter Description

molrxnclob A CLOB that contains themolfile or rxnfile string representation of a molecule or
reaction.
Each line in molrxnclobmust be terminated either by the line-feed character LF
(0x0a), or by the carriage-return followed by the line-feed characters CR+LF (0x0d
+ 0x0a).

Usage
select mdlaux.clobtochime(molrxnclob) from dual;

Return value
A CLOB that contains the Chime string representation of the input structure. If mdlaux.clobtochime

fails, it returns NULL.

Example
The following example converts the contents of a rxnfile to a Chime string:

select mdlaux.clobtochime(
readfile('/opt/BIOVIA/c$direct2021/examples/rxnfiles/query1.rxn')
)

from dual;

The following PL/SQL example uses the rxnmol operator to get themolfile string representation of the
first molecule in a specific reaction, and uses mdlaux.clobtochime to convert it to a Chime string:

DECLARE
chimeclob CLOB;
molclobCLOB;

BEGIN
select rxnmol(rctab,1,1) into molclob

from samplerx_reaction where rxnmdlnumber = 'RXCI94070168';
chimeclob := mdlaux.clobtochime(molclob);

END;

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.

Page 16 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary())

((oracle.sql.CLOB)clob).freeTemporary();
}

mdlaux.clobtogzip64
Converts a molfile or rxnfile string into a gzip compressed and base-64 encoded string.

Syntax
mdlaux.clobtogzip64(molrxnclob)

Parameter Description

molrxnclob A CLOB that contains themolfile or rxnfile string representation of themolecule or
reaction.

Usage
select mdlaux.clobtogzip64(text-clob) from dual;

Return value
A compressed base-64 format file that represents the input structure. If mdlaux.clobtogzip64 fails, it
returns NULL.

Example
The following example reads a molfile and returns a CLOB containing thegzip compressed and base-64
encoded molfile:

select mdlaux.clobtogzip64(readfile('c:\benzene.mol')) from dual;

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary())

((oracle.sql.CLOB)clob).freeTemporary();
}

mdlaux.errors
Returns informational, warning, or error messages that Direct maintains in a message stack for each
Oracle session.

Usage
select mdlaux.errors from dual;

Return value
A VARCHAR2 that contains the first 4000 characters of the accumulated informational, warning, and
error messages from Direct. If there are no messages, the return value is NULL. If themessage stack
overflowed, “...more” appears at the end of the string. The following is an example of the return value:

BIOVIA Direct 2021 • Reference Guide | Page 17

Chapter 2: General Operators and Functions

ERRORS

RDC-0039: Unable to open file "/home/user/rxn.": Permission denied
RDC-0012: Unable to copy rxnfile from file "/home/user/rxn.rxn" to CLOB

Comments
Use mdlaux.errors to check if an error occurred after an operation. This is especially important if
you are performing an administrative task, such as altering a reaction domain index.
mdlaux.errors uses a message stack. Calling mdlaux.errors clears themessage stack. The first

message in the stack is the first informational, warning, or error message that you encountered in
the Oracle session. Themessage stack includes newline characters to separate the different
messages.
mdlaux.errors reports errors or warnings from Direct. If you received an Oracle error after you
executed a SQL statement that uses the Direct operators, or if you have a query that might take a
long time to execute, call mdlaux.errors to check for errors. The stack accumulates messages that
are related to the execution of Direct operators, not the execution of Oracle SQL operators.
Frequently call mdlaux.errors. Direct clears themessage stack after each invocation of the
function mdlaux.errors If you frequently call mdlaux.errorswithin an Oracle session, you
reduce the chance of overflowing the stack, and the chance of losing messages.
Direct provides a debug logging mechanism. If the Oracle external process that runs Direct
terminates for any reason, the current message stack is lost. Direct creates a newmessage stack for
the next Oracle session. If you are debugging a problem and want to see the errors, enable the
logging mechanism for the reaction. For more information about debugging and logging, see
Logging Information in BIOVIA Direct Administration Guide.
If you use session pooling, the error stack might contain information about error conditions that
were caused by other users of your session.

See also
BIOVIA Direct Developers Guide> Using Direct > Checking Errors

mdlaux.externalcommand
Executes an operating system command with three arguments. Returns the contents of a file as a CLOB
or BLOB, the output from the command (stdout) as a VARCHAR2 and errors from the command
(stderr) as a VARCHAR2.
The first and second arguments are file names of temporary files on the Oracle server. The third
argument is a text string. The temporary files are created by mdlaux.externalcommand; the first
contains the contents of an input CLOB and the second is initially empty. The external command can
write data to the second file, upon completion of the external command this will be read by
mdlaux.externalcommand and its contents returned to the caller in a CLOB or BLOB.

Syntax
mdlaux.externalcommand(
command in varchar2,
inputclob in clob,
args in varchar2,
binaryoutput in boolean,
outputclob out clob,
outputblob out blob,
stdout out varchar2,

Page 18 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

stderr out varchar2)

Parameter Description

command The command to execute, for example c:\work\normalizeMolecule.bat.

inputclob A CLOB containing text to copy to a temporary file, the temporay file’s name is
passed to the command as its first argument. For example this could be a CLOB
containing a molfile.

args A character string containing any arguments to be passed to the command as its
third argument, for example removeHydrogens fixNitroGroups.

binaryoutput Specify the value as TRUE if the output file from the command should be copied to a
BLOB, or specify FALSE if the output file from the command should be copied to a
CLOB. If returning a molfile from the command specify FALSE.

outputclob If the binaryoutput argument is TRUE this value is NULL. If the binaryoutput
argument is FALSE this is a temporary CLOB containing the contents of the output
file from the command. The output file’s name is passed to the command as its
second argument.

outputblob If the binaryoutput argument is FALSE this value is NULL. If the binaryoutput
argument is TRUE this is a temporary BLOB containing the contents of the output
file from the command. The output file’s name is passed to the command as its
second argument.

stdout The first 4000 characters of output from the command are returned in this
argument.

stderr The first 4000 characters of errors from the command are returned in this argument.

Return value
A BOOLEAN, value is TRUE if the function successfully calls the operating system command or FALSE if
there is an error trying to execute the command string.

Usage
Create an operating system executable or script file which takes three arguments.

The first argument is the name of a temporary file on the Oracle server, this file should only be read
by the command. The contents of this file are a copy of the contents of the inputclob CLOB.
The second argument is the name of an empty temporary file on the Oracle server, this file should
only be written to by the command. The contents of this file are copied to a CLOB or a BLOB and
returned to the caller.
The third argument may contain any additional arguments to the command.

For an operating system command which should return a CLOB to the user:
declare

boolean status;
input_file clob;
output_file clob;
unused_output blob;
input_arguments varchar2(4000);

BIOVIA Direct 2021 • Reference Guide | Page 19

Chapter 2: General Operators and Functions

stdout varchar2(4000);
stderr varchar2(4000);

begin
input_file := input-clob;
input_arguments := 'input-arguments';
status := mdlaux.externalcommand('command-to-execute',

input_file,
input_arguments,
FALSE,
output_file,
unused_output,
stdout,
stderr);

end;

For an operating system command which should return a BLOB to the user the only changes are the
value of the Boolean flag, the output_file type and the unused_output type:
declare

boolean status;
input_file clob;
output_file blob;
unused_output clob;
input_arguments varchar2(4000);
stdout varchar2(4000);
stderr varchar2(4000);

begin
input_file := input-clob;
input_arguments := 'input-arguments';
status := mdlaux.externalcommand('command-to-execute',

input_file,
input_arguments,
TRUE,
unused_output,
output_file,
stdout,
stderr);

end;

Example
The following example creates a Pipeline Pilot Client Chemistry Java SDK program which converts all lead
atoms in an input molecule into gold atoms. This will be called from Oracle using Direct's
ExternalCommand function to process molecules in a table. This example is not complete and is not
suitable for use in a production environment.
First, create and compile the Java program which will perform the desired element transmutation
operation. The program reads a molecule in molfile format from the first file name argument, operates
on themolecule, and writes themodified molecule, again in molfile format, to the file specified by the
second file name argument. The third argument is not used in this example.
import java.io.File;
import java.io.FileReader;
import java.io.BufferedReader;
import java.io.FileWriter;
import java.io.BufferedWriter;

Page 20 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

import java.io.FileNotFoundException;
// ppchemapi Java sdk
import com.accelrys.chem.*;

public class Transmute {

private MolIO molIO = null;
private Molecule inputMol = null;

public Transmute(String inputFileName, String outputFileName,
String options)

{
try {

molIO = PPChemSDKFactory.createMolIO();
inputMol = PPChemSDKFactory.createMolecule();

if (!readFile(inputFileName)) {
return;

}

// Convert all atoms of lead to gold
int na = inputMol.getNumAtoms();
for (int i=0; i<na; i++) {

Atom atom = inputMol.getAtom(i);
if (atom.getType() == Atom.AtomType.Lead)

atom.setType(Atom.AtomType.Gold);
}

// Write output molfile
String outputMolString =

molIO.writeMoleculeString(inputMol, MolIO.FormatType.SDFile_
String);

FileWriter f = new FileWriter(outputFileName);
BufferedWriter bw = new BufferedWriter(f);
bw.write(outputMolString);
bw.close();

}
catch (Throwable e) {

System.err.println("Unable to write file '" + outputFileName +
"':\n" + e);

}
}

private boolean readFile(String filename)
{

boolean ret = false;
if (filename == null || filename.length() == 0) {

System.err.println("No input filename provided");
}
else {

try {
FileReader f = new FileReader(filename);

BIOVIA Direct 2021 • Reference Guide | Page 21

Chapter 2: General Operators and Functions

BufferedReader br = new BufferedReader(f);
String line;
String file = "";
while ((line = br.readLine()) != null) {

file += line + "\n";
}
br.close();

molIO.readMolecule(file, MolIO.FormatType.SDFile_String,
inputMol);

ret = true;
}
catch (FileNotFoundException x) {

System.err.println("Input file '" + filename + "' was not
found");

}
catch (Exception x) {

System.err.println("Input file '" + filename + "' could not be
read:\n" + x);

}
}
return ret;

}

public static void main(String[] args)
{

String options = null;
String inputFileName = null;
String outputFileName = null;

if (args.length > 0 && args[0].length() > 0) inputFileName = args[0];
if (args.length > 1 && args[1].length() > 0) outputFileName = args[1];
if (args.length > 2 && args[2].length() > 0) options = args[2];

try {
Transmute pm =

new Transmute(inputFileName, outputFileName, options);
}
catch (Exception e) {

System.err.println("Caught exception: " + e);
}

}
}

Next, create the program that will be executed by the ExternalCommand function. For this example the
program is a Windows batch file that executes the Java program created in the first step.

@setlocal

@REM Arguments are:
@REM Full path and name of input molfile.
@REM Full path and name of output molfile.
@REM Options.

Page 22 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

@REM Command invocation for 64-bit java executable
@set JAVA=d:\programs\Java64\jdk1.8.0_31\bin\java

@REM Location of PPChem Java chemistry SDK
@set CHEMISTRYSDK=d:\programs\chemistrysdk

@REM Location of this lib directory (includes trailing backslash)
@set THISDIR=%~dp0

@set CLASSPATH=%THISDIR%.;%CHEMISTRYSDK%\bin\lang\java\jars\ppchemsdk.jar

@%JAVA% -classpath "%CLASSPATH%" ^
-Djna.library.path="%CHEMISTRYSDK%\bin" ^
Transmute ^
%1 %2 %3

@endlocal

Finally, create a function in Oracle which accepts an input molecule,
processes it using the batch file above, and returns the possibly modified
molecule.

create or replace function Transmute(inputmol in clob)
return clob
is

outputmol clob;
status Boolean;
unusedblob blob;
stdout varchar2(4000);
stderr varchar2(4000);

begin
status := mdlaux.externalcommand('d:\programs\Transmute.bat',

inputmol,
null,
false,
outputmol,
unusedblob,
stdout,
stderr);

-- Transmute returns errors in stderr
if (length(stderr) > 0 or (not status)) then

dbms_output.put_line('Transmute failed: '||stderr);
outputmol := null;

end if;
return outputmol;
end;
/

Run the function to process molecules:
create table transmuted_molecules (id number, ctab blob);
insert into transmuted_molecules

select id, mol(transmute(molfile(ctab))) from input_molecules;

BIOVIA Direct 2021 • Reference Guide | Page 23

Chapter 2: General Operators and Functions

mdlaux.gzip64toclob
Converts a gzip compressed and base-64 encoded string to themolfile or rxnfile string representation of
the structure.

Syntax
mdlaux.gzip64toclob(gzip64-clob)

Parameter Description

gzip64-
clob

ACLOBthat contains the gzip compressed and base-64 encoded representation of a
molecule or reaction.

Usage
select mdlaux.gzip64toclob(gzip64-clob) from dual;

Return value
A CLOB that contains themolfile or rxnfile string representation of the input compressed format
structure. The CLOB includes line-feed characters (0x0a) that separate the lines within themolfile or
rxnfile. If mdlaux.gzip64toclob fails, it returns NULL.

Example
The following example reads a file containing a compressed molfile and returns a CLOB containing the
molfile:
In PL/SQL:
select mdlaux.gzip64toclob(readfile('c:\benzene.gzip64')) from dual;

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

mdlaux.readbinaryfile
This package function is equivalent to readbinaryfile. See the documentation for
readbinaryfile for more information.

mdlaux.readfile
This package function is equivalent to readfile. See the documentation for readfile for more
information.

mdlaux.stringsegment
This package function is equivalent to stringsegment. See the documentation for stringsegment
for more information.

Page 24 | BIOVIA Direct 2021 • Reference Guide

Chapter 2: General Operators and Functions

mdlaux.tempclob
This package function is equivalent to tempclob. See the documentation for tempclob for more
information.

mdlaux.version
Returns the version of Direct.

Syntax
mdlaux.version[(mode)]

Parameter Description

mode Optional. Specify the value ‘subsys’ to return the internal version numbers for
subsystems within Direct.

Usage
select mdlaux.version from dual;
select mdlaux.version('subsys') from dual;

Return value
A VARCHAR2 that contains the version number and other information about the Direct product that is
currently installed in
Oracle. For example (for Microsoft Windows), mdlaux.version returns the following:
SQL> SELECT MDLAUX.VERSION FROM DUAL;

VERSION
--

BIOVIA Direct
Revision2021 (Microsoft Windows Oracle11) (9.1.0.10)

(c) Copyright BIOVIA, Inc. 1999-2014

mdlaux.writebinaryfile
This package function is equivalent to writebinaryfile. See the documentation for
writebinaryfile for more information.

mdlaux.writefile
This package function is equivalent to writefile. See the documentation for writefile for more
information.

mdlaux.writetempclob
This package function is equivalent to writetempclob. For more information, see the documentation
forwritetempclob.

BIOVIA Direct 2021 • Reference Guide | Page 25

Chapter 3:
Molecule-Specific Operators and Functions
This chapter contains the reference listings for the functions and operators that are useful when working
with molecules.

Molecule-Specific Operators
In some cases, Direct offers both a function and an operator with the same name that behave identically
to each other. For example, the readfile operator and the mdlaux.readfile function have the
same functionality. In these cases, the description of the operator appears under this section. The
Molecule-Specific Functions section lists the name of the function and then references the description in
this section.
If both a function and an operator are available, use the function name instead of the operator name in
situations where the operator is not allowed. For example, you must use the package function name in a
PL/SQL assignment statement, because PL/SQL assignment statements do not accept operators.

chime 27
chime_string 28
chime_string_seg 28
flexmatch 29
flexmatchhighlight 33
flexmatchtimeout 34
fmla_eq 35
fmla_like 35
fmlalike 35
fmlamatch 37
helm 38
helm2 40
inchi 41
inchiauxinfo 42
inchikey 44
isgeneric 45
isnostruct 46
isotopicformula 47
isrna 48
issequence 49
iupacname 50
makeclob 52
mol 53
molchime 54
molfile 55
molfile_string 56
molfile_string_seg 57
molfmla 58
molgzip64 60
molimage 61
molkeys 63
molnemakey 64
molsim 67

Page 26 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

molwt 69
molwtmax 70
molwtmin 71
molwtrange 72
monoisotopicmass 74
numspecifics 75
overlap 76
overlaptimeout 79
pctoverlap 80
readmol 81
sequencesearch 81
sequencetext 83
similar 83
similarity 86
smiles 86
sss 88
sss_highlight_chime 93
sss_highlight_molfile 94
ssshighlight 95
ssssequenceids 97
ssstimeout 98
writemol 99
xhelm 99

chime
Returns a CLOB, an Oracle character large object, that contains the Chime string representation of a
molecule structure.

Note: Direct provides this operator to emulate the CHIME operator in themolecule cartridge prior to
version 6.0. CHIME is a synonym for the operator MOLCHIME. Because it is a synonym, it cannot be
used within a PL/SQL procedure or function. Dassault Systèmes recommends that applications using
CHIMEwith a BLOB argument usemolchime instead, and applications using CHIMEwith a CLOB
argument usemdlaux.clobtochime.

Syntax
chime(ctab)

Parameter Description

ctab Possible values:
- The name of the BLOB field that contains the binary chemical structures.
- A CLOB value that contains a molfile string to be converted to a Chime string
Note: The ctab parameter cannot be a filename.

Return value
ACLOBthat contains themolecule Chime string

Usage
select chime(ctab)

[, other-column-data]

BIOVIA Direct 2021 • Reference Guide | Page 27

Chapter 3: Molecule-Specific Operators and Functions

from tablename
where condition;

Example
The following example uses the chime operator to return the Chime string representation of a
molecule:

select chime(ctab)
from sample2d
where cdbregno=364;

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

chime_string
Returns a VARCHAR2 string that contains the first 4000 characters of a molecule Chime string.

Note: Direct provides this operator to emulate the chime_string operator in themolecule
cartridge prior to version 6.0. chime_string is equivalent to stringsegment(chime(arg)).

Syntax
chime_string(ctab)

Parameter Description

ctab Possible values:
- The name of the BLOB field that contains the binary chemical structures.
- A CLOB value that contains a molfile string to be converted to a Chime string. The CLOB
contains the first 4000 characters of the Chime string.
Note: The ctab parameter cannot be a filename.

Return value
A VARCHAR2 that contains the Chime string representation of a molecule structure. If the structure
exceeds 4000 characters, chime_string returns NULL.

Usage
select chime_string(ctab)

[, other-column-data]
from tablename
where condition;

chime_string_seg
Returns a string that contains a segment of a molecule Chime string, up to 4000 characters at a time.

Page 28 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Note: Direct provides this operator to emulate the chime_string_seg operator in themolecule
cartridge prior to version 6.0. After error and limit checking, chime_string_seg is equivalent to
dbms_lob.read(molchime(arg), start, stop-start+1).

Syntax
chime_string_seg(ctab,start,stop)

Parameter Description

ctab The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB.
The field value cannot be NULL.

start A number that indicates the starting position in the Chime string. 1 is the first position.

stop A number that indicates the ending position in the Chime string. start + 3999 is the
maximum position. The difference between start and stop (stop - start) must not exceed
4000.

Return value
A VARCHAR2 that contains a segment, up to 4000 characters long, of the Chime string representation of
a molecule structure.

Usage
select chime_string_seg(ctab,start,stop)

[, other-column-data]
from tablename
where condition;

flexmatch
Finds records that are an exact match of the structure that you specify in the query. flexmatch
accepts flexmatch-parameters that allow you to restrict or relax the definition of an exact match.

Syntax
flexmatch(molecule, query, flexmatch-parameters|'GENERICS' [,flexmatch-
number])

Parameter Description

molecule The name of the BLOB field that contains themolecule structures. molecule can also be
a molecule object. If a molecule object is specified,the global Ptable, salts file and key
definition files will be used during searching.

query Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated
either by the line-feed character LF (0x0a), or by the carriage-return followed by the
line-feed characters CR+LF (0x0d + 0x0a).
Chime string (VARCHAR2 or CLOB)

BIOVIA Direct 2021 • Reference Guide | Page 29

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

ADirect molecule object (BLOB)
A SMILES string
An InChI string
An IUPAC name
A HELM string
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Note: query cannot be NULL.

flexmatch-
parameters

Is a string containing the flexmatch switches.
For details about the flexmatch switches, see the "Exact Search (Flexmatch)" chapter in
the BIOVIA Chemical Representation Guide.
Note: For flexmatch searching of generic structures, specify 'GENERICS' instead of the
flexmatch parameters. See the following description of 'GENERICS'.

ORIENTONLY - Add the keyword ORIENTONLY to the flexmatch-parameters string
to cause flexmatchhighlight to return a structure that is oriented to the query.
ORIENT - Add the keyword ORIENT to the flexmatch-parameters string to cause
flexmatchhighlight to return a structure that is both oriented and highlighted.
ALLOW_TIMEOUT - Add the keyword ALLOW_TIMEOUT to the flexmatch-
parameters string to never return search timeouts as hits. When the keyword is not
present and the query times out during a match against a target in the database,
the record is returned as a hit and the flexmatchtimeout ancillary operator will
return a value of "1". When the keyword is present the record is not returned as a
hit. Use this option with care, as a timeout may or may not be identical to the
query.

Note: Separate the keyword from the other flexmatch-parameters with a space.

'GENERICS'
(or

'GENERIC')

Causes flexmatch to accept the query as a specific or generic query molecule, and
finds all generics or specifics in the table which enumerate to exactly the same set of
specifics. The 'GENERICS' or 'GENERIC' keyword changes the normal flexmatch search
to a generic exact-match search. Fastsearch is not used; instead the pre-screen consists
of theminimum and maximum molecular weights and the number of enumerated
specifics.
Note: If you specify the 'GENERICS' or 'GENERIC' keyword, do not specify flexmatch-
parameters. The generic search always performs an exact match that ignores all data
Sgroups.

flexmatch-
number

A number that is equal to the flexmatch-number parameter used with the
flexmatchhighlight or flexmatchtimeout operator. This parameter only
applies if you use flexmatchhighlight or flexmatchtimeout.

Return value
The NUMBER 1 indicates that the query matched one or more records. When you use flexmatch in a
WHERE clause, always test the return value for a result of 1.

Page 30 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Usage
select column-data
from tablename
where flexmatch(ctab,query,flexmatch-parameters)=1

[operator other-conditions];

The flexmatch operator can also be used in the SELECT clause because it evaluates to a 1 for a hit
based on the parameters passed to the result row, or 0 for no hit. Generally, this type of operation can
be expected to be as slow as a non-indexed search. Although it is not common usage, it can be used to
determine if a structure is really a flexmatch search hit from a complex WHERE clause.
select flexmatch(ctab,query,flexmatch-parameters)

[, other-column-data]
from tablename
where condition;

Example
The following example uses the flexmatch parameter tau to perform a tautomer search on a specific
structure:

select cdbregno
from sample2d
where flexmatch(

ctab,
(select ctab from sample2d where cdbregno=364),
'match=tau'
)=1;

Comments
To negate the results of flexmatch, use the SQL operator NOT. For example:
select count(*) from sample2d
where not flexmatch(ctab,'c=c-c=c-c=c-@1','all')=1;

The query structure for the flexmatch search must not contain query features. The query must be a
structure that would be suitable for registration. For information on query features and other
restrictions on flexmatch query structures, see the "Exact Search (Flexmatch)" chapter in BIOVIA
Chemical Representation.
If you use a structure with query features, the mdlaux.errors function returns the following error:
Error CHEMICALDB-1110 (1): <prep_specific_flex:Invalid
FLEXMATCH search query: No query features allowed>

flexmatch is an indexed operator. If Direct cannot locate the domain index for the operator
flexmatch, the search executes more slowly than an indexed flexmatch. To check if the domain
index is part of the execution plan for the SQL statement, use the Oracle command EXPLAIN PLAN.
For more information, seeDirect Domain Index and the Oracle Optimizer in the About Direct chapter
of BIOVIA Direct Developers Guide.

Clearly specify the flexmatch switches. If the specified flexmatch-parameters is NULL, or an
empty string, a string of blank characters, "MATCH=NONE" is assumed. This is also equivalent to
"IGNORE=ALL". For details about the flexmatch switches, see the "Exact Search (Flexmatch)" chapter
in BIOVIA Chemical Representation.

BIOVIA Direct 2021 • Reference Guide | Page 31

Chapter 3: Molecule-Specific Operators and Functions

The flexmatch operator can be used to compare two tables of generic molecules. The flexmatch
operator can be used to perform library comparison. Two molecule tables can be compared to
determine which molecules in the source table also exist in the target table. The following SQL
statement compares a list of source structures (as a table) with a target database:
CREATE TABLE HITTABLE (source_idcolumn type, target_idcolumn type);

INSERT INTO HITTABLE
SELECT /*+ ORDERED INDEX(TRG targettable_domainindex) USE_NL(TRG) */

SRC.idcolumn, TRG.idcolumn
FROM sourcetable SRC, targettable TRG

WHERE FLEXMATCH(TRG.CTAB, SRC.querycolumn, ’GENERICS’)=1;

Use hints to force Oracle to use the domain index in a generic flexmatch search. When using the
flexmatch search to compare tables, use hints to force Oracle to use the domain index in the search.
The flexmatch search will be very slowwhen the domain index is not used. The ORDERED, INDEX
and USE_NL hints in the following example cause the domain index to be used in most cases.
However, use Oracle's EXPLAIN PLAN to verify that the query uses the domain index in your specific
case.
If one or both of the tables contain generic molecules, use the 'GENERICS' flag with the flexmatch
operator. For example:
INSERT INTO RESULTTABLE
SELECT

/*+ ORDERED INDEX(TRG targettable_domainindex) USE_NL(TRG) */
SRC.idcolumn,
TRG.idcolumn

FROM sourcetable SRC, targettable TRG
WHERE FLEXMATCH(TRG.CTAB, SRC.CTAB, 'GENERICS')=1;

Tautomer Matching Parameters
It is not possible to control generation of tautomeric regions in the flexmatch operator itself. However
the tautomer generation parameters can be set on a per-session basis by using the PL/SQL procedure
MDLAUX.SETFLAGS. Once a parameter is set to a value it will retain that setting either until the Oracle
session terminates or until MDLAUX.SETFLAGS is executed again with another value for the parameter.
Possible parameter settings are shown below, thesematch the settings which are possible with the
Identify Tautomeric Fragments component except that all spaces have been removed. Spaces are not
allowed in names or values used with MDLAUX.SETFLAGS.
execute mdlaux.setflags('ConsiderCarbonAsDonor=Never');

execute mdlaux.setflags
('ConsiderCarbonAsDonor=BondedToTwoOrMoreTautomericAtoms');

execute mdlaux.setflags
('ConsiderCarbonAsDonor=BondedToOneOrMoreTautomericAtom');

execute mdlaux.setflags('ConsiderCarbonAsDonor=BondedToAcceptor(1_3)');

execute mdlaux.setflags('MakeAllSp2AtomsAcceptors=True');

execute mdlaux.setflags('MakeAllSp2AtomsAcceptors=False');

execute mdlaux.setflags('AmidesTautomerization=SkipAllAmides');

execute mdlaux.setflags('AmidesTautomerization=TautomerizeOnlyDiamides');

execute mdlaux.setflags('AmidesTautomerization=TautomerizeAllAmides');

Page 32 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

execute mdlaux.setflags('PerceiveChargeTautomerization=True');

execute mdlaux.setflags('PerceiveChargeTautomerization=False');

execute mdlaux.setflags('TautomerizeHydrogenIsotopes=True');

execute mdlaux.setflags('TautomerizeHydrogenIsotopes=False');

See also
flexmatchhighlight

flexmatchtimeout

BIOVIA Chemical Representation > Exact Search (Flexmatch)
BIOVIA Chemical Representation >Molecule Representation > Tautomers
Flexmatch Search
Examples of Flexmatch Search
Specifying the Query Structure

flexmatchhighlight
Returns the oriented or oriented and highlighted molecule from a flexmatch search.

Syntax
flexmatchhighlight(flexmatch-number)

Parameter Description

flexmatch-
number

A NUMBER equal to the flexmatch-number parameter that is used with the
flexmatch operator.

Return value
A CLOB that contains the Chime representation of a candidatemolecule oriented to match query
orientation, and optionally contain highlight information. flexmatchhighlight stores the return
value in a temporary CLOB. The Chime string uses the V3000 format, and contains highlight information
as CTlib collection objects.

Usage
select flexmatchhighlight(flexmatch-number)
from tablename
where flexmatch(ctab, query, 'flexmatch-parameters orientonly',flexmatch-
number')=1;

Parameter description
flexmatch-number = ANUMBER equal to the flexmatch-number parameter that is used with the
flexmatch operator.

Example
The following example returns highlighted molecule Chime strings after a flexmatch search.

select flexmatchhighlight(3),
from moltable
where flexmatch(ctab,query,('match=all orientonly,3')=1;

BIOVIA Direct 2021 • Reference Guide | Page 33

Chapter 3: Molecule-Specific Operators and Functions

Notes
The number 3 is used to correlate the flexmatch operator in the WHERE clause with the
flexmatchhighlight operator in the SELECT clause. This could be any number as long as the
values in the two operators match.
Use ORIENTONLY in the flexmatch parameters to orient the candidate structures based on the
query, but not add any highlight information. Use ORIENT in the flexmatch parameters to both
orient the candidate structures and add highlight information. For more information on ORIENT
and ORIENTONLY, see flexmatch.

See also
flexmatch

flexmatchtimeout
Returns a the timeout status value from an flexmatch search.
flexmatch will return as matches those candidates which for which thematching algorithm times out.
Such candidates may or may not be actual matches. This ancillary operator gives the user information
about that timeout status.

Syntax
flexmatchtimeout(flexmatch-number)

Parameter Description

flexmatch-
number

A NUMBER equal to the flexmatch-number parameter that is used with the
flexmatch operator.

Return value
A NUMBER that indicates the status of the flexmatch search. The possible values are:

Value Description

0 The flexmatch search did not time out.

1 The flexmatch search timed out.

NULL The target was not a match to the query.

Usage
select flexmatchtimeout(flexmatch-number)

[,other-column-data]
from tablename
where flexmatch(mol, query, v1-v2-options, flexmatch-number)=1

[operator other-conditions];

Example
The following example returns the timeout status while searching for a duplicate.

select extreg,
flexmatchtimeout(3) "Timeout"

from moltable
where flexmatch(

Page 34 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

molcol,
'/opt/BIOVIA/direct/query1.mol',
'match=all',
3
)=1;

Note: The number 3 is used to correlate the flexmatch operator in theWHERE clause with the
flexmatchtimeout operator in the SELECT clause. This could be any number as long as the values
in the two operators match.

Comments
The flexmatch-number parameters for flexmatchtimeout and flexmatch operators must match.
If the flexmatch-number parameters do not match, or if you use flexmatchtimeoutwithout using
flexmatch, you get the following error:
ORA-29908: missing primary invocation for ancillary operator

The flexmatchtimeout operator can be used with a generic flexmatch. flexmatchtimeout returns
the timeout status of the search.

See also
flexmatch

fmla_eq
This fmla_eq operator is a synonym of fmlamatch. See the documentation for fmlamatch for more
information.

Note: Direct provides this operator to emulate the fmla_eq operator in themolecule cartridge prior
to version 6.0.

fmla_like
This fmla_like operator is a synonym of fmlalike. See the documentation for fmlalike for more
information.

Note: Direct provides this operator to emulate the fmla_like operator in themolecule cartridge
prior to version 6.0.

fmlalike
Finds records that contain themolecule formula that you specify in the query. The specified formula can
be a subformula. Matching records might contain atomic symbols that do not occur in your query.

Syntax
fmlalike(ctab,formula-query)

BIOVIA Direct 2021 • Reference Guide | Page 35

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

ctab The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
fmlalike uses the local Ptable associated with that domain index. If the specified field
does not have a domain index, fmlalike uses the global Ptable. The fmlalike
operator also uses the global Ptable if the value of the parameter is a molecule object.
The field value cannot be NULL.

formula-
query

A string that contains the formula that lists the atomic symbols and the corresponding
number of atoms. The string cannot be NULL.
For details about the possible formats of a query, seeMolecule Formula Search.

Return value
The NUMBER 1 indicates that the formula matched one or more records. When you use fmlalike in a
WHERE clause, always test the return value for a result of 1.

Usage
select column-data
from tablename
where fmlalike(ctab,query)=1

[operator other-conditions];

The fmlalike operator can also be used in the SELECT clause because it evaluates to a 1 for a hit
based on the parameters passed to the result row, or 0 for no hit. Generally, this type of operation can
be expected to be as slow as a non-indexed search. Although it is not common usage, it can be used to
determine if a structure is really a fmlalike search hit from a complex WHERE clause.
select fmlalike(ctab,query)

[, other-column-data]
from tablename
where condition;

Example
The following example uses fmlalike to find themolecules that contain 6 carbon atoms and 6
hydrogen atoms. This example uses the operator molfmla to display the formula of themolecules that
matched the query.

select cdbregno,
molfmla(ctab)

from sample2d
where fmlalike(ctab,'C6 H6')=1;

Comments
To negate the results of fmlalike, use the SQL operator NOT. For example:

select count(*)
from sample2d
where not fmlalike(ctab,'C6 H6')=1;

Page 36 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

fmlalike is an indexed operator. If Direct cannot locate the domain index for the operator
fmlalike, the search executes more slowly than an indexed fmlalike. To check if the domain
index is part of the execution plan for the SQL statement, use the Oracle command EXPLAIN PLAN.

Formula searching of biopolymers using the fmlalike operator is supported. However, when you
search for biopolymers, search for non-template atoms (C, H, N, O, S, etc.) and not for residues
(names of amino acids such as Ala, Cys, etc.). For example, the following query works:
select uniprot_name from human where fmlalike(ctab, 'c(1000-1100)')=1;

But the following query will not work because template atoms with the symbol “Cys” are not
indexed:
select uniprot_name from human where fmlalike(ctab, 'Cys')=1;

See also
fmlamatch

molfmla

Molecule Formula Search

fmlamatch
Finds records that exactly match themolecule formula that you specify in the query. The specified
formula can be a subformula. (Matching records may contain atomic symbols that do not occur in your
query.)

Syntax
fmlamatch(ctab,formula-query)

Parameter Description

ctab The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
fmlamatch uses the local Ptable associated with that domain index. If the specified field
does not have a domain index, fmlamatch uses the global Ptable. The fmlamatch
operator also uses the global Ptable if the value of the parameter is a molecule object.
The field value cannot be NULL.

formula-
query

A string that contains the formula that lists the atomic symbols and the corresponding
number of atoms. The string cannot be NULL.
For details about the possible formats of a query, seeMolecule Formula Search.

Return value
The NUMBER 1 indicates that the formula matched one or more records. When you use fmlamatch in a
WHERE clause, always test the return value for a result of 1.

Usage
select column-data
from tablename
where fmlamatch(ctab,query)=1
[operator other-conditions];

The fmlamatch operator can also be used in the SELECT clause because it evaluates to a 1 for a hit
based on the parameters passed to the result row, or 0 for no hit. Generally, this type of operation can

BIOVIA Direct 2021 • Reference Guide | Page 37

Chapter 3: Molecule-Specific Operators and Functions

be expected to be as slow as a non-indexed search. Although it is not common usage, it can be used to
determine if a structure is really a fmlamatch search hit from a complex WHERE clause.
select fmlamatch(ctab,query)
[, other-column-data]
from tablename
where condition;

Example
The following example uses fmlamatch to find molecules whosemolecule formulas contain exactly two
carbon atoms and four hydrogen atoms.

select cdbregno
from sample2d
where fmlamatch(ctab,'c2 h4')=1;

Comments
fmlamatch behaves like fmlalike, except that fmlamatch performs an equality search.
fmlamatch is an indexed operator. If Direct cannot locate the domain index for the operator
fmlamatch, the search executes more slowly than an indexed fmlamatch. To check if the domain
index is part of the execution plan for the SQL statement, use the Oracle command EXPLAIN PLAN.

Formula searching of biopolymers using the fmlamatch operator is supported. However, note that
the search is for non-template atoms (C, H, N, O, S, etc.) not for residues (Ala, Cys, etc.). Thus, these
searches are not useful except in cases where the search is for an unusual element such as selenium.

See also
fmlalike

molfmla

Molecule Formula Search
Examples ofMolecule Formula Search

helm
Returns a HELM string representation of a biopolymer sequencemolecule.

Syntax
helm(molecule)

molecule is the name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

Return value
A temporary CLOB that contains the HELM string. The helm operator returns NULL if the HELM string
cannot be generated, for example if themolecule is not a biopolymer or if an error occurs. Use
mdlaux.errors to see the related error message.

Usage
select helm(molecule)

[,other-column-data]
from tablename
where condition;

Page 38 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Example
The following example shows the HELM strings for two molecules from a table of human proteins:
select name, helm(ctab) from human_subset where rownum <= 2;

NAME HELM(CTAB)

----------- --

A20AL_HUMAN PEPTIDE1{M.K.L.F.G.F.R.S.R.R.G.Q.T.V.L.G.S.I.D.H.L.Y.T.G.S.G

. .Y.R.I.R.Y.S.E.L.Q.K.I.H.K.A.A.V.K.G.D.A.A.E.M.E.R.C.L.A.R.R

.S.G.D.L.D.A.L.D.K.Q.H.R.T.A.L.H.L.A.C.A.S.G.H.V.K.V.V.T.L.L

.V.N.R.K.C.Q.I.D.I.Y.D.K.E.N.R.T.P.L.I.Q.A.V.H.C.Q.E.E.A.C.A

. .V.I.L.L.E.H.G.A.N.P.N.L.K.D.I.Y.G.N.T.A.L.H.Y.A.V.Y.S.E.S.T

.S.L.A.E.K.L.L.F.H.G.E.N.I.E.A.L.D.K.V}$$$PEPTIDE1{ChainName

:Putative ankyrin repeat domain-containing protein 20A-like

protein MGC26718}|PEPTIDE1{ChainDescription:chain}$

APPT_HUMAN PEPTIDE1{M.S.S.G.N.Y.Q.Q.S.E.A.L.S.K.P.T.F.S.E.E.Q.A.S.A.L.V

.E.S.V.F.G.L.K.V.S.K.V.R.P.L.P.S.Y.D.D.Q.N.F.H.V.Y.V.S.K.T.K

.D.G.P.T.E.Y.V.L.K.I.S.N.T.K.A.S.K.N.P.D.L.I.E.V.Q.N.H.I.I.M

.F.L.K.A.A.G.F.P.T.A.S.V.C.H.T.K.G.D.N.T.A.S.L.V.S.V.D.S.G.S

.E.I.K.S.Y.L.V.R.L.L.T.Y.L.P.G.R.P.I.A.E.L.P.V.S.P.Q.L.L.Y.E

.I.G.K.L.A.A.K.L.D.K.T.L.Q.R.F.H.H.P.K.L.S.S.L.H.R.E.N.F.I.W

.N.L.K.N.V.P.L.L.E.K.Y.L.Y.A.L.G.Q.N.R.N.R.E.I.V.E.H.V.I.H.L

.F.K.E.E.V.M.T.K.L.S.H.F.R.E.C.I.N.H.G.D.L.N.D.H.N.I.L.I.E.S

.S.K.S.A.S.G.N.A.E.Y.Q.V.S.G.I.L.D.F.G.D.M.S.Y.G.Y.Y.V.F.E.V

.A.I.T.I.M.Y.M.M.I.E.S.K.S.P.I.Q.V.G.G.H.V.L.A.G.F.E.S.I.T.P

.L.T.A.V.E.K.G.A.L.F.L.L.V.C.S.R.F.C.Q.S.L.V.M.A.A.Y.S.C.Q.L

.Y.P.E.N.K.D.Y.L.M.V.T.A.K.T.G.W.K.H.L.Q.Q.M.F.D.M.G.Q.K.A.V

.E.E.I.W.F.E.T.A.K.S.Y.E.S.G.I.S.M}$$$PEPTIDE1{ChainName:Pro

bable phosphotransferase LOC123688}|PEPTIDE1{ChainDescriptio

n:chain}$

Comments
HELM strings can only be generated for biopolymer sequencemolecules which do not contain any
modified residues. Other molecules will return a NULL value from the helm operator.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":

BIOVIA Direct 2021 • Reference Guide | Page 39

Chapter 3: Molecule-Specific Operators and Functions

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

See also
BIOVIA Direct Developers Guide > Using Direct >Getting the HELM string

helm2
Returns a HELM version 2 string representation of a biopolymer sequencemolecule.

Syntax
helm2(molecule)

molecule is the name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

Return value
A temporary CLOB that contains the HELM string. The helm operator returns NULL if the HELM string
cannot be generated, for example if themolecule is not a biopolymer or if an error occurs. Use
mdlaux.errors to see the related error message.

Usage
select helm2(molecule)

[,other-column-data]
from tablename
where condition;

Example
The following example shows the HELM strings for two molecules from a table of human proteins:
SQL> select name, helm2(ctab) from human_subset order by 1;

NAME HELM2(CTAB)
----------- --
A20AL_HUMAN PEPTIDE1{M.K.L.F.G.F.R.S.R.R.G.Q.T.V.L.G.S.I.D.H.L.Y.T.G.S.G
.Y.R.I.R.Y.S.E.L.Q.K.I.H.K.A.A.V.K.G.D.A.A.E.M.E.R.C.L.A.R.R
.S.G.D.L.D.A.L.D.K.Q.H.R.T.A.L.H.L.A.C.A.S.G.H.V.K.V.V.T.L.L
.V.N.R.K.C.Q.I.D.I.Y.D.K.E.N.R.T.P.L.I.Q.A.V.H.C.Q.E.E.A.C.A
.V.I.L.L.E.H.G.A.N.P.N.L.K.D.I.Y.G.N.T.A.L.H.Y.A.V.Y.S.E.S.T
.S.L.A.E.K.L.L.F.H.G.E.N.I.E.A.L.D.K.V}"ChainDescription:cha
in,ChainName:Putative ankyrin repeat domain-containing prote
in 20A-like protein MGC26718"$$$$V2.0
APPT_HUMAN PEPTIDE1{M.S.S.G.N.Y.Q.Q.S.E.A.L.S.K.P.T.F.S.E.E.Q.A.S.A.L.V
.E.S.V.F.G.L.K.V.S.K.V.R.P.L.P.S.Y.D.D.Q.N.F.H.V.Y.V.S.K.T.K
.D.G.P.T.E.Y.V.L.K.I.S.N.T.K.A.S.K.N.P.D.L.I.E.V.Q.N.H.I.I.M
.F.L.K.A.A.G.F.P.T.A.S.V.C.H.T.K.G.D.N.T.A.S.L.V.S.V.D.S.G.S
.E.I.K.S.Y.L.V.R.L.L.T.Y.L.P.G.R.P.I.A.E.L.P.V.S.P.Q.L.L.Y.E
.I.G.K.L.A.A.K.L.D.K.T.L.Q.R.F.H.H.P.K.L.S.S.L.H.R.E.N.F.I.W
.N.L.K.N.V.P.L.L.E.K.Y.L.Y.A.L.G.Q.N.R.N.R.E.I.V.E.H.V.I.H.L
.F.K.E.E.V.M.T.K.L.S.H.F.R.E.C.I.N.H.G.D.L.N.D.H.N.I.L.I.E.S
.S.K.S.A.S.G.N.A.E.Y.Q.V.S.G.I.L.D.F.G.D.M.S.Y.G.Y.Y.V.F.E.V
.A.I.T.I.M.Y.M.M.I.E.S.K.S.P.I.Q.V.G.G.H.V.L.A.G.F.E.S.I.T.P
.L.T.A.V.E.K.G.A.L.F.L.L.V.C.S.R.F.C.Q.S.L.V.M.A.A.Y.S.C.Q.L
.Y.P.E.N.K.D.Y.L.M.V.T.A.K.T.G.W.K.H.L.Q.Q.M.F.D.M.G.Q.K.A.V

Page 40 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

.E.E.I.W.F.E.T.A.K.S.Y.E.S.G.I.S.M}"ChainDescription:chain,C
hainName:Probable phosphotransferase LOC123688"$$$$V2.0

Comments
HELM strings can only be generated for biopolymer sequencemolecules which do not contain any
modified residues. Other molecules will return a NULL value from the helm operator.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();

See also
BIOVIA Direct Developers Guide > Using Direct >Getting the HELM string

inchi
Returns an IUPAC standard International Chemical Identifier, InChI string, or a non-standard InChI string
for the specified molecule. For more information about InChI, see BIOVIA Direct Developer’s Guide >
Using Direct > Getting the InChI String and Key.

Syntax
inchi(molecule, options)

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

options (Optional) Specifies a complete set of InChI library options. If no additional options are
provided in the call to INCHI, the standard InChI string is generated. If any of the
following options are specified, a non-standard InChI string is generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)
SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)

BIOVIA Direct 2021 • Reference Guide | Page 41

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the InChI string (shows up as a three-
character suffix, a backslash followed by two letters)

Return value
A temporary CLOB that contains the InChI string. The output string length will exceed 4000 characters
for very largemolecules. The inchi operator returns NULL if the InChI string cannot be generated. Use
mdlaux.errors to see the related error message.

Usage
select inchi(molecule,options)

[, other-column-data]
from tablename
where condition;

Example
The following example shows the InChI string for themolecules in a table, using the default option:

select inchi(ctab) from moltable;

INCHI(CTAB)

InChI=1S/C6H5Cl/c7-6-4-2-1-3-5-6/h1-5H

Comments
There are limitations to the generation of InChI strings. Not all BIOVIAmolecule features can be
handled. The inchi operator returns NULL if the specified molecule cannot be handled. Use
mdlaux.errors to see the related error message. For details, see Limitations to the Generation of
InChI Strings in theUsing Direct chapter of BIOVIA Direct Developers Guide.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

See also
mdlaux.inchi

inchikey

inchiauxinfo
Returns the auxilliary information (AuxInfo) that is computed along with the IUPAC International
Chemical Identifier (InChI) string for a molecule.

Page 42 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Syntax
inchiauxinfo(ctab [, options])

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

options (Optional) Specifies a complete set of InChI library options. If no additional options are
provided in the call to INCHIAUXINFO, the standard InChI AuxInfo string is generated. If
any of the following options are specified, a non-standard InChI AuxInfo string is
generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)
SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)
15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the InChI string (shows up as a three-
character suffix, a backslash followed by two letters)

Return value
A temporary CLOB that contains the InChI AuxInfo string. The output string length will exceed 4000
characters for very largemolecules. The inchiauxinfo operator returns NULL if the InChI AuxInfo
string cannot be generated. Use mdlaux.errors to see the related error message.

Usage
select inchiauxinfo(molecule,options)

[, other-column-data]
from tablename
where condition;

Example
The following example shows the InChI AuxInfo string for themolecules in a table, using the default
option:

select inchiauxinfo(ctab) from moltable;

BIOVIA Direct 2021 • Reference Guide | Page 43

Chapter 3: Molecule-Specific Operators and Functions

INCHI(CTAB)

AuxInfo=1/0/N:5,1,6,3,4,2,7/E:(2,3)(4,5)/rA:7CCCCCCCl/rB:;d-1s2;d-
2;s1;s4d-5;s2;/rC:11.6039,-8.8012,0;13.0335,-8.8008,0;12.3201,-
8.388,0;13.0335,-9.6278,0;11.6039,-9.6315,0;12.3219,-
10.0405,0;13.7497,-8.3873,0;

Comments
There are limitations to the generation of InChI AuxInfo strings. Not all BIOVIAmolecule features can
be handled. The inchiauxinfo operator returns NULL if the specified molecule cannot be handled.
Use mdlaux.errors to see the related error message. For details, see Limitations to the Generation
of InChI Strings in theUsing Direct chapter of BIOVIA Direct Developers Guide.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

See also
mdlaux.inchiauxinfo

inchi

inchikey
Returns an IUPAC standard International Chemical Identifier, InChI string, or a non-standard InChI string
for the specified molecule.The inchikey operator generates the key by first generating the InChI
string, and then calling an InChI library function to convert the string into the 27-character key. For more
information about InChI, see BIOVIADirect Developers Guide > Using Direct > Getting the InChI String
and Key.

Syntax
inchikey(molecule, options)

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

options (Optional) Specifies a complete set of InChI library options. If no additional options are
provided in the call to INCHI, the standard InChI string is generated. If any of the
following options are specified, a non-standard InChI string is generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)

Page 44 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)
15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the InChI string (shows up as a three-
character suffix, a backslash followed by two letters)

Return value
A VARCHAR2 that contains the 27-character InChI key. The inchikey operator returns NULL if the InChI
string cannot be generated. Use mdlaux.errors to see the related error message.

Usage
select inchikey(molecule,options)

[, other-column-data]
from tablename

where condition;

Example
The following example shows the InChI key themolecules in a table, using the default option:

select inchikey(ctab) from moltable;
INCHIKEY(CTAB)
--
MVPPADPHJFYWMZ-UHFFFAOYSA-N

Comments
There are limitations to the generation of InChI strings. Not allBIOVIAmolecule features can be handled.
The inchikey operator returns NULL if the specified molecule cannot be handled. Use
mdlaux.errors to see the related error message. For details, see BIOVIA Direct Developers Guide >
Using Direct > Limitations to the generation of InChI strings.

See also
mdlaux.inchikey

inchi

isgeneric
Returns 1 if the specified molecule is a generic structure, 0 if not. A generic structure is a Markush
structure that represents actual structures.

Syntax
isgeneric(molecule)

BIOVIA Direct 2021 • Reference Guide | Page 45

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

Return value
ANUMBER that indicates whether the specified molecule is a generic structure (1) or not (0).

Usage
select column-data
from tablename
where isgeneric(molecule)=1

[operator other-conditions];

Example
The following example uses isgeneric to find generic structures in the samplegen table.

select parent_sampleid
from samplegen
where isgeneric(ctab)=1;

Comments
This operator is not indexed. When possible, avoid using it when running queries on large tables.

See also
mdlaux.isgeneric

isnostruct
Returns 1 if the specified molecule is a nostruct ("no-structure"), 0 if not. A no-structure is a chemical
structure that consists of zero fragments, that is, zero atoms and zero bonds.

Syntax
isnostruct(molecule)

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

Return value
ANUMBER that indicates whether the specified molecule is a no-structure (1) or not (0).

Usage
select column-data
from tablename
where isnostruct(ctab)=1

[operator other-conditions];

Example
The following example uses isnostruct to find “no-structures” in the sample2d table.

Page 46 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

select cdbregno
from sample2d
where isnostruct(ctab)=1;

Comments
This operator is not indexed. When possible, avoid using it when running queries on large tables.

See also
mdlaux.isnostruct

isotopicformula
Displays themolecule formula with isotope labels. The isotopicformula operator uses BIOVIA
Pipeline Pilot Client to get the formula.

Syntax
isotopicformula(molecule, 'format-options')

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
isotopicformula uses the local Ptable associated with that domain index. If the
specified field does not have a domain index, isotopicformula uses the global Ptable.
The isotopicformula operator also uses the global Ptable if the value of the parameter
is a molecule object.

format-
options

Optional string to control formatting of the output molecular formula. If no options are
present the formula will include space between elements, and the formula for each
fragment in a multi-fragment structure will be separated by a dot. Use NOSPACE to
remove the space between elements, NOFRAGMENT to not separate fragment formulas,
and NOSPACE NOFRAGMENT for both changes. To match the formula string which is
output by Insight use NOSPACE NOFRAGMENT. A third optional argument, USEDANDT,
switches the default display of hydrogen isotopes, 2H and 3H, to the older one-letter
designations D and T.

Return value
A temporary CLOB that contains themolecular formula string, including isotope labels. The domain
index Ptable is automatically used to resolve atom symbols.

Usage
select isotopicformula(molecule)

[, other-column-data]
from tablename
where condition;

Example
The following example uses isotopicformula to return the isotopic formula of themolecules in a
table:

select cdbregno,

BIOVIA Direct 2021 • Reference Guide | Page 47

Chapter 3: Molecule-Specific Operators and Functions

molfmla(ctab),
isotopicformula(ctab)

from acd2d_moltable;

Comments
The isotopicformula operator cannot be used for registration. Use the
mdlaux.isotopicformula function when registering mono-isotopic mass into a table.
To match the formula output by Direct using theMolecular Formula component in Pipeline Pilot, set
the component options as follows:

Ignore Isotopes = (True for MOLFMLA, False for ISOTOPICFORMULA)
Use 2H and 3H for Hydrogen Isotopes = True
Include Space Between Elements = (True for default, False if using NOSPACE)
Separate Fragments = (True for default, False if using NOGRAGMENT)
Add HTML Tags = False

Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

See also
mdlaux.isotopicformula

molfmla

isrna
Returns 1 if themolecule argument is an RNA or DNA biopolymer sequence, 0 if it is not.
Amolecule is considered an RNA or DNA biopolymer sequence if it contains one or more nucleotide
template atoms, one or more nucleotide template definitions, or one or more Sgroup abbreviations
(superatoms) that have nucleotide sequence information associated with them.

Syntax
isrna(molecule)

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

Return value
A NUMBER that is 1 if themolecule is an RNA or DNA biopolymer sequence, or 0 if it is not.

Page 48 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Usage
select isrna(molecule)

[, other-column-data]
from tablename
where condition;

Example
The following example shows whether or not each molecule in a table is a nucleotide sequence:

select id, isrna(ctab) from moltable;
ISRNA(CTAB),

------------ ----------------

adenine 1

PhCl 0

See also
mdlaux.isrna

issequence
Returns 1 if themolecule argument is a biopolymer sequence, 0 if it is not.
Amolecule is considered a biopolymer sequence if it contains one or more template atoms, one or more
template definitions, or one or more Sgroup abbreviations (superatoms) that have sequence
information associated with them. For more information about biopolymer sequences, see BIOVIA
Direct Developers Guide >Using Direct > Biopolymer Searching and Registration.

Syntax
issequence(molecule)

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

Return value
A NUMBER that is 1 if themolecule is a biopolymer sequence, or 0 if it is not.

Usage
select issequence(molecule)

[, other-column-data]
from tablename
where condition;

Example
The following example shows whether or not each molecule in a table is a sequence:

select id, issequence(ctab) from moltable;
IDISSEQUENCE(CTAB)
------------ ----------------

BIOVIA Direct 2021 • Reference Guide | Page 49

Chapter 3: Molecule-Specific Operators and Functions

alanine 1

AATC2 1

PhCl 0

Comments
The issequence operator is not an indexed operator and cannot be used in a WHERE clause.

See also
mdlaux.issequence

iupacname
Returns the IUPAC (International Union of Pure and Applied Chemistry) name of a molecule.

Syntax
iupacname(molecule, options)

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

options (Optional) An optional VARCHAR2 argument to specify the language, name style, and
character set. The argument can specify one or more of the LANGUAGE, NAMESTYLE, and
CHARSET.
For example:
'LANGUAGE=language NAMESTYLE=name-style CHARSET=character-set'

If no options are specified, the defaults are:
'LANGUAGE=ENGLISH NAMESTYLE=DEFAULT CHARSET=HTML'

For a list of valid options, see the list that follows.

List of valid language, name-style, and character-set options
Valid language options are:

ENGLISH (default)
BRITISH
INTERNATIONAL
CHINESE
DANISH
DUTCH
FRENCH
GERMAN
GREEK
HUNGARIAN
IRISH
ITALIAN
JAPANESE

Page 50 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

POLISH
PORTUGUESE
ROMANIAN
RUSSIAN
SLOVAK
SPANISH
SWEDISH

Valid name-style options are:
DEFAULT (default)
OPENEYE
TRADITIONAL
SYSTEMATIC
IUPAC
CAS
CASINDEX
AUTONOM
IUPAC79
IUPAC93
ACDNAME

Valid character-set options are:
DEFAULT
ASCII
HTML (default)
UTF8

Return value
A temporary CLOB that contains the IUPAC name of themolecule. The iupacname operator returns
NULL if a name cannot be generated for themolecule. Use mdlaux.errors to see related error
message.

Usage
select iupacname(molecule)

[, other-column-data]
from tablename
where condition;

Example
The following example shows the IUPAC name of a molecule in the sample2d table.

select iupacname(ctab)
from sample2d
where cdbregno=17;
IUPACNAME(CTAB)
--

BIOVIA Direct 2021 • Reference Guide | Page 51

Chapter 3: Molecule-Specific Operators and Functions

diphenyl benzene-1,2-dicarboxylate

Comments
The iupacname operator uses functionality provided by OpenEye Scientific Software.

See also
mdlaux.iupacname

makeclob
Converts a string or VARCHAR data to a CLOB, an Oracle character large object. Use makeclob to
register or update a CLOB field in a molecule table with a string or VARCHAR value.
Direct provides this operator to emulate the makeclob operator of themolecule cartridge prior to
version 6.0. makeclob is equivalent to tempclob(writetempclob(str, 0)).

Syntax
makeclob(string)

Parameter Description

string A string or VARCHAR value

Return value
A CLOB that contains the given string.

Usage
insert into tablename(
clob-field
[,other-column-data]

)
values (

makeclob(string-value)
[,other-value-data]

);

update tablename
set clob-field = makeclob(string-value)

[,other-column=other-value]
where condition;

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

See also
tempclob

Page 52 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

writetempclob

mol
Converts a molfile filename or string to a 2D molecule object. Use the mol operator to:

Register or update a structure in a table
Produce a molecule object to use as a candidate for a search operator

Syntax
mol(structure)

Parameter Description

structure Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the
line-feed characters CR+LF (0x0d + 0x0a).

IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
A 2Dmolecule object contains the "packed" binary molecule. Z coordinates are set to zero, with any 3D
stereochemistry converted to up and down bonds.

Usage
insert into tablename(

ctab
[,other-column-data]

)
values (

mol(molfile-structure)
[,other-value-data]

);
update tablename
set ctab = mol(chime-structure)

[,other-column=other-value]
where condition;
insert into tablename(

ctab
[,other-column-data]

)
values (

BIOVIA Direct 2021 • Reference Guide | Page 53

Chapter 3: Molecule-Specific Operators and Functions

mol('/pathname/filename.mol')
[,other-value-data]

);

Example
The following registration example uses mol to generate a molecule object for registration:

insert into moltable(extreg, molcol)
values ('DLG-123', MOL('/home/user/dlg123.mol'));

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the
Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

Warnings appear when a molecule is modified during registration. The following warnings occur when
the stereochemistry perception determines that an atom marked as a stereocenter is not actually a valid
stereocenter. This might occur because a trivalent nitrogen stereocenter was removed, which caused a
remaining stereocenter to be invalid because of symmetry.
MDL-2010: Warning: Removed invalid Chiral flag
MDL-2011: Warning: Removed invalid non-tetrahedral stereo center(s) MDL-
2012: Warning: Removed invalid atom stereo center(s)
MDL-2129: Warning: Flattening 3D molecule to 2D
MDL-2134: Warning: Removed wedge from atom that is not a stereo center
MDL-2141: Warning: Removed invalid double-either bond(s) MDL-5092: Warning:
Added implicit hydrogens to metal atom

Tip: To preserve the original molecule or reaction, add a new column to the table and store the
original molfile, rxnfile, or Chimestring in it.

molchime
Converts a BLOBmolecule object into a CLOB that contains the Chime string representation of a
molecule.

Syntax
molchime(mol)

Parameter Description

mol The name of the BLOB column that contains themolecules. mol can also be a BLOB that
contains a molecule object, such as a molecule selected from some other table by a
PL/SQL routine.

The name of the BLOB column that contains themolecules. mol can also be a BLOB that contains a
molecule object, such as a molecule selected from some other table by a PL/SQL routine.

Page 54 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Return value
A CLOB that contains the Chime string representation of a molecule. molchime stores the return value
in a temporary CLOB.

Usage
select molchime(mol)

[, other-column-data]
fromtablename
wherecondition;

Example
The following example fetches a single molecule and writes it to a chime CLOB:

select molchime(molcolumn)
from moltable
where extreg=’DLG-123’;

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

See also
Fetching Reactions Using the Chime Format
BIOVIA Direct Developers Guide > Using Direct > Fetching Reactions

molfile
Returns a CLOB, an Oracle character large object, that contains themolfile representation of a molecule
structure.

Syntax
molfile(mol)

Parameter Description

mol Possible values:
- The name of the BLOB column that contains themolecules. mol can also be a BLOB that
contains a molecule object, such as a molecule selected from some other table by a
PL/SQL routine.
- A CLOB value that contains a Chime string to be converted to a molfile.
Note: The ctab parameter cannot be a filename.

Return value
A CLOB that contains the molfile representation of a molecule structure. The CLOB includes newline
(\n) characters that separate the lines within themolfile.

BIOVIA Direct 2021 • Reference Guide | Page 55

Chapter 3: Molecule-Specific Operators and Functions

Usage
select molfile(ctab)

[, other-column-data]
from tablename
where condition;

Example
The following example uses molfile to return the CLOB that contains the molfile representation of
a molecule:

select molfile(ctab)
from sample2d
where cdbregno=20;

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();

}

See also
molfile_string

molfile_string_seg

molfile_string
Returns a string that contains the first 4000 characters of themolfile representation of a molecule
structure.

Note: Direct provides this operator to emulate the molfile_string operator in themolecule
cartridge prior to version 6.0.

Syntax
molfile_string(ctab)

Parameter Description

ctab Possible values:
The name of the BLOB field that contains the binary chemical structures. The field
name is normally CTAB. The field value cannot be NULL.
Amolecule object
A CLOB value that contains a Chime string to be converted to a molfile

Return value
A VARCHAR2 that contains the molfile representation of a molecule structure. The string includes
newline (\n) characters that separate the lines within the molfile. If the structure exceeds 4000

Page 56 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

characters, molfile_string returns NULL.

Usage
select molfile_string(ctab)

[, other-column-data]
from tablename where condition;

Example
The following example uses molfile_string to return the variable-length string that contains the
molfile representation of a molecule:

select molfile_string(ctab)
from sample2d
where cdbregno=20;

Comments
If the content of themolfile exceeds 4000 characters, molfile_string returns an empty string.
To retrieve larger structures, use molfile. If the application does not support CLOB data, iteratively
use molfile_string_seg instead.

See also
molfile

molfile_string_seg

Retrieving Molfile Structures

molfile_string_seg
Returns a string that contains a segment of the molfile representation of a molecule structure, up to
4000 characters at a time.

Note: Direct provides this operator to emulate the molfile_string_seg operator in themolecule
cartridge prior to version 6.0.

Syntax
molfile_string_seg(ctab,start,stop)

Parameter Description

ctab The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
molfile_string_seg uses the local Ptable associated with that domain index. If the
specified field does not have a domain index, molfile_string_seg uses the global
Ptable. The molfile_string_seg operator also uses the global Ptable if the value of
the parameter is a molecule object.
The field value cannot be NULL.

start A number that indicates the starting position in the molfile. 1 is the first position.

stop A number that indicates the ending position in the molfile. start + 3999 is themaximum
position. The difference between start and stop (stop - start) must not exceed 4000.

BIOVIA Direct 2021 • Reference Guide | Page 57

Chapter 3: Molecule-Specific Operators and Functions

Return value
A VARCHAR2 that contains a segment, up to 4000 characters long, of themolfile representation of a
molecule structure. The string includes newline (\n) characters that separate the lines within themolfile.

Usage
select molfile_string_seg(ctab,start,stop)

[, other-column-data]
from tablename
where condition;

Example
The following example uses molfile_string_seg to return the first 3000 characters of themolfile
representation of a molecule:

select molfile_string_seg(ctab,1,3000)
from sample2d
where cdbregno=150;

The next example uses molfile_string_seg to return the next 3000 characters of themolfile
representation of the samemolecule:

select molfile_string_seg(ctab,3001,6000)
from sample2d
where cdbregno=150;

Comments
Use molfile_string_seg to retrieve structures whosemolfile string exceeds 4000 characters.
Starting at position 1, iteratively use molfile_string_seg to retrieve the segments of themolfile
until the return value is empty or is shorter than the requested length.
If the application that uses Direct supports string buffers that can contain more than 4000
characters, use the operator molfile instead of molfile_string_seg.

See also
molfile

molfile_string

Examples of Retrieving Molfile Structures

molfmla
Returns themolecular formula for the given molecule.

Syntax
molfmla(molecule, 'format-options')

Page 58 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
molfmla uses the local Ptable associated with that domain index. If the specified field
does not have a domain index, molfmla uses the global Ptable. The molfmla operator
also uses the global Ptable if the value of the parameter is a molecule object.
The field value cannot be NULL.

format-
options

Optional string to control formatting of the output molecular formula. If no options are
present the formula will include space between elements, and the formula for each
fragment in a multi-fragment structure will be separated by a dot. Use NOSPACE to
remove the space between elements, NOFRAGMENT to not separate fragment formulas,
and NOSPACE NOFRAGMENT for both changes. To match the formula string which is
output by Insight use NOSPACE NOFRAGMENT.

Return value
A CLOB that contains themolecular formula for the given molecule.

Usage
select molfmla(ctab)

[, other-column-data]
from tablename

where condition;

Example

select molfmla(ctab)
from sample2d
where cdbregno = 150;

Comments
Do not use molfmla in the WHERE clause of a SQL statement. To search for molecular formulas that
meet specific criteria, use the fmlalike or fmlamatch operators instead.
Do not use molfmla in a DISTINCT, ORDER BY or GROUP BY clause. Becausemolfmla returns a
CLOB, you cannot use molfmla in a DISTINCT, ORDER BY, or GROUP BY clause. For example, the
query "SELECT DISTINCT MOLFMLA(CTAB) FROM MOLTABLE WHERE CDBREGNO=1" will return
an error.
It is more efficient to store themolecular formula in themolecule table and to retrieve the stored
values than to recompute them at search time. Consider selecting the columns directly instead of
specifying molfmla(ctab).
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":

BIOVIA Direct 2021 • Reference Guide | Page 59

Chapter 3: Molecule-Specific Operators and Functions

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

When inserting themolecular formula, you must use the mdlaux.molfmla function instead of the
molfmla operator. The mdlaux.molfmla function allows you to specify a molecule table or
molecule domain index that specifies which ptable to use. The molfmla operator is not appropriate
for registration because it uses the global Ptable when the specified parameter is a molecule object.
To match the formula output by Direct using theMolecular Formula component in Pipeline Pilot, set
the component options as follows:

Ignore Isotopes = (True for MOLFMLA, False for ISOTOPICFORMULA)
Use 2H and 3H for Hydrogen Isotopes = True
Include Space Between Elements = (True for default, False if using NOSPACE)
Separate Fragments = (True for default, False if using NOGRAGMENT)
Add HTML Tags = False

See also
isotopicformula

molgzip64
Converts a BLOBmolecule object into a CLOB that contains the gzip compressed and base-64 encoded
representation of a molecule.

Syntax
molgzip64(mol)

Parameter Description

mol The name of the BLOB column that contains themolecules. mol can also be a BLOB that
contains a molecule object, such as a molecule selected from some other table by a
PL/SQL routine.

Return value
A CLOB that contains the gzip compressed and base-64 encoded string representation of a molecule.
molgzip64 stores the return value in a temporary CLOB.

Usage
select molgzip64(mol)

[, other-column-data]
fromtablename
wherecondition;

Example
The following example fetches a single molecule and writes it to a ccompressed CLOB:

select molgzip64(molcolumn)
from moltable
where extreg=’DLG-123’;

Page 60 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

molimage
Returns a temporary BLOB containing a PNG, BMP, SVG, or EMF image of themolecule rendered.

Syntax
molimage(molecule [, options])

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

options Optional. A VARCHAR2 argument to control the type of image created, its size, and other
preferences. Specify this argument as a string of comma separated options, each option
takes the form keyword=value.

Possible options are:
imagetype=png - Creates a PNG image (default)
imagetype=bmp - Creates a BMP
imagetype=svg - Creates a SVG
imagetype=emf - Creates a EMF image
width=number- Specifies a width number, typically 100 to 1000 (default is 500)
height=number - Specifies a height number, typically 100 to 1000 (default is 500)
ColorAtomsByType=TRUE|FALSE - Specifies whether to color the atom labels by
their type. The default is TRUE.
HydrogenDisplayMode=mode- Specifies how to display implicit hydrogen atoms.
The default is HYDROGEN_HETERO. Valid mode values are:

HYDROGEN_OFF - Does not display implicit hydrogen atoms
HYDROGEN_HETERO - Displays implicit hydrogens on heteroatoms.
HYDROGEN_TERMINAL - Displays implicit hydrogens on terminal atoms.
HYDROGEN_TERMINAL_AND_HETERO - Displays implicit hydrogens on terminal
atoms and heteroatoms.
HYDROGEN_ALL - Displays implicit hydrogens on all atoms.

BackgroundColor=color - Specifies the background color. Use either the name of
the color (red, green, others) or the hexadecimal RGB value (FF0000, 00FF00, others).
The default is white.
ForegroundColor=color - Specifies the color of the shape or text. Use either the

BIOVIA Direct 2021 • Reference Guide | Page 61

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

name of the color (red, green, others) or the hexadecimal RGB value (FF0000, 00FF00,
others). The default is black.
ChiralityLabels=ANDtext,ABStext,ORtext,MIXEDtext – Specifies the
chirality label text to display for structures with stereocenters. The default is “AND
Enantiomer,,OR Enantiomer,Mixed”. You must include the double quote characters
and four comma-separated fields within the quotes. An empty field will not display
anything for that type of chirality, for example the default text does not display
anything for a structure that has only absolute stereocenters.§
DisplayRS=TRUE|FALSE – Specifies whether to display R and S stereocenter labels
on the structure. The default is FALSE.§
DisplayEZ=TRUE|FALSE – Specifies whether to display E and Z double bond labels
on the structure. The default is FALSE.
PolAtomDisplayMode=POL_STYLE_BEAD|POL_STYLE_TEXT - Specifies how to
indicate the atom(s) that bind the structure to a polymer (atoms of type ‘Pol’). Default
is POL_STYLE_BEAD. Valid values are:

POL_STYLE_BEAD - Displays polymer atoms as shaded circles that resemble beads
POL_STYLE_TEXT - Displays polymer atoms with the label text Pol.

The following shows an example that specify image options:
molimage(mol, 'imagetype=png,width=100,height=100')

Return value
A BLOB that contains the binary image data. The molimage operator returns NULL if an image cannot
be generated for themolecule. Use mdlaux.errors to see related error message.

Usage
select molimage(molecule[,options])

[, other-column-data]
from tablename
where condition;

Example
The following example inserts images into a new column for all molecules in a table:

alter table moltable add (imagefile blob);
update moltable set imagefile=molimage(ctab);

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"blob":

if (((oracle.sql.BLOB)blob).isTemporary()){
((oracle.sql.BLOB)blob).freeTemporary();

Page 62 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

}

Applications that use this function in a SQL SELECT statement must be aware that the temporary
LOBs are only freed when the statement ends. If the statement selects many rows Oracle may run
out of temporary space needed to store the LOBs. To work around this you can increase the
temporary tablespace size, or you can convert the SELECT into a PL/SQL function which computes
the image and then frees the BLOB immediately.

See also
mdlaux.molimage

molkeys
Returns the SSS keys which would be registered for a molecule as a printable string.

Syntax
molkeys(molecule, print)

Parameter Description

molecule The name of the BLOB field that contains themolecule structures. molecule can also be a
molecule object. If molecule is a molecule object, molkeyswill use the global key
definitions.

print Specifies what is to be printed, and how. The specified print string should follow the
format "outputFormat delimiterType". It can contain the following keywords and
options, separated by whitespace. Extra characters are ignored, thus 'DEC' or 'DECIMAL'
would be allowed.
Normally, the full set of 960 SSS keys are used. The following option can be added to
restrict output to the subset of 166 "user" keys:
SUB Subset of 166 "user" keys
Output format:
BIN - Binary, i.e. '1' and '0'. Delimiter is applied between bits.
HEX - Hexadecimal, i.e. 'fa03'. Lowest key (key 1) is highest bit in first word, thus 'a000'
would set keys 1 and 3. Delimiter is applied between 32-bit words.
DEC - Decimal key numbers.
WTS or WEI Decimal key weights. All key positions are output, keys which are not set have
a weight of zero.
SET - Returns only the number of keys set, not the key values.
TOT - Returns only the total number of keys, not the key values. This is independent of
themol. Default: DEC
Type and placement of delimiter character:

DELIM=c - Output key values separated by 'c'.
LEAD - Include a leading delimiter.
TRAIL - Include a trailing delimiter.

Default: None, unless option string is all blank.
If the option string is '' or 'SUB', the default is to add 'DEC DELIM=, LEAD TRAIL'.
Examples:

BIOVIA Direct 2021 • Reference Guide | Page 63

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

"" Same as "DEC DELIM=, LEAD TRAIL"

"DEC DELIM=, "23,47,230"

"DEC SUBSET DELIM=, LEAD TRAIL ",2,6"

"BIN" ,"00000101011101..."

"TOT" 960" [number of SSS keys]

Return value
A VARCHAR2 that contains the SSS keys which would be registered for a molecule as a printable string

Usage
select molkeys(ctab, print)

[, other-column-data]
from tablename
where condition;

Comments
There is no package function identical to the molkeys operator, as it is indexed. However, there is a
package function which accepts the index or table name as an argument: mdlaux.molkeys.
Although molkeys is formally an indexed operator, there is no indexed implementation of it. Thus,
the following search to find all molecules which have no keys will fail:select extreg from
moltable where MOLKEYS(molcol,'SET') = '0';

If you want to use molkeys in a WHERE clause, you must force Oracle to use the non-indexed
implementation. For example:

SELECT extreg FROM moltable WHERE MOLKEYS(molcol,'SET')||'X' = '0X';
or
SELECT extreg FROM moltable WHERE TO_NUMBER(MOLKEYS(molcol,'SET')) =
0;

When inserting themolecular formula, you must use the mdlaux.molkeys function instead of the
molkeys operator.The mdlaux.molkeys function allows you to specify a molecule table or
molecule domain index that specifies which key definitions to use. The molkeys operator always
uses the global key definitions which are not appropriate for registration.

molnemakey
Returns a string that contains the NEMA key for the specified molecule structure.

Syntax
molnemakey(molecule, option)

Page 64 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
molnemakey uses the local Ptable associated with that domain index. If the specified field
does not have a domain index, molnemakey uses the global Ptable. The molnemakey
operator also uses the global Ptable if the value of the parameter is a molecule object.

option Specifies what to generate, and consists of one or more of the following three-letter
keywords. The keywords are:

CON - Returns constitutional NEMAKEY (30 characters). The constitutional key does
not include any stereochemical information. It should be used to compare two
molecules without regard to stereochemistry.
STE - Returns stereochemical NEMAKEY (30 characters). This key includes
stereochemical information for most cases, but will not differentiatemixtures of
different types of enhanced stereochemical collections.
EXA - Returns stereochemical NEMAKEY (30 characters). Returns no key if a

FLEXMATCH verification is required. This occurs if themolecule contains mixtures of
different types of enhanced stereochemical collections.
FLG - Returns three (zero-padded) digits of NEMAKEY and cartridge flag information, as
described below.
REV - Returns the NEMAKEY revision number, for example “1001”. This number will
change if the NEMAKEY computed for a molecule might be different than for a previous
release.

The specified values are appended to the output string in the order in which the
keywords appear in the option parameter. Any characters which are not keywords are
appended to the output string as-is.
Thus, to generate the stereo NEMAKEY followed by a dash followed by the flags, use 'STE-
FLG' for the option parameter. If the option parameter is not present, is NULL, or is
blank, then the default is to return 'EXA'. The option parameter is optional; if it is not
specified, it is the same as if NULL were specified.

Note: Do not include text which contains the letters in the option flags, the text will not
be printed verbatim but will print the option with the remaining text. For example
'Stereo:ste' will print the stereo NEMAKEY twice separated by "reo:". Use Oracle text
concatenation to add additional text to the NEMAKEY output.

In addition to the keywords above which specify what to include in the output string,
there is another option which controls whether the generated NEMAKEYwill be the same
as the one created by Pipeline Pilot Client and Draw. This option is /NODAT and specifies
that the NEMAKEYwill not include information about data Sgroups. By default, Direct
includes information about data Sgroups in its NEMAKEYs, which allows the keys to be
used for exact-match comparisons. Pipeline Pilot Client and Draw do not include
information about data Sgroups, so to create a NEMAKEY that matches the one in Pipeline
Pilot Client or Draw use the options 'EXA/NODAT'.

BIOVIA Direct 2021 • Reference Guide | Page 65

Chapter 3: Molecule-Specific Operators and Functions

Return value
A VARCHAR2 that contains the information generated in response to the keywords used in the option
parameter.

Usage
select molnemakey(molecule, option)

[, other-column-data]
from tablename
where condition;

Example
The following example uses molnemakey to return the NEMAKEY string for the structures in a
substructure search:

select cdbregno,
molnemakey(ctab)

from acd2d_moltable
where sss(ctab, 'c:\query.mol')=1;

The following example is the same as the previous one but returns the same NEMAKEY that Pipeline Pilot
Client or Drawwould return for the structures:

select cdbregno,
opicmolnemakey(ctab, 'exa/nodat')

from acd2d_moltable
where sss(ctab, 'c:\query.mol')=1;

Comments
molnemakey is an indexed operator equivalent of mdlaux.molnemakey. molnemakeywill fetch
the domain index schema and name from the information passed to it by Oracle, and then call
mdlaux.molnemakey.
When the input molecule is a biopolymer sequencemolecule, molnemakey generates a special
sequence NEMA key. Currently, only an exact NEMA key (considering stereochemistry) can be
generated for sequences.Thus, if the input molecule is a sequencemolecule:

The 'CON' option will return a blank string
Only the 'STE' option will return a NEMA key .

In addition, a flag value of 128 denotes a sequence NEMA key. This example shows the flag value of
128:
select cdbregno, molnemakey(ctab, 'ste-flg') from moltable where
flexmatch(ctab, '/home/user/alanine.mol', 'all')=1;

CDBREGNO MOLNEMAKEY(CTAB,'STE-FLG')-

73 2GSUQPXFN9FEBYJHJJFQ65CXS58RF4-128

The NEMAKEYwill be empty if it cannot be generated because themolecule is a generic (contains
Rgroups), or contains polymer Sgroups, or it contains numeric data Sgroups. It may also be empty if
NEMA times out. Unless the FLG keyword is present, the return value will be NULL in these cases. If
for example the option parameter was 'STE-FLG', and themolecule is a polymer, the output will
be '-258', that is, the 'STE' portion is not present.

Page 66 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Note: Text data sgroups do not prevent generation of the NEMA key, and will contribute to the
definition of the key.

Flags are normally a bitwise OR of zero or more of the following:
4: Molecule has mixed stereogroups and requires FLEXMATCH to resolve equality if
stereochemistry is NOT ignored
128: Molecule generated a (biopolymer) sequence NEMA key

Flags can also be set to exactly one of the following, in this case the key is empty (no characters):
257: NEMA generation failed due to timeout
258: Molecule has polymer Sgroups or numeric data Sgroups
259: Molecule is a generic (contains Rgroups)

See also
mdlaux.molnemakey

BIOVIA Direct Developers Guide > Using Direct > NEMAKEY searching and key generation

molsim
Finds records that are structurally similar to the structure in your query, and returns the degree of
similarity between the query and retrieved structures.

Note: Direct provides this operator to emulate the molsim operator in themolecule cartridge prior
to version 6.0. molsim is equivalent to similar. See similar for more details.

Syntax
molsim(ctab,query,simtype)

Parameter Description

ctab The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB.
The value of this parameter can also be a molecule object. The field value cannot be NULL.

query Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

BIOVIA Direct 2021 • Reference Guide | Page 67

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

Notes:
Molecules used in a similarity query must not include substructure query features.
query cannot be NULL.

simtype A string that may contain the keyword FINGERPRINT along with one of the following
three values.

NORMAL - Normal similarity. The retrieved molecules contain the same structural
complexity as the query.
SUB - Subsimilarity. The retrieved molecules are typically larger than the query
structure, which is a substructure.
SUPER - Supersimilarity. The retrieved molecules are typically smaller than the query
structure, which is a superstructure.

When FINGERPRINT is present, the user-defined fingerprints are used for the similarity
search. If the keyword FINGERPRINT is not present, a traditional substructure key
similarity search is executed.

Return value
A number between 0 and 100 that indicates the degree of similarity between the query structure and the
retrieved structure. The higher the value, themore similarity.

Usage
select column-data
from tablename
where molsim(ctab,query,simtype) between minimum and maximum;
select column-data
from tablename
where molsim(ctab,query,simtype)

comparison-operator comparison-value;

The molsim operator can also be used in the SELECT clause. Generally, this type of operation can be
expected to be as slow as a non-indexed search. This operator can be used to determine the degree of
similarity between two structures.
select molsim(ctab,query,simtype)

[, other-column-data]
from tablename
where condition;

Example
The following example uses molsim to find themolecules within a range of degrees of similarity with
the query structure:

select cdbregno from sample2d where molsim(
ctab,
(select ctab from sample2d where cdbregno=364),
'normal'

) between 50 and 60;

The following example is the same but with user-defined fingerprint similarity:

Page 68 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

select cdbregno from sample2d where molsim(
ctab,
(select ctab from sample2d where cdbregno=364),
'fingerprint normal'

) between 50 and 60;

Comments
When you use molsim in a comparison expression, the > and < comparison operators are always
inclusive. The SQL operator > is equivalent to >= (greater than or equal to), and < is equivalent to <=
(less than or equal to).
molsim is an indexed operator. If Direct cannot locate the domain index for the operator molsim,
the search executes more slowly than an indexed molsim. To check if the domain index is part of the
execution plan for the SQL statement, use the Oracle command EXPLAIN PLAN.
Avoid using this operator in both the SELECT clause and the WHERE clause of the same SQL
statement. If you do so, Direct will compute the similarity value twice. Instead, use the similar and
similarity operators.
If the domain index is not used, no-structures are always treated as if the similarity is zero. Structures
that set no keys at all, such as no-structures, are effectively skipped during the similarity search when
the index is used; they never show up as hits even if the query is asking for zero percent similarity. In
effect, a difference in search results can be seen between indexed and non-indexed (full table scan)
searches.For example, the following indexed search returns 361 hits:
select count(*) from isismx2d_mol where
not (molsim(ctab, 'C1CCCCC1', 'normal') >= 80);

But the following non-indexed, full table scan search returns 364 hits:

select count(*) from
(select cdbregno from isismx2d_mol where
not (molsim(ctab, 'C1CCCCC1', 'normal') >= 80));

See also
similar

Similarity Search

Examples ofMolecule Similarity Search
Specifying the Query Structure

molwt
Returns themolecular weight of a molecule.

Syntax
molwt(molecule)

BIOVIA Direct 2021 • Reference Guide | Page 69

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
molwt uses the local Ptable associated with that domain index. If the specified field does
not have a domain index, molwt uses the global Ptable. The molwt operator also uses
the global Ptable if the value of the parameter is a molecule object.
The field value cannot be NULL.

Return value
A NUMBER that contains molecule weight of the specified molecule.

Usage
select molwt(ctab)

[, other-column-data]
from tablename
where condition;

Example

select molwt(ctab)
from sample2d
where cdbregno = 150;

Comments
Do not use molwt in the WHERE clause of a SQL statement. Although molwt is formally an indexed
operator, there is no indexed implementation of it. molwtwill return an error if a search such as this
is attempted:
SELECT extreg FROM moltable WHERE MOLWT(molcol) < 100.0;

It is more efficient to store themolecular weight in themolecule table and to retrieve the stored
values than to recompute them at search time. Consider selecting the columns directly instead of
specifying molwt(ctab).
There is no package function identical to the molwt operator, as it is indexed.
When inserting themolecular weight, you must use the mdlaux.molwt function instead of the
molwt operator. The mdlaux.molwt function allows you to specify a molecule table or molecule
domain index that specifies which Ptable to use. The molwt operator is not appropriate for
registration because it uses the global Ptable when the specified parameter is a molecule object.

See also
monoisotopicmass

molwtmax
Returns themaximum molecular weight for a generic structure, that is, themolecular weight of the
heaviest enumerated specific structure of the generic structure. If the given molecule is a specific
structure, molwtmax is the same as molwt.

Syntax
molwtmax(molecule)

Page 70 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
molwt uses the local Ptable associated with that domain index. If the specified field does
not have a domain index, molwt uses the global Ptable. The molwt operator also uses
the global Ptable if the value of the parameter is a molecule object.
The field value cannot be NULL.

Return value
A NUMBER that contains maximum molecular weight of a generic structure

Usage
select molwtmax(molecule)

[,other-column-data]
from tablename
where condition;

Example

select molwtmax(ctab)
from samplegen
where parent_sampleid = 'BENZ';

Comments
Do not use molwtmax in the WHERE clause of a SQL statement. Although molwtmax is formally an
indexed operator, there is no indexed implementation of it. molwtmax will return an error if a search
such as this is attempted:
select parent_sampleid from samplegen where molwtmax(ctab) < 430.0;

See also
mdlaux.molwtmax

molwtmin

molwtmin
Returns theminimum molecular weight for a generic structure, that is, themolecular weight of the
lightest enumerated specific structure of the generic structure. If the given molecule is a specific
structure, molwtmin is the same as molwt.

Syntax
molwtmin(molecule)

BIOVIA Direct 2021 • Reference Guide | Page 71

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
molwt uses the local Ptable associated with that domain index. If the specified field does
not have a domain index, molwt uses the global Ptable. The molwt operator also uses
the global Ptable if the value of the parameter is a molecule object.
The field value cannot be NULL.

Return value
A NUMBER that contains minimum molecular weight of a generic structure

Usage
select molwtmin(molecule)

[, other-column-data]
from tablename
where condition;

Example

select molwtmin(ctab)
from samplegen
where parent_sampleid = 'Peptoid';

Comments
Do not use molwtmin in the WHERE clause of a SQL statement. Although molwtmin is formally an
indexed operator, there is no indexed implementation of it. molwtminwill return an error if a search
such as this is attempted:
select parent_sampleid from samplegen where molwtmin(ctab) < 360.0;

See also
mdlaux.molwtmin

molwtmax.htm

molwtrange
Returns themolecular weight as a NUMRANGE object with two members. If themolecule argument is a
generic structure, the two members contain theminimum and maximum molecular weight. Otherwise,
if themolecule argument is a specific structure, the two members are identical.

Syntax
molwtrange(molecule)

Page 72 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
molwtrange uses the local Ptable associated with that domain index. If the specified field
does not have a domain index, molwtrange uses the global Ptable. The molwtrange
operator also uses the global Ptable if the value of the parameter is a molecule object.
The field value cannot be NULL.

Return value
A NUMRANGE object that contains themolecular weight with two members. If themolecule argument is a
generic structure, the two members contain theminimum and maximum molecular weight. Otherwise,
if themolecule argument is a specific structure, the two members are identical.

Usage
select molwtrange(ctab)

[, other-column-data]
from tablename
where condition;

Example
The following example gets the molwtrange of a structure.

select molwtrange(ctab)
from sample2d
where cdbregno = 150;

The following example queries the molwtrange of generic and non-generic (specific) structures in the
samplegen table:

select parent_sampleid,
sampleid,
isgeneric(ctab) isgeneric,
molwtrange(ctab) molweight

from samplegen
where parent_sampleid = 'Lib1';

The following shows the result of the preceding example. Note that for generic structures (isgeneric
(ctab) = 1), the molwtrange displays minimum and maximum values; for specific structures
(isgeneric(ctab) = 0), themolwtrange displays identical values:
PARENT_SAMPLEID SAMPLEIDISGENERIC MOLWEIGHT(MIN, MAX)
---------- -------------------- ---------- ------------------------------

Li
b1

CH3-Ph-
Cl

0 NUMRANGE(248.70812,
248.70812)

Li
b1

CH3-R2-
R3

1 NUMRANGE(248.70812,
265.30826)

BIOVIA Direct 2021 • Reference Guide | Page 73

Chapter 3: Molecule-Specific Operators and Functions

Li
b1

H-Chx-R3 1 NUMRANGE(240.72918,
251.28168)

Li
b1

H-Ph-R3 1 NUMRANGE(234.68154,
245.23404)

Li
b1

H-R2-R3 1 NUMRANGE(234.68154,
251.28168)

Li
b1

Lib1-1 1 NUMRANGE(234.68154,
341.40422)

Li
b1

Ph-Ph-
NO2

0 NUMRANGE(335.35658,
335.35658)

Li
b1

Ph-R2-R3 1 NUMRANGE(324.80408,
341.40422)

8 rows selected.

Comments
There is no package function identical to the molwtrange operator, as it is indexed.
It is more efficient to store themolecular weight in themolecule table and to retrieve the stored
values than to recompute them at search time. Consider selecting the columns directly instead of
specifying molwtrange(ctab).
When inserting themolecular weight for a generic structure, you must use the mdlaux.molwtmin
and mdlaux.molwtmax functions instead of the molwtrange operator. The mdlaux.molwtmin
and mdlaux.molwtmax functions allow you to specify a molecule table or molecule domain index
that specifies which Ptable to use. The molwtrange operator is not appropriate for registration
because it uses the global Ptable when the specified parameter is a molecule object.

monoisotopicmass
Computes themono-isotopic mass of a molecule.

Syntax
monoisotopicmass(molecule)

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
If the value of this parameter is a field name and the specified field has a domain index,
monoisotopicmass uses the local Ptable associated with that domain index. If the
specified field does not have a domain index, monoisotopicmass uses the global
Ptable. The monoisotopicmass operator also uses the global Ptable if the value of the
parameter is a molecule object.

Return value
A NUMBER that contains themono-isotopic mass of themolecule, or NULL if themass cannot be
computed. The domain index Ptable is automatically used to resolve atom symbols.

Page 74 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Usage
select monoisotopicmass(molecule)

[, other-column-data]
from tablename
where condition;

Example
The following example uses monoisotopicmass to return themono-isotopic mass of themolecules in
a table:

select cdbregno, molwt(ctab),
monoisotopicmass(ctab)

from acd2d_moltable;

Comments
The monoisotopicmass operator cannot be used for registration. Use the
mdlaux.monoisotopicmass function when registering mono-isotopic mass into a table.
The monoisotopicmass operator only provides a result when themolecule contains atoms found
in nature. If an input molecule contains pseudoatoms such as Pol, Mod, or X, themonoisotopicmass
operator returns NULL and the following error:
MDL-1590: MonoisotopicMass failed: Not available

See also
mdlaux.monoisotopicmass

molwt

numspecifics
Returns the number of specific structures from enumerating the specified generic structure. A specific
structure is a fully defined chemical structure (with no generic features). The numspecifics operator
returns 1 if the specified argument is a specific structure.

Syntax
numspecifics(molecule)

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

Return value
A NUMBER (1 or higher) that indicates the number of specific structures from enumerating the generic
structure.

Usage
select column-data,

numspecifics(molecule)
from tablename
where [conditions];

BIOVIA Direct 2021 • Reference Guide | Page 75

Chapter 3: Molecule-Specific Operators and Functions

Example
The following example returns the number of specific structures for the generic structures in the
samplegen table.

select parent_sampleid,
numspecifics(ctab)

from samplegen
where isgeneric(ctab)=1;

Comments
This operator is not indexed. When possible, avoid using it when running queries on large tables.

See also
mdlaux.numspecifics

overlap
Finds all generics or specifics in the table which contain at least one enumerated specific in common with
the query. The overlap operator uses Fastsearch.

Syntax
overlap(molecule, query [,overlap-number])

Parameter Description

molecule The name of the BLOB field that contains themolecule structures. molecule can also be
a molecule object. If a molecule object is specified,the global Ptable, salts file and key
definition files will be used during searching.

query Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).
Note: query cannot be NULL.

overlap-
number

A number that is equal to the overlap-number parameter used with the
overlaptimeout and pctoverlap operators.

Page 76 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Return value
The NUMBER 1 indicates that the query matched one or more records. When you use overlap in a
WHERE clause, always test the return value for a result of 1.

Usage
select column-data
from tablename
where overlap(ctab, query)=1

[operator other-conditions];

Example
The following example uses a generic database, a sample database named SAMPLEGEN, database
libraries of benzodiazepines, as well as some specific structures from those libraries. In the following
example, the query molfile is one of the enumerated specifics.

select parent_sampleid,
sampleid,
numspecifics(ctab),
pctoverlap(1)

from samplegen
where overlap(ctab, '/test/benzo1.mol',1)=1
order by pctoverlap(1) desc;

The overlap results show that the query molfile hits itself with 100% overlap, and hits various
generic structures that contain it:

PARENT_SAMPLEID SAMPLEID NUMSPECIFICS(CTAB) PCTOVERLAP(1)

---------- ------------- ------------------ -------------

BENZ Ph-Chx-NO2-Me 1 100

BENZ Ph-R2-R3-R4 18 5.55556

BENZ R1-R2-R3-Me 45 2.22222

BENZ BENZ - 1 90 1.11111

Comments
To negate the results of overlap, use the SQL operator NOT. For example:
select count(*) from sample2d
where not overlap(ctab,'c=c-c=c-c=c-@1')=1;

overlap is an indexed operator. If Direct cannot locate the domain index for the operator overlap,
the search executes more slowly than an indexed overlap. To check if the domain index is part of
the execution plan for the SQL statement, use the Oracle command EXPLAIN PLAN.
A generic overlap search requires a generic structure domain index. This index allows both generic
and specific structures to be registered. When the generic and specific structures are registered, they
can be searched using the overlap operator. If you use the overlap operator without a generic
structure domain index on the table, the overlap operator returns the following error:
ORA-20100: MDL-0885: Cannot perform a OVERLAP search against a non-
generic molecule index

BIOVIA Direct 2021 • Reference Guide | Page 77

Chapter 3: Molecule-Specific Operators and Functions

The overlap operator can be used to compare two tables of generic molecules. The overlap operator
can be used to perform library comparison. The following SQL statement compares a list of source
structures (as a table) with a target database:
CREATE TABLE HITTABLE (source_idcolumn type, target_idcolumn type);

INSERT INTO HITTABLE
SELECT /*+ ORDERED INDEX(TRG targettable_domainindex) USE_NL(TRG) */

SRC.idcolumn, TRG.idcolumn
FROM sourcetable SRC, targettable TRG

WHERE OVERLAP(TRG.CTAB, SRC.querycolumn)=1;

Use hints to force Oracle to use the domain index in an overlap search. When using the overlap
search to compare tables, use hints to force Oracle to use the domain index in the search. The
overlap search will be very slowwhen the domain index is not used. The ORDERED, INDEX, and USE_
NL hints in the following example cause the domain index to be used in most cases. (Use Oracle's
EXPLAIN PLAN to verify that the query uses the domain index in your specific case.)
INSERT INTO RESULTTABLE
SELECT

/*+ ORDERED INDEX(TRG targettable_domainindex) USE_NL(TRG) */
SRC.idcolumn,
TRG.idcolumn,
PCTOVERLAP(1) AS PERCENT_OVERLAP FROM

sourcetable SRC, targettable TRG WHERE
OVERLAP(TRG.CTAB, SRC.CTAB, 1)=1;

Do not combine an overlap search with another query in the same WHERE clause. Do not combine
use the overlap operator with another WHERE clause condition to refine the overlap search within the
same query. For example, you want to determine the overlap between a generic query and all of the
libraries in a database which have a parent_sampleid that starts with 'BENZ'. You might be very
tempted to use this query:
select parent_sampleid, pctoverlap(1) from mylibdb
where parent_sampleid like 'BENZ%'
and overlap(ctab, '/myquery.mol', 1)=1

In the previous example query, Oracle might not use the domain index to run the overlap search in this
case. If it does not, and there are quite a few libraries that start with 'BENZ', the search could take a long
time to run. The one-on-one overlap matching can be VERY slow, much slower than say a one-on-one
sss or flexmatch of two non-generics!
Instead of using a combined query in a single SELECT statement, you should further refine your search
(if needed) by running a second search. For example:
-- This search uses ONLY an overlap
insert into libhits

select parent_sampleid, pctoverlap(1) as pctoverlap from mylibdb
where overlap(ctab, '/myquery.mol', 1)=1;

-- Further refinement is done here
select parent_sampleid, pctoverlap from libhits
where parent_sampleid like 'BENZ%';

In this example, Oracle will use the domain index in the search. If Oracle performs a full table scan
(instead of using the domain index), the search might takemuch longer than expected.

Page 78 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

See also
BIOVIA Direct Developers Guide >Using Direct > Searching generic structures
BIOVIA Direct Developers Guide >Using Direct > Biopolymer Searching and Registration
BIOVIA Direct Developers Guide > About Direct > Direct domain index and the Oracle optimizer

overlaptimeout
Returns the timeout status value from an overlap search.
overlapwill return as matches those candidates for which thematching algorithm times out. Such
candidates might or might not be actual matches. This ancillary operator gives information about that
timeout status.

Syntax
overlaptimeout(overlap-number)

Parameter Description

overlap-
number

ANUMBER equal to the overlap-number parameter that is used with the
overlap operator.

Return value
ANUMBER that indicates the status of the substructure search. The possible values are:

Value Description

0 The overlap search did not time out.

1 The overlap search timed out.

NULL The target was not a match to the query.

Usage
select overlaptimeout(overlap-number)

[,other-column-data]
from tablename
where overlap(mol, query, overlap-number)=1

[operator other-conditions];

Example
The following example returns the timeout status while performing an overlap search.

select extreg,
overlaptimeout(3) "Timeout"

from moltable
where overlap(

molcol,
'/opt/BIOVIA/direct/examples/rxnfiles/query1.mol',
3
)=1;

BIOVIA Direct 2021 • Reference Guide | Page 79

Chapter 3: Molecule-Specific Operators and Functions

Note: The number 3 is used to correlate the overlap operator in the WHERE clause with the
overlaptimeout operator in the SELECT clause. This could be any number as long as the values in the
two operators match.

Comments
The overlap-number parameters for overlaptimeout and overlap operators must match. If the
overlap-number parameters do not match, or if you use overlaptimeoutwithout using overlap,
you get the following error:
ORA-29908: missing primary invocation for ancillary operator

See also
overlap

pctoverlap
An ancillary operator that returns the percentage estimated overlap between the query and a hit.

Syntax
pctoverlap(overlap-number)

Parameter Description

overlap-
number

ANUMBER equal to the overlap-number parameter that is used with the overlap
operator.

Return value
ANUMBER between 0 and 100 that contains an estimated percentage overlap between the query and a
hit. It is only an estimate of the number of enumerated specific structures in common between the
query and hit. Because enumeration is not actually performed the estimated valuemay be incorrect
especially when the query or target has hydrogen Rgroup members.

Usage
select pctoverlap(overlap-number)

[,other-column-data]
from tablename
where overlap(mol, query, overlap-number)=1

[operator other-conditions];

Example
The following example returns the timeout status while searching the table.

select extreg,
pctoverlap(3) "% Overlap "

from moltable
where overlap(

molcol,
'/opt/BIOVIA/direct/examples/rxnfiles/query1.mol',
3
)=1;

Page 80 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Note: The number 3 is used to correlate the overlap operator in the WHERE clause with the
ssstimeout operator in the SELECT clause. This could be any number as long as the values in the
two operators match.

Comments
The overlap-number parameters for pctoverlap and overlap operators must match. If the overlap-
number parameters do not match, or if you use pctoverlapwithout using overlap, you get the
following error:
ORA-29908: missing primary invocation for ancillary operator

See also
overlap

readmol
Reads a molfile from disk, and returns a CLOB representation of a molfile that can be used as a query
structure.
Direct provides this operator to emulate the readmol operator of themolecule cartridge prior to
version 6.0. readmol is equivalent to readfile. See readfile for details.

Syntax
readmol(molfile)

Parameter Description

molfile A string that contains the full path and the name of the molfile

Return value
A CLOB data that represents the contents of the molfile

Usage
select readmol('/disk-location/file-location/filename.mol')
from dual;

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

sequencesearch
Finds records with biopolymer sequence text that match your query.

Syntax
sequencesearch(ctab,oracle-operator, query [,flags])

BIOVIA Direct 2021 • Reference Guide | Page 81

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

ctab The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
The field value cannot be NULL.

oracle-
operator

A string that specifies the type ofmatching, either LIKE or REGEXP_LIKE.
The string cannot be NULL.

query A string that contains query text. If using ‘like’, the query may contain the wildcard
characters ‘%’ and ‘_’. If using ‘regexp_like’ the string is an Oracle regular expression, use
flags for additional control over matching.
The string cannot be NULL.

flags An optional string that contains additional flags for the REGEXP_LIKE function.
The string may be NULL.
If the value of oracle-operator is ‘like’, Direct executes a SQL query similar to:

select regno from indexname_bsq where sequence like ‘query’;
If the value of oracle-operator is ‘regexp_like’, Direct executes a SQL query similar to:

select regno from indexname_bsq where regexp_like(sequence, ‘query’);
select regno from indexname_bsq where regexp_like(sequence, ‘query’, ‘flags’);

Return value
The NUMBER 1 indicates that the query matched one or more records. When you use sequencesearch
in a WHERE clause, always test the return value for a result of 1.

Usage
select column-data
from tablename
where sequencesearch(ctab,op query[flags])=1

[operator other-conditions];

The sequencesearch operator can also be used in the SELECT clause because it evaluates to a 1 for a hit
based on the parameters passed to the result row, or 0 for no hit. Generally, this type of operation can
be expected to be as slow as a non-indexed search.

Example
The following example uses sequencesearchwith the REGEXP_LIKE operator to find biopolymer
sequences that contain unmodified amino acids isoleucine (I), cysteine (C), and either glutamate (E) or
glutamine (Q) anywhere in the text string.

select cdbregno,
sequencetext(ctab)

from samplebio
where sequencesearch(ctab,'regexp_like','.*IC[EQ].*)=1;

Comments
Oracle’s LIKE and REGEXP_LIKE searches typically cannot use a native Oracle index and may be slow
if the table contains many rows of sequence text data. If the sequencesearch search is too slow,
consider using an external BLAST search engine for sequence text searching.
To negate the results of sequencesearch, use the SQL operator NOT.sequencesearch is an indexed

Page 82 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

operator. If Direct cannot locate the domain index for the operator sequencesearch, the search
executes more slowly than an indexed sequencesearch. To check if the domain index is part of the
execution plan for the SQL statement, use the Oracle command EXPLAIN PLAN.

sequencetext
Generates the biopolymer sequence text for a molecule.

Syntax
sequencetext(ctab)

Parameter Description

ctab The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.
The field value cannot be NULL.

Return value
A CLOB containing the biopolymer sequence text, a string of single letters representing the individual
monomers, for example amino acids.
The operator returns NULL if the structure is not an SCSR sequencemolecule.

Usage
select sequencetext(ctab) from tablename where condition;

Example
select sequencetext(ctab) from human_sequence where name = 'CT18_HUMAN';

SEQUENCETEXT(CTAB)
--

MSPPSSMCSPVPLLAAASGQNRMTQGQHFLQKV

similar
Molecule similarity search

Syntax
similar(molecule, query, similarity-type-values, [similar-number])

Parameter Decription

molecule The name of the BLOB field that contains themolecule structures. molecule can also
be a molecule object. If a molecule object is specified, the GLOBAL key definition files
will be used to generate the keys used during searching.

query Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated
either by the line-feed character LF (0x0a), or by the carriage-return followed
by the line-feed characters CR+LF (0x0d + 0x0a).

BIOVIA Direct 2021 • Reference Guide | Page 83

Chapter 3: Molecule-Specific Operators and Functions

Parameter Decription

Direct molecule object (BLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string
IUPAC name (VARCHAR2 or CLOB)
InChI string
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Notes:
Molecules used in a similarity query must not include substructure query
features.
query cannot be NULL.

similarity-
type-values

A VARCHAR2 containing a flag specifying a fingerprint search instead of a traditional
similarity search, the similarity threshold values (as percentages), and an optional
'SUB' or 'SUPER' flag.
For a traditional similarity search the substructure keys define the features that are
compared. Only include the threshold values and 'SUB' or 'SUPER' flag:
'min [SUB|SUPER]'

or
'min max [SUB|SUPER]'

For example, '60 SUB'.
For a fingerprint similarity search the features are defined by the user as either Accord
fingerprints or Scitegic fingerprints. Add the 'FINGERPRINT' flag to the value:
'fingerprint min [SUB|SUPER]'

or
'fingerprint min max [SUB|SUPER]'

For example, 'FINGERPRINT 0 20'.
If the third argument is blank or NULL, a traditional similarity search with a threshold
value of '80' is used.
Themin and max values must range from 0 to 100, with min <=max. The first form is
equivalent to specifying max as 100 in the second form. For example, to return all hits
that are at least 80% similar, use '80'. To return all hits that are very dissimilar, for
example 5% or less similarity, use '0 5'.
The normal similarity calculation uses the Tanimoto coefficient. (For a traditional
similarity search set intersection/union set counts are replaced with the sum of the
key weights for the bits in the set.) The 'SUB' calculation uses the features of the
query in the denominator, thus corresponds to a "substructure similarity"—you will
get close to 100% similarity if the query exists as a substructure within the candidate.
The 'SUPER' calculation is the reverse—it uses the features of the candidate in the
denominator, thus corresponds to a "superstructuresimilarity"—you will get close to
100% if the candidate exists as a substructure within the query.

similar-
number

A number that is equal to the similar-number parameter used with the similarity
operator. This parameter only applies if you use the similarity operator.

Page 84 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Return value
The NUMBER 1 indicates that the query matched one or more records. When you use similar in a WHERE
clause, always test the return value for a result of 1.

Usage
select column-data
from tablename
where similar(molecule,query,similarity-type-values)=1

[operator other-conditions];
select similarity(similar-number)

[, other-column-data]
from tablename
where similar(molecule,query,similarity-type-values)=1

[operator other-conditions];

Example
The following example searches for similar molecules.

select extreg
from moltable
where
similar(molcol, '/home/user/query.mol', '80') = 1;

This next example uses the user-defined fingerprint values to find similar molecules.

select extreg
from moltable
where
similar(molcol, '/home/user/query.mol', 'fingerprint 80') = 1;

Comments
If the domain index is not used, no-structures are always treated as if the similarity is zero. Structures
that set no keys at all, such as no-structures, are effectively skipped during the similarity search when
the index is used. They never show up as hits even if the query is asking for zero percent similarity. In
effect, a difference in search results can be seen between indexed and non-indexed (full table scan)
searches.
For example, the following indexed search returns 361 hits:

select /*+ index(isismx2d_mol ISISMX2D_MOL_DMNIDX) */ count(*)
from isismx2d_mol where
(similar(ctab, 'C1CCCCC1', '0 80') = 1);

But the following non-indexed, full table scan search returns 364 hits:

select /*+ full(isismx2d_mol) */ count(*)
from isismx2d_mol where
(similar(ctab, 'C1CCCCC1', '0 80') = 1);

Similarity searching of biopolymers using the similar operator is allowed, but the results are not useful
because of theminimal number of substructure keys generated for biopolymers.

BIOVIA Direct 2021 • Reference Guide | Page 85

Chapter 3: Molecule-Specific Operators and Functions

similarity
Return similarity value from a similarity (similar) search. The similar operator always returns 1 (to
indicate that the structurematched the query criteria) or 0 (to indicate that the structure did not match
the query criteria). The similarity ancillary operator returns information about the actual degree of
similarity.

Syntax
similarity(similar-number)

Parameter Description

similar-
number

ANUMBER equal to the similar-number parameter that is used with the similar
operator.

Return value
ANUMBER that indicates the percentage similarity value ranging from 0.0 to 100.0.

Usage
select similarity(similar-number)

[,other-column-data]
from tablename
where similar(mol, query, similarity-values, similar-number)=1

[operator other-conditions];

Example
The following example returns the similarity values after a search.

select extreg,
similarity(3) "Similarity"

from moltable
where similar(molcol,

'/home/user/query.mol',
'80 sub',
3) = 1;

Note: The number 3 is used to correlate the similar operator in the WHERE clause with the similarity
operator in the SELECT clause. This could be any number as long as the values in the two operators
match.

Comments
The similar-number parameters for similarity and similar operators must match. If the similar-number
parameters do not match, or if you use similarity without using similar, you get the following error:
ORA-29908: missing primary invocation for ancillary operator

See also
similar

smiles
Returns a SMILES string representation of a molecule.

Page 86 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Syntax
smiles(molecule, 'noncanonical')

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field
name is normally CTAB. The value of this parameter can also be a molecule object.

noncanonical (Optional) To generate noncanonical SMILES strings, use the argument
'noncanonical'. The default SMILES string is canonical.

Return value
A temporary CLOB that contains the SMILES string. The smiles operator returns NULL if the SMILES
string cannot be generated. Use mdlaux.errors to see the related error message.

Usage
select smiles(molecule)

[, other-column-data]
from tablename
where condition;

select smiles(molecule, 'noncanonical')
[, other-column-data]

from tablename
where condition;)

Example
The following example shows the SMILES string for themolecules in a table:

select cdbregno,smiles(ctab) smiles from acd2d_moltable
where cdbregno between 1001 and 1010 order by cdbregno;
CDBREGNO SMILES
---------- --
1001 ClCCCCOc1ccccc1
1002 CC(=O)OCCCCCl
1003 ClCCCC#C
1004 CCCCCCl
1005 ClCCCCCBr
1006 ClCCCCCCl
1007 CCCCCCCl
1008 ClCCCCCCBr
1009 ClCCCCCCCl
1010 CCCCCCCCl

10 rows selected.

The following example shows the noncanconical SMILES string for themolecules in a table:

select cdbregno,smiles(ctab, 'noncanonical') noncanonical_smiles
from acd2d_moltable
where cdbregno between 1001 and 1010 order by cdbregno;
CDBREGNO NONCANONICAL_SMILES

BIOVIA Direct 2021 • Reference Guide | Page 87

Chapter 3: Molecule-Specific Operators and Functions

---------- --
1001 c1(ccccc1)OCCCCCl
1002 C(CCCCl)OC(=O)C
1003 C(C#C)CCCl
1004 C(CC)CCCl
1005 C(CCBr)CCCl
1006 C(CCCl)CCCl
1007 C(CCCl)CCC
1008 C(CCCl)CCCBr
1009 C(CCCl)CCCCl
1010 C(CCC)CCCCl

10 rows selected.

Comments
There are limitations to the generation of SMILES strings. Not all BIOVIAmolecule features can be
handled. The smiles operator returns NULL if the specified molecule cannot be handled. Use
mdlaux.errors to see the related error message.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();

See also:
mdlaux.smiles

BIOVIA Direct Developers Guide > Using Direct > Getting the SMILES String
BIOVIA Direct Developers Guide > Using Direct > Limitations to the Generation of SMILES Strings

sss
Finds structures that contain the substructure that you specify in the query. A substructure is a portion
of a larger molecule structure.

Syntax
sss(molecule, query [, option] [,sss-number])

Parameter Description

molecule The name of the BLOB field that contains themolecule structures. molecule can also be a
molecule object.

query Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Page 88 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

BIOVIA Direct 2021 • Reference Guide | Page 89

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

option Any or a combination of the following values, separatemultiple options with a space:
NOFS - The presence of 'NOFS' causes sss to refrain from using the fastsearch index
when performing the search. If 'GENERICS' is also specified, the 'NOFS' option is
ignored.
ORIEN - The presence of 'ORIEN' causes ssshighlight to return the highlighted
structure oriented to match the query.
GENERICS (or GENERIC) - Causes sss to accept the query as a specific query
molecule, and use Fastsearch to perform a substructure search of both generic and
specific structures.

For specific target structures, a normal substructure search is performed. For generic
target structures, a substructure search is performed on a table of all enumerated
specifics for that generic. However, the substructure search does not perform
enumeration and is much faster than this equivalent set of sss searches.
The query parameter cannot contain any of the following features (all of these are usable
in a normal, specific structure, substructure search):

Rgroups (that is, Markush features)
Polymer Sgroups
Data Sgroups
Link nodes
Atom lists containing hydrogen

If 'GENERICS' is specified with 'NOFS', 'NOFS' is ignored.
IgnoreChargesInPiSystems –When absent, substructuremapping of pi systems,
i.e. of haptic bonds, takes total charge into account and does not allow a query that
has a charged pi system or metal connected to the pi system to map to a target which
is uncharged. When the option is present, total charge in the pi system and metal
attached to the pi system is ignored in both query and target. This allows the radical
representation of ferrocene to map to the charged representation of ferrocene;
without the option these two do not match.
RingHomologyGroupsOnlyMapTerminalRings –When this option is present, ring
homology query atoms maps only to terminal ring assemblies in the target. The
atoms does not map to ring assemblies that have any non-ring attachments.
InterpretRAtomsLiterally -When this option is present an R atom in the query
matches only an R atom in the target. It does not have its normal meaning of
matching any atom including hydrogen.
InterpretXAtomsLiterally -When this option is present an X atom in the query
matches only an X atom in the target. It does not have its normal meaning of
matching any atom including hydrogen.
InterpretQueryAtomsLiterally -When this option is present an A, Q, X or M
atom in the query matches only a corresponding A, Q, X or M atom in the target. It
does not have its normal meaning as an atom query feature.
MatchTautomers - Adding this option expands the number of structures which
match the query to include structures which would match a tautomer of the query.

Page 90 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

When this option is present tautomers are generated for those parts of the query
which do not contain traditional substructure query features or aromatic atoms and
bonds. If one or more tautomers can be computed the query molecule has
substructure query features added to it so that it matches all of the possible
tautomers. Post-processing ensures that matches that are not tautomers are
rejected.
IgnoreStereo -When this option is present all atom stereochemistry in the query
are ignored during matching. This includes enhanced stereochemistry and higher-
order stereochemistry. Double bond stereochemistry is still matched when marked in
the query.
IgnoreTerminalPhosphates - Adding this option allows different representations
of RNA or DNA sequences to match each other. When this option is present, any 3' or
5' terminal phosphates are removed from the query nucleic acid sequence, allowing it
to match a target irrespective of whether the target contains 3' or 5' terminal
phosphates. Without this option, the HELM query 'RNA1{R(A)P}$$$$' does not
match an adenine nucleotide created with BIOVIA Draw because the Draw structure is
missing the 3' phosphate present in the query.

sss-
number

A number that is equal to the sss-number parameter used with the ssshighlight,
ssstimeout, sss_highlight_molfile, and sss_highlight_chime operators. This
parameter only applies if you use these other operators.

Return value
The NUMBER 1 indicates that the query matched one or more records. When you use sss in a WHERE
clause, always test the return value for a result of 1.

Usage
select column-data
from tablename
where sss(ctab,query)=1

[operator other-conditions];

select ssshighlight(sss-number)
[, other-column-data]

from tablename
where sss(ctab,query,sss-number)=1

[operator other-conditions]:

select ssstimeout(sss-number)
[, other-column-data]

from tablename
where sss(ctab,query,’ORIEN’,sss-number)=1

[operator other-conditions];

The sss operator can also be used in the SELECT clause because it evaluates to a 1 for a hit based on
the parameters passed to the result row, or 0 for no hit. Generally, this type of operation can be
expected to be as slow as a non-indexed search. Although it is not common usage, it can be used to
determine if a structure is really an sss search hit from a complex WHERE clause.

BIOVIA Direct 2021 • Reference Guide | Page 91

Chapter 3: Molecule-Specific Operators and Functions

select sss(ctab,query)
[, other-column-data]

from tablename
where condition;

Example
The following example uses sss to find and count themolecules that contain a substructure.

select count(*)
from sample2d
where sss(ctab, '/home/user/substruct.mol')=1;

Comments
To negate the results of sss, use the SQL operator NOT. For example, to find all molecules that do not
contain a benzene ring:
select count(*) from isis.isisrc2d_mol
where not sss(ctab,'c=c-c=c-c=c-@1')=1;

If you want to highlight the substructure in the resulting structures, use the ssshighlight ancillary
operator. You can use any number as the sss-number parameter, but it must match the sss-
number parameter for the ancillary operators.
sss is an indexed operator. If Direct cannot locate the domain index for the operator sss, the search
executes more slowly than an indexed sss. To check if the domain index is part of the execution
plan for the SQL statement, use the Oracle command EXPLAIN PLAN.

A generic substructure search requires a generic structure domain index. This index allows both
generic and specific structures to be registered. When the generic and specific structures are
registered, they can be searched using the sss operator.
When using the ‘GENERICS’ option, do not combine an sss search with another query in the same
WHERE clause. Do not use the sss operator with another WHERE clause condition to refine the
generic sss search within the same query. For example, you want to perform a generic substructure
search on all of the libraries in a database which have a parent_sampleid that starts with 'BENZ'.
You might be very tempted to use this query:
select parent_sampleid from mylibdb
where parent_sampleid like 'BENZ%'
and sss(ctab, '/myquery.mol', 'GENERICS')=1

In the previous example query, Oracle might not use the domain index to run the sss search in this
case. If it does not, and there are quite a few libraries that start with 'BENZ', the search could take a
long time to run. The one-on-one sss matching can be VERY slow, much slower than say a
FLEXMATCH of two non-generics!
Instead of using a combined query in a single SELECT statement, you should further refine your
search (if needed) by running a second search. For example:
-- This search uses ONLY an sss

insert into libhits
select parent_sampleid from mylibdb
where sss(ctab, '/myquery.mol', 'GENERICS')=1;

-- Further refinement is done here

Page 92 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

select parent_sampleid from libhits
where parent_sampleid like 'BENZ%';

In this example, Oracle uses the domain index in the search. If Oracle performs a full table scan
(instead of using the domain index), the search might takemuch longer than expected.
Substructure searching of biopolymers using the sss operator is supported. Because of the
potentially for a very large number of atoms in a biopolymer, only modified monomer units and
cross-linked monomer units are indexed for structure searching. If an sss query contains only
unmodified and un-cross-linked monomers, Direct uses a text search to find all registered
biopolymers which have sequence text which contains the query sequence text.
For example, the query leu-leu-leu-leu would generate the sequence text “LLLL” which would find
proteins such as human protein CM036which has the sequence text
“MSEPDTSSGFSGSVENGTFLELFPTSLSTSVDPSSGHLSNVYIYVSIFLSLLAFLLLLLIIALQRLKNIISSSSSYPEYPSD
AGSSFTNLEVCSISSQRSTFSNLSS”. For more information, see Substructure searching ofmodified and
unmodified monomers in BIOVIA Direct Developers Guide.
Multi-threaded substructure search can be enabled. Be default, substructure search is not multi-
threaded. To set the number of threads used during substructure searching, use the administrative
function mdlaux.setproperty('NTHREADS', numberOfThreads). For details, see Command
Reference in the BIOVIA Direct Administration Guide.

sss_highlight_chime
Returns the Chime string representation of a structure that:

Matches a substructure query
sss_highlight_chime is an ancillary operator of the sss operator. To use sss_highlight_
chime, you must also use ssswithin the same SQL statement.
Contains highlight information for thematched substructure. The highlighted structure can be
rendered by BIOVIA Draw.

Note: Direct provides this operator to emulate the sss_highlight_chime operator in the
molecule cartridge prior to version 6.0. sss_highlight_chime is equivalent to ssshighlight.
See ssshighlight for more details.

Syntax
sss_highlight_chime(sss-number)

Parameter Description

sss-
number

A number that is equal to the sss-number parameter that is used with the sss
operator.

Return value
A CLOB that contains the Chime string representation of a structure that contains highlight information
for thematched substructure.

Usage
select sss_highlight_chime(sss-number)

[,other-column-data]
from tablename
where sss(ctab,query,sss-number)=1

[operator other-conditions];

BIOVIA Direct 2021 • Reference Guide | Page 93

Chapter 3: Molecule-Specific Operators and Functions

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

sss_highlight_molfile
Returns themolfile representation of a structure that:

Matches a substructure query
sss_highlight_molfile is an ancillary operator of the sss operator. To use sss_highlight_
molfile, you must also use ssswithin the same SQL statement.
Contains highlight information for thematched substructure. The highlighted molecule can be
rendered by BIOVIA Draw.

Note: Direct provides this operator to emulate the sss_highlight_molfile operator in themolecule
cartridge prior to version 6.0. sss_highlight_chime is equivalent to mdlaux.chimetoclob(ssshighlight
(n)).

Syntax
sss_highlight_molfile(sss-number)

Parameter Description

sss-
number

An Oracle search operator identifier. It is used to specify with which search operator an
ancillary function is associated. For example, if the SQL statement has WHERE SSS

(...,1)=1 OR SSS(...,2)=1, the SELECT list will retrieve the highlighted structure
for each SSS clause separately.

Return value
A CLOB that contains themolfile representation of a structure that contains highlight information for the
matched substructure. The CLOB includes newline (\n) characters that separate the lines within the
molfile.

Usage
select sss_highlight_molfile(sss-number)

[,other-column-data]
from tablename
where sss(ctab,query,sss-number)=1

[operator other-conditions];

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.

Page 94 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

ssshighlight
Returns a Chime representation of a molecule that:

Matches a substructure query
ssshighlight is an ancillary operator of the sss operator. To use ssshighlight, you must also
use ssswithin the same SQL statement.
Contains highlight information for thematched substructure. The highlighted molecule can be
rendered by BIOVIA Draw.

Syntax
ssshighlight(sss-number)

Parameter Description

sss-number ANUMBER equal to the sss-number parameter that is used with the sss operator.

Return value
A CLOB that contains the Chime representation of a candidatemolecule, and contains highlight
information for thematched substructure. ssshighlight stores the return value in a temporary
CLOB. The Chime string uses the V3000 format, and contains highlight information as CTlib collection
objects.

Usage
select ssshighlight(sss-number)

[,other-column-data]
from tablename
where sss(mol, query, sss-number)=1

[operator other-conditions];

Example
The following example returns highlighted molecule Chime strings after a substructure search.

select extreg,
ssshighlight(3)

from moltable
where sss(

molcol,
'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.mol',
3
)=1;

Note: The number 3 is used to correlate the sss operator in the WHERE clause with the
ssshighlight operator in the SELECT clause. This could be any number as long as the values in the
two operators match.

The following example returns highlighted molfile strings after a substructure search:

BIOVIA Direct 2021 • Reference Guide | Page 95

Chapter 3: Molecule-Specific Operators and Functions

select extreg,
mdlaux.chimetoclob(ssshighlight(3))

from moltable
where sss(

molcol,
'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.mol',
3
)=1;

Comments
The sss-number parameters for ssshighlight and sss operators must match. If the sss-
number parameters do not match, or if you use ssshighlight without using sss, you get the following
error:
ORA-29908: missing primary invocation for ancillary operator

Because the typical usage is to display highlighted molecules using Chime, this function returns a
Chime string. If a molfile is desired the function mdlaux.chimetoclob can be used:
SELECT extreg, MDLAUX.CHIMETOCLOB(SSSHIGHLIGHT(3)) FROM moltable WHERE
SSS(molcol,
'/home/user/query.mol', 3) = 1;

Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator
object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

If the corresponding SSS query included the "ORIEN" argument, the highlighted structure will be
oriented in the sameway as the query structure.
Because the ssshighlight operator is always used with the sss operator, highlighting a structure
always involves a substructure search. However, if you simply want to highlight a structure without
searching a table, you can directly map a query to the target, such as the following example:
select ssshighlight(1)

from dual
where sss(mol('/home/users/mols/target.mol'),

'/home/users/mols/query.mol',1)=1;

The following example shows that you can also put sss with the ssshighlight operator in the SELECT
clause. In this example, if the query is not a substructure of the specified target, ssshighlight returns
the unhighlighted target structure.
select sss(mol('/home/users/mols/target.mol') "SSSResult",

'/home/users/mols/query.mol',1),
ssshighlight(1) "SSSHighlight"

from dual;

See also
sss

Examples of Reaction Substructure Search

Page 96 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

ssssequenceids
Returns a comma-separated list of the template or abbreviation Sgroup sequence ID values for residues
which contain the query as a substructure. For example, the peptide ACH1_ACHFU contains a non-
natural D-amino acid at residue 2.

Syntax
ssssequenceids(sss-number)

Parameter Description

sss-number ANUMBER equal to the sss-number parameter that is used with the sss operator.

Return value
A VARCHAR2 string containing a comma-separated list of the template or abbreviation Sgroup
sequence ID values for residues which contain the query as a substructure. For example, the peptide
ACH1_ACHFU contains a non-natural D-amino acid at residue 2.

Usage
select ssssequenceids(sss-number)

[,other-column-data]
from tablename
where sss(mol, query, sss-number)=1

[operator other-conditions];

Example
Consider the following structure for this example:

When the structure is used in an SSS search in a table containing ACH1_ACHFU the results are:.

select uniprot_name, ssssequenceids(1) from test where sss(ctab,
'query', 1)=1;

UNIPROT_NAME SSSSEQUENCEIDS(1)
------------ --------------------
ACH1_ACHFU2,3

Residue 2 contains the D chiral center, while the “A” (any) query atom matches residue 3which in this
case is not a modified amino acid but is a defined template atom. Thus SSSSEQUENCEIDS returns the
string “2,3”.

Note: The number 1 is used to correlate the sss operator in theWHERE clause with the
ssssequenceids operator in the SELECT clause. This could be any number as long as the values in the
two operators match.

BIOVIA Direct 2021 • Reference Guide | Page 97

Chapter 3: Molecule-Specific Operators and Functions

Comments
The sss-number parameters for ssssequenceids and sss operators must match. If the sss-number
parameters do not match, or if you use ssssequenceidswithout using sss, you get the following
error:

ORA-29908: missing primary invocation for ancillary operator

See also
sss

ssstimeout
Returns the timeout status value from an sss search.
ssswill return as matches those candidates for which thematching algorithm times out. Such
candidates may or may not be actual matches. This ancillary operator gives information about that
timeout status.

Syntax
ssstimeout(sss-number)

Parameter Description

sss-number ANUMBER equal to the sss-number parameter that is used with the sss operator.

Return value
ANUMBER that indicates the status of the substructure search. The possible values are:

Value Description

0 The sss search did not time out.

1 The sss search timed out.

NULL The target was not a match to the query.

Usage
select ssstimeout(sss-number)

[,other-column-data]
from tablename
where sss(mol, query, sss-number)=1

[operator other-conditions];

Example
The following example returns the timeout status while searching the table.

select extreg,
ssstimeout(3) "Timeout"

from moltable where sss(
molcol,
'/opt/BIOVIA/direct/examples/rxnfiles/query1.mol',
3
)=1;

Page 98 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Note: The number 3 is used to correlate the sss operator in the WHERE clause with the ssstimeout
operator in the SELECT clause. This could be any number as long as the values in the two operators
match.

Comments
The sss-number parameters for ssstimeout and sss operators must match. If the sss-
number parameters do not match, or if you use ssstimeoutwithout using sss, you get the
following error:
ORA-29908: missing primary invocation for ancillary operator

The ssstimeout operator can be used with a generic sss. ssstimeout returns the timeout
status of the search.

See also
sss

writemol
Saves a BLOB or a CLOB representation of a single structure to a molfile in a disk location.
Direct provides this operator to emulate the writemol operator of themolecule cartridge prior to
version 6.0. The following are equivalent functions:
writemol(filename, CLOB) is equivalent to writefile(CLOB, filename).
writemol(filename, BLOB) is equivalent to writefile(molfile(obj), filename).
See writefile for details.

Syntax
writemol(molfile, fieldname)

Parameter Description

molfile A string that contains the full path and the name of themolfile

fieldname The name of the CLOB or BLOB field that stores the structure.

Return value
The NUMBER 1 indicates that Direct wrote themolfile successfully

Usage
select writemol(

'/disk-location/file-location/filename.mol',
fieldname
)

from tablename
where condition;

xhelm
Returns a XHELM string representation of a biopolymer sequencemolecule.

Syntax
xhelm(molecule)

BIOVIA Direct 2021 • Reference Guide | Page 99

Chapter 3: Molecule-Specific Operators and Functions

molecule is the name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

Return value
A CLOB containing the XHELM format text including detailed information about each custom amino acid
structure. The operator returns NULL if the XHELM string cannot be generated, for example if the
molecule is not a biopolymer or if an error occurs. Use mdlaux.errors to see the related error
message.

Usage
select xhelm(molecule)

[,other-column-data]
from tablename
where condition;

Example
Direct allows an XHELM input format wherever it expects a molecule. For example in registration:
INSERT INTO MOLTABLE (ID, CTAB) VALUES (:1, MOL(:2))

The Direct application supplies an XHELM CLOB as argument #2.

Comments
XHELM strings can only be generated for biopolymer sequencemolecules which do not contain any
modified residues. Other molecules will return a NULL value from the helm operator.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator object named clob:
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();

See also
Getting the HELM String in the BIOVIA Direct Developers Guide

Molecule-Specific Functions
In some cases, Direct offers both a function and an operator with the same name. The function and
operator behave identically to each other. For example, the readfile operator and themdlaux.readfile
function have the same functionality. In these cases, the description of the operator appears under
Molecule-Specific Operators.
If both a function and an operator are available, use the function name instead of the operator name in
situations where the operator is not allowed. For example, you must use the package function name in a
PL/SQL assignment statement, because PL/SQL assignment statements do not accept operators.

mdlaux.getsavedmolname 101
mdlaux.helm 102
mdlaux.helm2 104
mdlaux.helmtomolfile 105
mdlaux.inchi 107
mdlaux.inchiauxinfo 109
mdlaux.inchikey 110

Page 100 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

mdlaux.inchitomolfile 112
mdlaux.isgeneric 114
mdlaux.isnostruct 115
mdlaux.isotopicformula 115
mdlaux.isrna 117
mdlaux.issequence 118
mdlaux.iupacname 119
mdlaux.iupacnametomolfile 121
mdlaux.mol 122
mdlaux.molchime 122
mdlaux.molfile 122
mdlaux.molfmla 122
mdlaux.molimage 123
mdlaux.molkeys 125
mdlaux.molname 128
mdlaux.molnemakey 128
mdlaux.molwt 132
mdlaux.molwtmax 133
mdlaux.molwtmin 134
mdlaux.monoisotopicmass 135
mdlaux.numspecifics 137
mdlaux.rownemakey 138
mdlaux.sequencetext 139
mdlaux.setmolname 140
mdlaux.sgroupfields 141
mdlaux.smiles 142
mdlaux.smilestomolfile 143
mdlaux.xhelm 144

mdlaux.getsavedmolname
Returns the saved molecule name from the last call to themol. When themol operator executes, it
extracts themolecule name from the specified molfile or Chime string. It then stores this value
temporarily, such that the mdlaux.getsavedmolname function can retrieve it. The
getsavedmolname function also clears the stored value. Because of this, after calling
mdlaux.getsavedmolname, an immediately subsequent call will return NULL.

Syntax
mdlaux.getsavedmolname >

Usage

select mdlaux.getsavedmolname from dual;

Return value
A VARCHAR2 that contains the stored molname. If there is no stored molname, this function returns
NULL.

Comments
This function will not return the correct molecule name if it is called in the same SQL statement as the
mol operator. It must be called in a subsequent statement or in a trigger (fired by the statement that
contains themol operator). For example:

BIOVIA Direct 2021 • Reference Guide | Page 101

Chapter 3: Molecule-Specific Operators and Functions

DECLARE
REGNO NUMBER;
BEGIN

INSERT INTO MYDB_MOL(CTAB)
VALUES(MOL('/home/smith/benzene.mol'))
RETURNING CDBREGNO INTO REGNO;
UPDATE MYDB_MOL

SET MOLNAME = MDLAUX.GETSAVEDMOLNAME WHERE CDBREGNO=REGNO;
COMMIT;
END;

Themdlaux.getsavedmolname returns a molecule name only if an INSERT or UPDATE statement using
mol was called prior to calling mdlaux.getsavedmolname. There will not be any name saved if the
structure being inserted is already a packed ctab. For example, these will both work correctly:

insert into moltable
values ('mol-1', mol('/benz.mol'));

update moltable
set molname=mdlaux.getsavedmolname from dual;

insert into moltable
values ('mol-2', mol('some-long-chime-string-abcdef123'));

update moltable
set molname=mdlaux.getsavedmolname from dual;

But this will not; the "saved" namewill either be empty or wrong:

insert into moltable
select key, ctab from moltable2;

update moltable
set molname=mdlaux.getsavedmolname from dual;

An alternative way to setting themolecule name during registration is by using the mdlaux.molname
function.

See also
mdlaux.molname

mdlaux.setmolname

mdlaux.helm
Returns a HELM string representation of a biopolymer sequencemolecule.

Syntax
mdlaux.helm(molIndexOrTable, molecule)

Parameter Description

molIndexOrTable The name of a molecule index, or the name of a table which contains exactly
onemolecule index. The schemamay be included, e.g. 'schema.table'. If the
value of this parameter is NULL the global environment is used.

molecule Amolecule that uses one of the following formats:

Page 102 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the
carriage-return followed by the line-feed characters CR+LF (0x0d +

0x0a).

Direct molecule object (BLOB)
Chime string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
A temporary CLOB that contains the HELM string. The helm operator returns NULL if the HELM string
cannot be generated, for example if themolecule is not a biopolymer or if an error occurs. Use
mdlaux.errors to see the related error message.

Usage
select mdlaux.helm(molecule) from dual;

select mdlaux.helm(molIndexOrTable, molecule) from dual;

Example
The following example shows the HELM strings for a molecule:
select mdlaux.helm(‘f:/work/mols/a20al_human.mol’) from dual;

MDLAUX.SMILES(‘F:/WORK/MOLS/A20AL_HUMAN.MOL’)

--

PEPTIDE1{M.K.L.F.G.F.R.S.R.R.G.Q.T.V.L.G.S.I.D.H.L.Y.T.G.S.G

.Y.R.I.R.Y.S.E.L.Q.K.I.H.K.A.A.V.K.G.D.A.A.E.M.E.R.C.L.A.R.R

.S.G.D.L.D.A.L.D.K.Q.H.R.T.A.L.H.L.A.C.A.S.G.H.V.K.V.V.T.L.L

.V.N.R.K.C.Q.I.D.I.Y.D.K.E.N.R.T.P.L.I.Q.A.V.H.C.Q.E.E.A.C.A

.V.I.L.L.E.H.G.A.N.P.N.L.K.D.I.Y.G.N.T.A.L.H.Y.A.V.Y.S.E.S.T

.S.L.A.E.K.L.L.F.H.G.E.N.I.E.A.L.D.K.V}$$$PEPTIDE1{ChainName

:Putative ankyrin repeat domain-containing protein 20A-like

protein MGC26718}|PEPTIDE1{ChainDescription:chain}$

Comments
HELM strings can only be generated for biopolymer sequencemolecules which do not contain any
modified residues. Other molecules will return a NULL value from the helm operator.
The environment is used to specify biopolymer template definitions and HELM monomer definitions.
The HELM monomer definitions are always taken from the global environment even if a local
environment is specified with the molIndexOrTable parameter.

BIOVIA Direct 2021 • Reference Guide | Page 103

Chapter 3: Molecule-Specific Operators and Functions

Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();

See also
BIOVIA Direct Developers Guide > Using Direct > Getting the HELM string

mdlaux.helm2
Returns a HELM version 2 string representation of a biopolymer sequencemolecule.

Syntax
mdlaux.helm2(molIndexOrTable, molecule)

Parameter Description

molIndexOrTable The name of a molecule index, or the name of a table which contains exactly
onemolecule index. The schemamay be included, e.g. 'schema.table'. If the
value of this parameter is NULL the global environment is used.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the
carriage-return followed by the line-feed characters CR+LF (0x0d +

0x0a).

Direct molecule object (BLOB)
Chime string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
A temporary CLOB that contains the HELM string. The helm operator returns NULL if the HELM string
cannot be generated, for example if themolecule is not a biopolymer or if an error occurs. Use
mdlaux.errors to see the related error message.

Usage
select mdlaux.helm2(molecule) from dual;

select mdlaux.helm2(molIndexOrTable, molecule) from dual;

Example
The following example shows the HELM strings for a molecule:
SQL> select mdlaux.helm2(null, 'c:/temp/a20al_human.mol') from dual;

Page 104 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

MDLAUX.HELM2(NULL,'C:/TEMP/A20AL_HUMAN.MOL')
--
PEPTIDE1{M.K.L.F.G.F.R.S.R.R.G.Q.T.V.L.G.S.I.D.H.L.Y.T.G.S.G
.Y.R.I.R.Y.S.E.L.Q.K.I.H.K.A.A.V.K.G.D.A.A.E.M.E.R.C.L.A.R.R
.S.G.D.L.D.A.L.D.K.Q.H.R.T.A.L.H.L.A.C.A.S.G.H.V.K.V.V.T.L.L
.V.N.R.K.C.Q.I.D.I.Y.D.K.E.N.R.T.P.L.I.Q.A.V.H.C.Q.E.E.A.C.A
.V.I.L.L.E.H.G.A.N.P.N.L.K.D.I.Y.G.N.T.A.L.H.Y.A.V.Y.S.E.S.T
.S.L.A.E.K.L.L.F.H.G.E.N.I.E.A.L.D.K.V}"ChainDescription:cha
in,ChainName:Putative ankyrin repeat domain-containing prote
n 20A-like protein MGC26718"$$$$V2.0

Comments
HELM strings can only be generated for biopolymer sequencemolecules which do not contain any
modified residues. Other molecules will return a NULL value from the helm operator.
The environment is used to specify biopolymer template definitions and HELM monomer definitions.
The HELM monomer definitions are always taken from the global environment even if a local
environment is specified with the molIndexOrTable parameter.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();

See also
BIOVIA Direct Developers Guide > Using Direct > Getting the HELM string

mdlaux.helmtomolfile
Returns a molfile string (CLOB) from a HELM string (CLOB).

Syntax
mdlaux.helmtomolfile(molIndexOrTable, helm)

Parameter Description

molIndexOrTable The name of a molecule index, or the name of a table which contains exactly
onemolecule index. The schemamay be included, e.g. 'schema.table'. If the
value of this parameter is NULL or if this parameter is omitted the global
environment is used.

molecule A CLOB containing the HELM string.

Return value
A temporary CLOB that contains the converted molfile string. If the HELM string cannot be converted,
the mdlaux.helmtomolfile function returns NULL. Use mdlaux.errors to see related error
messages.

Usage
select mdlaux.helmtomolfile(molIndexOrTable, helm) from dual;

BIOVIA Direct 2021 • Reference Guide | Page 105

Chapter 3: Molecule-Specific Operators and Functions

Example
The following example shows the converted molfile from a simple HELM string:
select mdlaux.helmtomolfile('PEPTIDE1{A}') from dual;

MDLAUX.HELMTOMOLFILE('PEPTIDE1{A}')

SciTegic11171415502D

0 0 0 0 0 0 999 V3000
M V30 BEGIN CTAB
M V30 COUNTS 1 0 0 0 1
M V30 BEGIN ATOM
M V30 1 A 1.5 2.5 0 0 CLASS=AA SEQID=1
M V30 END ATOM
M V30 END CTAB
M V30 BEGIN TEMPLATE
M V30 TEMPLATE 1 AA/ala/A
M V30 BEGIN CTAB
M V30 COUNTS 7 6 3 0 1
M V30 BEGIN ATOM
M V30 1 O 6.6266 -2.0662 0 0
M V30 2 H 5.0016 -2.0876 0 0
M V30 3 N 5.1358 -2.0784 0 0
M V30 4 C 5.7844 -1.5983 0 0 CFG=2
M V30 5 C 6.4753 -2.0653 0 0
M V30 6 O 6.4753 -2.8977 0 0
M V30 7 C 5.7844 -0.7662 0 0
M V30 END ATOM
M V30 BEGIN BOND
M V30 1 1 3 4
M V30 2 1 4 5
M V30 3 2 5 6
M V30 4 1 4 7 CFG=1
M V30 5 1 3 2
M V30 6 1 5 1
M V30 END BOND
M V30 BEGIN SGROUP
M V30 1 SUP 1 ATOMS=(1 1) XBONDS=(1 6) LABEL=OH BRKXYZ=(9 7.02 -2.26 0 7.02
-
M V30 -1.85 0 0 0 0) CSTATE=(4 6 -0.15 0 0) CLASS=LGRP
M V30 2 SUP 2 ATOMS=(1 2) XBONDS=(1 5) LABEL=H BRKXYZ=(9 4.58 -1.87 0 4.6 -
M V30 -2.28 0 0 0 0) CSTATE=(4 5 0.13 0.01 0) CLASS=LGRP
M V30 3 SUP 3 ATOMS=(5 3 4 5 6 7) XBONDS=(2 5 6) LABEL=Ala BRKXYZ=(9 3.95 -
M V30 -3.33 0 3.95 -0.38 0 0 0 0) CSTATE=(4 5 -0.13 -0.01 0) CSTATE=(4 6
0.15 -
M V30 0 0) CLASS=AA SAP=(3 3 2 Al) SAP=(3 5 1 Br)
M V30 END SGROUP
M V30 END CTAB
M V30 END TEMPLATEM END

Page 106 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();

See also
helm

BIOVIA Direct Developers Guide >Using Direct > Conversion of SMILES strings to molfile

mdlaux.inchi
Returns an IUPAC standard International Chemical Identifier (standard “InChI”) string for the specified
molecule.

Syntax
mdlaux.inchi(molecule, options)

Parameter Description

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).
Chime string (VARCHAR2 or CLOB)
A SMILES string
IUPAC name (VARCHAR2 or CLOB)
Direct molecule object (BLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

options (Optional) Specifies a complete set of InChI library options.
If no additional options are provided in the call to INCHI, the standard InChI string is
generated.
If any of the following options are specified, a non-standard InChI string is generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)

BIOVIA Direct 2021 • Reference Guide | Page 107

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)
15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the InChI string (shows up as a three-
character suffix, a backslash followed by two letters)

Return value
A temporary CLOB that contains the InChI string. The output string length will exceed 4000 characters
for very largemolecules. If the InChI string cannot be generated, the mdlaux.inchi functions returns
NULL. Use mdlaux.errors to see the related error message.

Usage
select mdlaux.inchi(molecule, options) from dual;

Example
The following example shows the InChI string for a molecule, using the default option:
select mdlaux.inchi('/work/mols/muse1.mol') from dual;

MDLAUX.INCHI('/WORK/MOLS/MUSE1.MOL')
--
InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3

Comments
There are limitations to the generation of InChI strings. Not all BIOVIAmolecule features can be
handled. The mdlaux.inchi function returns NULL if the specified molecule cannot be handled.
Use mdlaux.errors to see the related error message.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

See also
mdlaux.inchikey

inchi

BIOVIA Direct Developers Guide > Using Direct>Getting the InChI string and key
BIOVIA Direct Developer’s Guide > Using Direct> Limitations to the generation of InChI strings

Page 108 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

mdlaux.inchiauxinfo
Returns the auxiliary information (AuxInfo) that is computed along with the IUPAC International
Chemical Identifier (InChI) string for a molecule.

Syntax
mdlaux.inchiauxinfo(any-molecule [, options])

Parameter Description

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).
Chime string (VARCHAR2 or CLOB)
A SMILES string
IUPAC name (VARCHAR2 or CLOB)
Direct molecule object (BLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

options (Optional) Specifies a complete set of InChI library options.
If no additional options are provided in the call to INCHIAUXINFO, the standard InChI
AuxInfo string is generated.
If any of the following options are specified, a non-standard InChI AuxInfo string is
generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)
SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)
15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the InChI AuxInfo string (shows up as a three-
character suffix, a backslash followed by two letters)

BIOVIA Direct 2021 • Reference Guide | Page 109

Chapter 3: Molecule-Specific Operators and Functions

Return value
A temporary CLOB that contains the InChI AuxInfo string. The output string length will exceed 4000
characters for very largemolecules. If the InChI AuxInfo string cannot be generated, the
mdlaux.inchiauxinfo functions returns NULL. Use mdlaux.errors to see the related error
message.

Usage
select mdlaux.inchiauxinfo(molecule, options) from dual;

Example
The following example shows the InChI AuxInfo string for a molecule, using the default option:
select mdlaux.inchiauxinfo('/work/mols/muse1.mol') from dual;

MDLAUX.INCHIAUXINFO('/WORK/MOLS/MUSE1.MOL')
--
AuxInfo=1/0/N:10,12,13,9,1,2,3,11,6,4,5,7,8,14/rA:14CCCNNNNOCCCCCO/rB:d-
1;s1;s1;s2;s2;s3;d3;s4d-
6;s4;s5s7;s5;s7;d11;/rC:.9129,.6671,0;.9129,-.8497,0;-.4214,1.4361,0;2.3701,
1.1447,0;-.4108,-1.6082,0;2.3701,-1.3237,0;-
1.7346,.6671,0;-.4249,2.974,0;3.269,-.0772,0;2.8476,2.6089,0;-
1.7346,-.8462,0;-.4003,-3.1531,0;-3.0618,1.4431,0;-3.0723,-1.6152,0;

Comments
There are limitations to the generation of InChI AuxInfo strings. Not all BIOVIAmolecule features can
be handled. The mdlaux.inchiauxinfo function returns NULL if the specified molecule cannot be
handled. Use mdlaux.errors to see the related error message.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

See also
mdlaux.inchi

inchiauxinfo

BIOVIA Direct Developers Guide > Using Direct>Getting the InChI string and key
BIOVIA Direct Developer’s Guide > Using Direct> Limitations to the generation of InChI strings

mdlaux.inchikey
Returns an IUPAC International standard Chemical Identifier (standard “InChI”) key for the specified
molecule. The InChI key is a 27-character hashed form of the InChI string. The mdlaux.inchikey
function generates the key by first generating the InChI string, and then calling an InChI library function
to convert the string into the 27-character key.

Syntax
mdlaux.inchikey(molecule, options)

Page 110 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).
Direct Molecule object (BLOB)
Chime string (VARCHAR2 or CLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
SMILES string
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

options (Optional) Specifies a complete set of InChI library options.
If no additional options are provided in the call to INCHI, the standard InChI string is
generated.
If any of the following options are specified, a non-standard InChI string is generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)
SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)
15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the InChI string (shows up as a three-
character suffix, a backslash followed by two letters)

Return value
A VARCHAR2 that contains the 27-character InChI key. The mdlaux.inchikey function returns NULL if
the InChI string cannot be generated. Use mdlaux.errors to see the related error message.

Usage
select mdlaux.inchikey(molecule, options) from dual;

BIOVIA Direct 2021 • Reference Guide | Page 111

Chapter 3: Molecule-Specific Operators and Functions

Example
The following example shows the InChI key for a molecule, using the default option:
select mdlaux.inchikey('/work/mols/muse2.mol') from dual;

MDLAUX.INCHIKEY('/WORK/MOLS/MUSE2.MOL')

UHOVQNZJYSORNB-UHFFFAOYSA-N

Comments
There are limitations to the generation of InChI strings. Not all BIOVIAmolecule features can be handled.
If the specified molecule cannot be handled, the mdlaux.inchikey functions returns NULL. Use
mdlaux.errors to see the related error message.

See also
mdlaux.inchi

inchikey

BIOVIA Direct Developers Guide > Using Direct > Limitations to the Generation of InChI Strings

mdlaux.inchitomolfile
Returns themolfile string representation of an InChI (IUPAC International Chemical Identifier) string or
InChI AuxInfo string.

Syntax
mdlaux.inchitomolfile(inchi-string-or-auxinfo)

Parameter Description

inchi-
string-
or-
auxinfo

A VARCHAR2 or CLOB containing an InChI string or an InChI AuxInfo string. Using an InChI
AuxInfo string will providemore information to the conversion including the original atom
coordinates, the output molecule will generally bemore similar to themolecule from
which InChI was calculated.

Return value
A temporary CLOB that contains the converted molfile string. If the InChI input cannot be converted,
the mdlaux.inchitomolfile function returns NULL. Use mdlaux.errors to see related error
message.

Usage
select mdlaux.inchitomolfile(inchi_string) from dual;

Examples

The following example shows the converted molfile from an InChI string calculated for chlorobenzene:
select mdlaux.inchitomolfile('InChI=1S/C6H5Cl/c7-6-4-2-1-3-5-6/h1-5H') from
dual;

MDLAUX.INCHITOMOLFILE('INCHI=1S/C6H5CL/C7-6-4-2-1-3-5-6/H1-5H')
--
-

SciTegic06291614572D

Page 112 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

7 7 0 0 0 0 999 V2000
-3.0000 -1.0000 0.0000 C 0 0
-2.5000 -1.8660 0.0000 C 0 0
-2.5000 -0.1340 0.0000 C 0 0
-1.5000 -1.8660 0.0000 C 0 0
-1.5000 -0.1340 0.0000 C 0 0
-1.0000 -1.0000 0.0000 C 0 0
0.0000 -1.0000 0.0000 Cl 0 0

1 2 2 0
1 3 1 0
2 4 1 0
3 5 2 0
4 6 2 0
5 6 1 0
6 7 1 0

M END

The next example shows themolfile converted from the InChI AuxInfo value for ethane:
select mdlaux.inchitomolfile('AuxInfo=1/0/N:1,2/E:
(1,2)/rA:2CC/rB:s1;/rC:1.3343,.7672,0;0,1.5418,0;') from dual;

MDLAUX.INCHITOMOLFILE('AUXINFO=1/0/N:1,2/E:
(1,2)/RA:2CC/RB:S1;/RC:1.3343,.767
--
-

SciTegic06222015142D

2 1 0 0 0 0 999 V2000
1.3343 0.7672 0.0000 C 0 0
0.0000 1.5418 0.0000 C 0 0

1 2 1 0
M END

Comments
InChI has limitations, for example it does not encode information about whether stereochemistry is
relative or absolute nor does it always differentiate between two tautomeric forms of a molecule. Nitro
groups in an InChI string are always converted to the uncharged hypervalent nitrogen form in the
molfile. You will not always get the samemolecule that you started with when converting from molfile to
InChI and then from that InChI back to molfile.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()) { ((oracle.sql.CLOB)
clob).freeTemporary(); }

See also
inchi

inchiauxinfo

BIOVIA Direct 2021 • Reference Guide | Page 113

Chapter 3: Molecule-Specific Operators and Functions

mdlaux.isgeneric
Returns 1 if the specified molecule is a generic structure, 0 if not. A generic structure is a Markush
structure that represents actual structures.

Syntax
mdlaux.isgeneric(molecule)

Parameter Description

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Direct Molecule object (BLOB)
Chime string (VARCHAR2 or CLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
ANUMBER that indicates whether the specified molecule is a generic structure (1) or not (0).

Usage
select column-data
from tablename
where mdlaux.isgeneric(ctab)=1

[operator other-conditions];

Example
The following example uses isgeneric to find generic structures in the samplegen table.

select parent_sampleid
from samplegen
where mdlaux.isgeneric(ctab)=1;

Comments
This operator is not indexed. When possible, avoid using it when running queries on large tables.

See also
isgeneric

Page 114 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

mdlaux.isnostruct
Returns 1 if the specified molecule is a nostruct ("no-structure"), 0 if not. A no-structure is a chemical
structure that consists of zero fragments, that is, zero atoms and zero bonds.

Syntax
mdlaux.isnostruct(molecule)

Parameter Description

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Chime string (VARCHAR2 or CLOB)
Direct molecule object (BLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).
A NUMBER that indicates whether the specified molecule is a no-structure (1) or not (0).

Usage
select column-data
from tablename
where mdlaux.isnostruct(molecule)=1

[operator other-conditions];

Example
The following example uses isnostruct to find “no-structures” in the sample2d table.

select cdbregno
from sample2d
where mdlaux.isnostruct(ctab)=1;

Comments
This function is not indexed. When possible, avoid using it when running queries on large tables.

See also
isnostruct

mdlaux.isotopicformula
Computes the formula for the specified molecule, including isotope labels.

Syntax
mdlaux.isotopicformula(molIndexOrTable, molecule, 'format-options')

BIOVIA Direct 2021 • Reference Guide | Page 115

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molIndexOrTable The name of a molecule table that contains a single molecule domain index, or
the name of a molecule domain index.
The implicit Ptable controls the atom symbols used. If molIndexOrTable is
NULL, the global cartridge Ptable is used for symbol resolution.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Chime string (VARCHAR2 or CLOB)
Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

format-options Optional string to control formatting of the output molecular formula. If no
options are present the formula will include space between elements, and the
formula for each fragment in a multi-fragment structure will be separated by a
dot. Use NOSPACE to remove the space between elements, NOFRAGMENT to not
separate fragment formulas, and NOSPACE NOFRAGMENT for both changes. To
match the formula string which is output by Insight use NOSPACE
NOFRAGMENT. A third optional argument, USEDANDT, switches the default
display of hydrogen isotopes, 2H and 3H, to the older one-letter designations D
and T.

Return value
A temporary CLOB that contains the formula string including isotope labels.

Usage
insert into tablename(

isotopicformula-field
[,other-column-data]

)
values (

mdlaux.isotopicformula(molIndexOrTable, molecule)
[,other-value-data]

);

Example
The following example registers isotopic formula into a table:

Page 116 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

insert into moltable
(id, ctab,
molformula,
isotopicicmolformula)

values ('Mol1', mol('/home/joe/mol1.mol'),
mdlaux.molfmla('moltable', '/home/joe/mol1.mol'),

mdlaux.isotopicformula('moltable', '/home/joe/mol1.mol'));

The following is an example showing the traditional and isotopic formulae for C13 labeled
chlorobenzene:
select mdlaux.molfmla(null, '/work/mols/phclc13.mol')

from dual;

MDLAUX.MOLFMLA(NULL,'/WORK/MOLS/PHCLC13.MOL')
--
C6 H5 Cl

select mdlaux.isotopicformula(null,'/work/mols/phclc13.mol')
from dual

MDLAUX.ISOTOPICFORMULA(NULL,'/WORK/MOLS/PHCLC13.MOL')
--
13C C5 H5 Cl

Comments
Use themdlaux.isotopicformula function when registering mono-isotopic mass into a table. The
isotopicformula operator cannot be used for registration.
To match the formula output by Direct using theMolecular Formula component in Pipeline Pilot, set
the component options as follows:

Ignore Isotopes = (True for MOLFMLA, False for ISOTOPICFORMULA)
Use 2H and 3H for Hydrogen Isotopes = True
Include Space Between Elements = (True for default, False if using NOSPACE)
Separate Fragments = (True for default, False if using NOGRAGMENT)
Add HTML Tags = False

Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

See also
isotopicformula

mdlaux.isrna
Returns 1 if themolecule argument is an RNA or DNA sequence, 0 if it is not.

BIOVIA Direct 2021 • Reference Guide | Page 117

Chapter 3: Molecule-Specific Operators and Functions

Amolecule is considered an RNA or DNA biopolymer sequence if it contains one or more nucleotide
template atoms, one or more nucleotide template definitions, or one or more Sgroup abbreviations
(superatoms) that have associated nucleotide sequence information.

Syntax
mdlaux.isrna(molIndexOrTable, molecule)

Parameter Description

molIndexOrTable The name of a molecule table that contains a single molecule domain index, or
the name of a molecule domain index.
The implicit Ptable controls the atom symbols used. If molIndexOrTable is
NULL, the global cartridge Ptable is used for symbol resolution.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
ANUMBER that is 1 if themolecule is an RNA or DNE biopolymer sequence, or 0 if it is not.

Usage
select mdlaux.isrna(index-or-tablename, molecule) from dual;

See also
isrna

mdlaux.issequence
Returns 1 if themolecule argument is a biopolymer sequence, 0 if it is not.
Amolecule is considered a biopolymer sequence if it contains one or more template atoms, one or more
template definitions, or one or more Sgroup abbreviations (superatoms) that have associated sequence
information.

Syntax
mdlaux.issequence(molIndexOrTable, molecule)

Page 118 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molIndexOrTable The name of a molecule table that contains a single molecule domain index, or
the name of a molecule domain index.
The implicit Ptable controls the atom symbols used. If molIndexOrTable is
NULL, the global cartridge Ptable is used for symbol resolution.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
ANUMBER that is 1 if themolecule is a biopolymer sequence, or 0 if it is not.

Usage
select mdlaux.issequence(index-or-tablename, molecule)from dual;

See also
issequence

BIOVIA Direct Developers Guide > Using Direct > Biopolymer Searching and Registration

mdlaux.iupacname
Returns the IUPAC (International Union of Pure and Applied Chemistry) name of a molecule.

Syntax
mdlaux.iupacname(molecule, options)

BIOVIA Direct 2021 • Reference Guide | Page 119

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
HELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

options (Optional) An optional VARCHAR2 argument to specify the language, name style, and
character set. The argument can specify one or more of the LANGUAGE, NAMESTYLE, and
CHARSET.
For example:
'LANGUAGE=language NAMESTYLE=name-style CHARSET=character-set'
If no options are specified, the defaults are:
'LANGUAGE=ENGLISH NAMESTYLE=DEFAULT CHARSET=HTML'

For a list of valid options, see the List of valid language, name-style, and character-set
options.

Return value
A temporary CLOB that contains the IUPAC name of themolecule. If a name cannot be generated for the
molecule, the iupacname operator returns NULL. Use mdlaux.errors to see related error message.

Usage
select mdlaux.iupacname(molecule)

[, other-column-data]
from tablename
where condition;

Example
The following example shows the IUPAC name of a molecule in the sample2d table.

select mdlaux.iupacname(ctab)
from sample2d
where cdbregno=18;

MDLAUX.IUPACNAME(CTAB)
--
3,6-dichlorophthalic acid

Comments
The mdlaux.iupacname function uses functionality provided by OpenEye Scientific Software.

Page 120 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

See also
iupacname

mdlaux.iupacnametomolfile
Returns themolfile string representation of an IUPAC (International Union of Pure and Applied
Chemistry) name.

Syntax
mdlaux.iupacnametomolfile(iupacname)

Parameter Description

iupacname A VARCHAR2 or CLOB containing an IUPAC molecule name

Return value
A temporary CLOB that contains the converted molfile string. If the IUPAC molecule name cannot be
converted, the mdlaux.iupacnametomolfile function returns NULL. Use mdlaux.errors to see
related error message.

Usage
select mdlaux.iupacnametomolfile(iupacname) from dual;

Examples
The following example shows the converted molfile from an IUPAC name:

select mdlaux.iupacnametomolfile('ethylene') from dual;
MDLAUX.IUPACNAMETOMOLFILE('ETHYLENE')
--

-OEChem-01071013082D

2 1 00 0 0 0 0 0999 V2000
2.0000-2.00000.0000 C0 0 0 0 0 0 0 0 0 0 0 0
3.0000-2.00000.0000 C0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0 0 0 0
M END

The following example shows a flexmatch search for chlorobenzene using the converted IUPAC name as
the query structure:

select cdbregno from sample2d where
flexmatch(ctab, mdlaux.iupacnametomolfile('chlorobenzene'),
'match=all')=1;

CDBREGNO

4

Comments
The mdlaux.iupacnametomolfile function uses functionality provided by OpenEye Scientific
Software, and is subject to all of the limitations of OpenEye’s structure conversion library.

BIOVIA Direct 2021 • Reference Guide | Page 121

Chapter 3: Molecule-Specific Operators and Functions

See also
mdlaux.iupacname

mdlaux.mol
This package function is equivalent to mol. See the documentation for mol for more information.

mdlaux.molchime
This package function is equivalent to molchime. See the documentation for molchime for more
information.

mdlaux.molfile
This package function is equivalent to molfile. See the documentation for molfile for more
information.

mdlaux.molfmla
Returns themolecular formula for a molecule.

Syntax
mdlaux.molfmla(molIndexOrTable, molecule, 'format-options')

Parameter Description

molIndexOrTable The name of a molecule table that contains a single molecule domain index, or
the name of a molecule domain index.
The implicit Ptable controls the atom symbols used. If molIndexOrTable is
NULL, the global cartridge Ptable is used for symbol resolution.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Page 122 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

format-options Optional string to control formatting of the output molecular formula. If no
options are present the formula will include space between elements, and the
formula for each fragment in a multi-fragment structure will be separated by a
dot. Use NOSPACE to remove the space between elements, NOFRAGMENT to not
separate fragment formulas, and NOSPACE NOFRAGMENT for both changes. To
match the formula string which is output by Insight use NOSPACE
NOFRAGMENT.

Return value
A CLOB that contains themolecule formula for the specified molecule.

Usage
The typical usage for the mdlaux.molfmla function is to get themolecule formula for registration using
the same ptable which is associated with themolecule domain index on the table into which the
molecule is being registered. For example:

INSERT INTO moltable (extreg, ctab, molformula)
VALUES ('ABC-123',
MOL('/home/user/mol123.mol'),
MDLAUX.MOLFMLA('moltable', '/home/user/mol123.mol'));

Comments
When inserting themolecular formula, you must use the mdlaux.molfmla function instead of the
molfmla operator. The mdlaux.molfmla function allows you to specify a molecule table or
molecule domain index that specifies which ptable to use. The molfmla operator is not appropriate
for registration because it uses the global Ptable when the specified parameter is a molecule object.
To match the formula output by Direct using theMolecular Formula component in Pipeline Pilot, set
the component options as follows:

Ignore Isotopes = (True for MOLFMLA, False for ISOTOPICFORMULA)
Use 2H and 3H for Hydrogen Isotopes = True
Include Space Between Elements = (True for default, False if using NOSPACE)
Separate Fragments = (True for default, False if using NOGRAGMENT)
Add HTML Tags = False

Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

mdlaux.molimage
Returns a temporary BLOB containing a PNG, BMP, SVG, or EMF image of themolecule.

Syntax
mdlaux.molimage(molecule [, options])

BIOVIA Direct 2021 • Reference Guide | Page 123

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a molecule object.

options Optional. A VARCHAR2 argument to control the type of image created, its size, and other
preferences. Specify this argument as a string of comma separated options, each option
takes the form keyword=value.

Possible options are:
imagetype=png - Creates a PNG image (default)
imagetype=bmp - Creates a BMP
imagetype=svg - Creates a SVG
imagetype=emf - Creates a EMF image
width=number- Specifies a width number, typically 100 to 1000 (default is 500)
height=number - Specifies a height number, typically 100 to 1000 (default is 500)
ColorAtomsByType=TRUE|FALSE - Specifies whether to color the atom labels by
their type. The default is TRUE.
HydrogenDisplayMode=mode- Specifies how to display implicit hydrogen atoms.
The default is HYDROGEN_HETERO. Valid mode values are:

HYDROGEN_OFF - Does not display implicit hydrogen atoms
HYDROGEN_HETERO - Displays implicit hydrogens on heteroatoms.
HYDROGEN_TERMINAL - Displays implicit hydrogens on terminal atoms.
HYDROGEN_TERMINAL_AND_HETERO - Displays implicit hydrogens on terminal
atoms and heteroatoms.
HYDROGEN_ALL - Displays implicit hydrogens on all atoms.

BackgroundColor=color - Specifies the background color. Use either the name of
the color (red, green, others) or the hexadecimal RGB value (FF0000, 00FF00, others).
The default is white.
ForegroundColor=color - Specifies the color of the shape or text. Use either the
name of the color (red, green, others) or the hexadecimal RGB value (FF0000, 00FF00,
others). The default is black.§
ChiralityLabels=ANDtext,ABStext,ORtext,MIXEDtext – Specifies the
chirality label text to display for structures with stereocenters. The default is “AND
Enantiomer,,OR Enantiomer,Mixed”. You must include the double quote characters
and four comma-separated fields within the quotes. An empty field will not display
anything for that type of chirality, for example the default text does not display
anything for a structure that has only absolute stereocenters.§
DisplayRS=TRUE|FALSE – Specifies whether to display R and S stereocenter labels
on the structure. The default is FALSE.§
DisplayEZ=TRUE|FALSE – Specifies whether to display E and Z double bond labels
on the structure. The default is FALSE.
PolAtomDisplayMode=POL_STYLE_BEAD|POL_STYLE_TEXT - Specifies how to
indicate the atom(s) that bind the structure to a polymer (atoms of type ‘Pol’). Default
is POL_STYLE_BEAD. Valid values are:

Page 124 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

POL_STYLE_BEAD - Displays polymer atoms as shaded circles that resemble beads
POL_STYLE_TEXT - Displays polymer atoms with the label text Pol.

The following shows an example that specify image options:
molimage(mol, 'imagetype=png,width=100,height=100')

Return value
A BLOB that contains the binary image data. The mdlaux.molimage function returns NULL if an image
cannot be generated for themolecule. Use mdlaux.errors to see related error message.

Usage
select mdlaux.molimage(molecule [, options]) from dual;

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"blob":

if (((oracle.sql.BLOB)blob).isTemporary()){
((oracle.sql.BLOB)blob).freeTemporary();
}

Applications that use this function in a SQL SELECT statement must be aware that the temporary
LOBs are only freed when the statement ends. If the statement selects many rows Oracle may run
out of temporary space needed to store the LOBs. To work around this you can increase the
temporary tablespace size, or you can convert the SELECT into a PL/SQL function which computes
the image and then frees the BLOB immediately.

See also
molimage

mdlaux.molkeys
Returns the SSS keys that would be registered for a molecule as a printable string.

Syntax
mdlaux.molkeys(molIndexOrTable, molecule, print)

Parameter Description

molIndexOrTable The name of a molecule table that contains a single molecule domain index, or
the name of a molecule domain index.
The implicit Ptable controls the atom symbols used. If molIndexOrTable is
NULL, the global cartridge Ptable is used for symbol resolution.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.

BIOVIA Direct 2021 • Reference Guide | Page 125

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Page 126 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

print Specifies what is to be printed, and how. The specified print string should follow
the format "outputFormat, delimiterType". It can contain the following
keywords and options, separated by whitespace. Extra characters are ignored;
thus,'DEC' or 'DECIMAL' would be allowed.
Normally, the full set of 960 SSS keys are used. The following option can be
added to restrict output to the subset of 166 "user" keys:

SUB - Subset of 166 "user" keys
Output format:

BIN - Binary, i.e. '1' and '0'. Delimiter is applied between bits.
HEX - Hexadecimal, i.e. 'fa03'. Lowest key (key 1) is highest bit in first word,
thus 'a000' would set keys 1 and 3. Delimiter is applied between 32-bit words.
DEC - Decimal key numbers.
WTS or WEI -Decimal key weights. All key positions are output, keys which
are not set have a weight of zero.
SET - Returns only the number of keys set, not the key values.
TOT - Returns only the total number of keys, not the key values. This is
independent of themol.

Default: DEC

Type and placement of delimiter character:
DELIM=c Output key values separated by 'c'.
LEAD Include a leading delimiter.
TRAIL Include a trailing delimiter.

Default: None, unless option string is all blank.
If the option string is '' or 'SUB', the default is to add 'DEC DELIM=, LEAD

TRAIL'.
Examples:

Same as "DEC DELIM=, LEAD
TRAIL"

"DEC DELIM=," "23,47,230"

"DEC SUBSET DELIM=, LEAD
TRAIL"

",2,6"

"BIN" "000000101011101..."

"TOT" "960" [number of SSS keys]

Return value
A VARCHAR2 that contains the SSS keys which would be registered for a molecule as a printable string

Usage
The typical usage for the mdlaux.molkeys function is to get the printable keys for registration (using
the same key definition file which is associated with themolecule domain index on the table into which
themolecule is being registered). For example:

BIOVIA Direct 2021 • Reference Guide | Page 127

Chapter 3: Molecule-Specific Operators and Functions

INSERT INTO moltable (extreg, ctab, molkeys) VALUES
('ABC-123', MOL('/home/user/mol123.mol'),
MDLAUX.MOLKEYS('moltable', '/home/user/mol123.mol',
'dec delim=, lead trail'));

Comments
When inserting themolecular formula, you must use the mdlaux.molkeys function instead of the
molkeys operator. The mdlaux.molkeys function allows you to specify a molecule table or molecule
domain index that specifies which key definitions to use. The molkeys operator always uses the global
key definitions which are not appropriate for registration.

See also
molkeys

mdlaux.molname
Returns themolecule name stored within a molfile.

Syntax
mdlaux.molname(molecule)

Parameter Description

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Chime string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
A VARCHAR2 that contains the name of the specified molecule

Usage
The typical usage for the mdlaux.molname function is to get themolecule name from amolfile for
registration. For example:
INSERT INTO moltable (extreg, ctab, molname)
VALUES('ABC-123',

MOL('/home/user/mol123.mol'),
MDLAUX.MOLNAME('/home/user/mol123.mol'));

See also
mdlaux.setmolname

mdlaux.getsavedmolname

mdlaux.molnemakey
Returns a string that contains the NEMA key for the specified molecule structure.

Page 128 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Syntax
mdlaux.molnemakey(molIndexOrTable, molecule, option)

Parameter Description

molIndexOrTable The name of a molecule index, or the name of a table which contains exactly one
molecule index. The schemamight be included, e.g., 'schema.table'. If non-
NULL, the Ptable defined by the domain index is used to generate the NEMAKEY.
If molIndexOrTable is NULL, the global Ptable is used. You should generally
use the table or index name if you are generating values for use with a specific
molecule table. If you wish to compare values between two tables, and the
tables use Ptables with different atom symbols, you can specify NULL for this
argument if the global ptable contains all of the atom symbols required.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

BIOVIA Direct 2021 • Reference Guide | Page 129

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

option Specifies what to generate, and consists of one or more of the following three-
letter keywords.
The keywords are:

CON - Returns constitutional NEMAKEY (30 characters). The constitutional key
does not include any stereochemical information. It should be used to
compare two molecules without regard to stereochemistry.
STE - Returns stereochemical NEMAKEY (30 characters). This key includes
stereochemical information for most cases, but will not differentiate
mixtures of different types of enhanced stereochemical collections.
EXA - Returns stereochemical NEMAKEY (30 characters). Returns no key if a
FLEXMATCH verification is required, this occurs if themolecule contains
mixtures of different types of enhanced stereochemical collections.
FLG - Returns three (zero-padded) digits of NEMAKEY and cartridge flag
information, as described below.
REV - Returns the NEMAKEY revision number, for example, "1001". This
number will change if the NEMAKEY computed for a molecule might be
different than for a previous release.

The specified values are appended to the output string in the order in which the
keywords appear in the option parameter. Any characters which are not
keywords are appended to the output string as-is.
Thus, to generate the stereo NEMAKEY followed by a dash followed by the flags,
use 'STE-FLG' for the option parameter. If the option parameter is not present,
is NULL, or is blank, then the default is to return 'EXA'. The option parameter is
optional; if it is not specified, it is the same as if NULL were specified.

Note: Do not include text which contains the letters in the option flags, the
text will not be printed verbatim but will print the option with the remaining
text. For example 'Stereo:ste' will print the stereo NEMAKEY twice separated
by "reo:". Use Oracle text concatenation to add additional text to the
NEMAKEY output.

In addition to the keywords above which specify what to include in the output
string, there is another option which controls whether the generated NEMAKEY
will be the same as the one created by Pipeline Pilot Client and Draw. This option
is /NODAT and specifies that the NEMAKEYwill not include information about
data Sgroups. By default, Direct includes information about data Sgroups in its
NEMAKEYs, which allows the keys to be used for exact-match comparisons.
Pipeline Pilot Client and Draw do not include information about data Sgroups,
so to create a NEMAKEY that matches the one in Pipeline Pilot Client or Draw use
the options 'EXA/NODAT'.

Return value
A VARCHAR2 data that contains the information generated in response to the keywords used in the
option parameter.

Page 130 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Example
The following example uses mdlaux.molnemakey to return the NEMAKEY string for the structures in a
substructure search:

select cdbregno,
mdlaux.molnemakey('acd2d_mdlix', ctab, 'exa')

from acd2d_moltable
where sss(ctab, 'c:\query.mol')=1;

The following example uses mdlaux.molnemakey to return the NEMAKEY string for a specified molfile:
select mdlaux.molnamekey(null, 'c:\molecule.mol', 'ste-flg') as "NemaKey"
from dual;

The following example is the same as the previous one but returns the same NEMAKEY that Pipeline
Pilot or Drawwould return for the structures:

select cdbregno,
mdlaux.molnemakey('acd2d_mdlix', ctab, 'exa/nodat')

from acd2d_moltable
where sss(ctab, 'c:\query.mol')=1;

Comments
mdlaux.molnemakey is the function equivalent of molnemakey. molnemakeywill fetch the
domain index schema and name from the information passed to it by Oracle, and then call
mdlaux.molnemakey.
When the input molecule is a biopolymer sequencemolecule, molnemakey generates a special
sequence NEMA key. Currently, only an exact NEMA key (considering stereochemistry) can be
generated for sequences. Thus, if the input molecule is a sequencemolecule: The ‘CON’ option will
return a blank string Only the ‘STE’ option will return a NEMA key .In addition, a flag value of 128
denotes a sequence NEMA key. This example shows the flag value of 128:
select mdlaux.molnemakey(null, '/home/user/alanine.mol', 'STE-FLG') from
dual;

MDLAUX.MOLNEMAKEY(NULL,'/HOME/USER/ALANINE.MOL','STE-FLG')
--
2GSUQPXFN9FEBYJHJJFQ65CXS58RF4-128

The NEMAKEYwill be empty if it cannot be generated because themolecule is a generic (contains
rgroups), contains polymer sgroups, or it contains numeric data sgroups. It may also be empty if
NEMA times out. Unless the FLG keyword is present, the return value will be NULL in these cases. If
for example the option parameter was 'STE-FLG', and themolecule is a polymer, the output will be
'-258', that is, the 'STE' portion is not present.

Note: Text data sgroups do not prevent generation of the NEMA key, and will contribute to the
definition of the key.

Flags are normally a bitwise OR of zero or more of the following:

4 =Molecule has mixed stereogroups and requires FLEXMATCH to resolve equality if
stereochemistry is NOT ignored
128 =Molecule generated a (biopolymer) sequence NEMA key

BIOVIA Direct 2021 • Reference Guide | Page 131

Chapter 3: Molecule-Specific Operators and Functions

Flags can also be set to exactly one of the following, in this case the key is empty (no characters):

257 = NEMA generation failed due to timeout
258 =Molecule has polymer Sgroups and numeric data Sgroups
259 =Molecule is a generic (contains Rgroups)

See also
molnemakey

BIOVIA Direct Developers Guide > Using Direct >NEMAKEY searching and key generation

mdlaux.molwt
Returns themolecular weight of a molecule.

Syntax
mdlaux.molwt(molIndexOrTable, molecule)

Parameter Description

molIndexOrTable The name of a molecule index, or the name of a table which contains exactly one
molecule index. (The schemamay be included, e.g. 'schema.table'.)
The valuemay be NULL, and can be used as one of the following:
mdlaux.molwt(NULL, ctab)

mdlaux.molwt(’’, ctab)

in which case the global environment is used.
Use the first argument to control what ptable is used to supply atomic weights
for calculation of themolecular weight. a NULL value will cause the global Ptable
to be used.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
ANUMBER that contains molecule weight of the specified molecule.

Page 132 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Usage
The typical usage for the mdlaux.molwt function is to get themolecular weight for registration using
the same ptable which is associated with themolecule domain index on the table into which the
molecule is being registered. For example:

INSERT INTO moltable (extreg, ctab, molweight) VALUES
('ABC-123', MOL('/home/user/mol123.mol'),
MDLAUX.MOLWT('moltable', '/home/user/mol123.mol'));

Examples
The mdlaux.molwt function can be used in a SELECT statement, such as to compute themolecular
weight for a molecule in the local table MOLTABLE using the atomic weights associated with the
corporate database. For example:

SELECT mdlaux.molwt('corpdb_mol_mdlix',ctab) FROM
moltable WHERE cdbregno = 1;

Another example of themdlaux.molwt function highlights registration:

INSERT INTO moltable (corpid, ctab, molecularweight, formla) VALUES
('12345', mol('chimestring'),
mdlaux.molwt('moltable','chimestring'), mdlaux.molfmla
('moltable','chimestring'));

Comments
When inserting themolecular weight, you must use the mdlaux.molwt function instead of the molwt
operator. The mdlaux.molwt function allows you to specify a molecule table or molecule domain index
that specifies which ptable to use. The molwt operator is not appropriate for registration because it uses
the global Ptable when the specified parameter is a molecule object.

mdlaux.molwtmax
Returns themaximum molecular weight for a generic structure, that is, themolecular weight of the
heaviest enumerated specific structure of the generic structure. If the given molecule is a specific
structure, molwtmax is the same as mdlaux.molwt.

Syntax
mdlaux.molwtmax(molIndexOrTable, molecule)

Parameter Description

molIndexOrTable The name of a molecule index, or the name of a table which contains exactly one
molecule index. (The schemamay be included, e.g. 'schema.table'.)
The valuemay be NULL, and can be used as one of the following:
mdlaux.molwtmax(NULL, ctab)

mdlaux.molwtmax(’’, ctab)

in which case the global environment is used.
Use the first argument to control what Ptable is used to supply atomic weights
for calculation of themolecular weight. a NULL value will cause the global Ptable
to be used.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server

BIOVIA Direct 2021 • Reference Guide | Page 133

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
ANUMBER that contains maximum molecular weight of a generic structure

Usage
select mdlaux.molwtmax(molIndexOrTable, molecule)
[, other-column-data]

from tablename
where condition;

Example

select mdlaux.molwtmax('', ctab)
from samplegen
where parent_sampleid = 'BENZ';

See also
molwtmax

mdlaux.molwtmin

mdlaux.molwtmin
Returns theminimum molecular weight for a generic structure, that is, themolecular weight of the
lightest enumerated specific structure of the generic structure. If the given molecule is a specific
structure, molwtmin is the same as mdlaux.molwt.

Syntax
mdlaux.molwtmin(molIndexOrTable, molecule)

Page 134 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molIndexOrTable The name of a molecule index, or the name of a table which contains exactly one
molecule index. (The schemamay be included, e.g. 'schema.table'.)
The valuemay be NULL, and can be used as one of the following:
mdlaux.molwtmin(NULL, ctab)

mdlaux.molwtmin(’’, ctab)

in which case the global environment is used.
Use the first argument to control what Ptable is used to supply atomic weights
for calculation of themolecular weight. a NULL value will cause the global Ptable
to be used.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
ANUMBER that contains minimum molecular weight of a generic structure

Usage
select mdlaux.molwtmin(molIndexOrTable, molecule)
[, other-column-data]

from tablename
where condition;

Example
select mdlaux.molwtmin(’’, ctab)
from samplegen
where parent_sampleid = ’Peptoid’;

See also
molwtmin

mdlaux.molwtmax

mdlaux.monoisotopicmass
Computes themono-isotopic mass of a molecule.

BIOVIA Direct 2021 • Reference Guide | Page 135

Chapter 3: Molecule-Specific Operators and Functions

Syntax

Parameter Description

molIndexOrTable The name of a molecule table which contains a single molecule domain index, or
the name of a molecule domain index.
The implicit Ptable controls the atom symbols used. If molIndexOrTable is NULL,
the global cartridge Ptable is used for symbol resolution.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
ANUMBER that contains themono-isotopic mass of themolecule, or NULL if themass cannot be
computed. The domain index Ptable is automatically used to resolve atom symbols.

Usage
insert into tablename(

monoisotopicmass-field
[,other-column-data]

)
values (

mdlaux.monoisotopicmass(molIndexOrTable, molecule)
[,other-value-data]

);

Example
The following example registers monoisotopic mass into a table:

insert into moltable
(id, ctab,
molweight,
monoisotopicmolweight)

values ('Mol1', mol('/home/joe/mol1.mol'),
mdlaux.molwt('moltable', '/home/joe/mol1.mol'),
mdlaux.monoisotopicmass('moltable', '/home/joe/mol1.mol'));

The following example shows the difference in mass for methane:

Page 136 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

select mdlaux.molwt(null,'c'),
mdlaux.monoisotopicmass(null,'c')
from dual;

MDLAUX.MOLWT(NULL,'C') MDLAUX.MONOISOTOPICMASS(NULL,'C')
---------------------- ---------------------------------
16.0424616. 0313001

Comments
Use themdlaux.monoisotopicmass function when registering mono-isotopic mass into a table. The
monoisotopicmass operator cannot be used for registration.
Themdlaux.monoisotopicmass function only provides a result when themolecule contains atoms
found in nature. If an input molecule contains pseudoatoms such as Pol, Mod, or X, the
mdlaux.monoisotopicmass function returns NULL and the following error:
MDL-1590: MonoisotopicMass failed: Not available

See also
monoisotopicmass

mdlaux.numspecifics
Returns the number of specific structures from enumerating the specified generic structure. A specific
structure is a fully defined chemical structure (with no generic features). Themdlaux.numspecifics
function returns 1 if the specified argument is a specific structure.

Syntax
mdlaux.numspecifics(molecule)

Parameter Description

molecule Amolecule that uses one of the following formats:
Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server where
BIOVIADirect is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
ANUMBER (1 or higher) that indicates the number of specific structures from enumerating the generic
structure.

BIOVIA Direct 2021 • Reference Guide | Page 137

Chapter 3: Molecule-Specific Operators and Functions

Usage
select column-data,

mdlaux.numspecifics(molecule)
from tablename
where [conditions];

Example
The following example returns the number of specific structures for the generic structures in the
samplegen table.

select parent_sampleid,
mdlaux.numspecifics(ctab)

from samplegen
where mdlaux.isgeneric(ctab)=1;

Comments
This function is not indexed. When possible, avoid using it when running queries on large tables.

See also
numspecifics

mdlaux.rownemakey
Returns a string that the pre-computed NEMAKEY from the domain index secondary table.

Syntax
mdlaux.rownemakey(molIndex, rowid, option)

Parameter Description

molIndex The name of a molecule domain index. It cannot be a molecule table.

rowid The ROWID of the row in themolecule table containing themolecule for which the
NEMAKEY should be returned.

Page 138 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

option Specifies what to generate, and consists of one or more of the following three-letter
keywords.
The keywords are:

CON - Returns constitutional NEMAKEY (30 characters). The constitutional key does
not include any stereochemical information. It should be used to compare two
molecules without regard to stereochemistry.
STE - Returns stereochemical NEMAKEY (30 characters). This key includes
stereochemical information for most cases, but will not differentiatemixtures of
different types of enhanced stereochemical collections.
EXA - Returns stereochemical NEMAKEY (30 characters). Returns no key if a
FLEXMATCH verification is required, this occurs if themolecule contains data Sgroups
or if it contains mixtures of different types of enhanced stereochemical collections.
This is the key returned by Cheshire 4.1.
FLG - Returns three (zero-padded) digits of NEMAKEY and cartridge flag information,
as described below.

The specified values are appended to the output string in the order in which the
keywords appear in the option parameter. Any characters which are not keywords are
appended to the output string as-is.
Thus, to generate the stereo NEMAKEY followed by a dash followed by the flags, use 'STE-
FLG' for the option parameter. If the option parameter is not present, is NULL, or is blank,
then the default is to return 'EXA'. (The option parameter is optional; if it is not specified,
it is the same as if NULL were specified.)

Return value
A VARCHAR2 that contains the pre-computed NEMAKEY for a particular row, in response to the
keywords used in the option parameter.

Example
The following example uses mdlaux.rownemakey to return the NEMAKEY string for a specific row
containing a molecule:

select mdlaux.rownemakey('sample2d_mdlix',
(select rowid from sample2d
where corp_id = 'MUSE00500062'))

from dual;

Comments
The domain indexmust have NEMA key registration and searching enabled. Otherwise, the
ROWNEMAKEY function will return NULL. If you do not knowwhether or not NEMA key searching is
enabled, use the mdlaux.molnemakey function instead.

See also
mdlaux.molnemakey

BIOVIA Direct Developers Guide > Using Direct >NEMAKEY searching and key generation

mdlaux.sequencetext
Generates the biopolymer sequence text for a molecule.

BIOVIA Direct 2021 • Reference Guide | Page 139

Chapter 3: Molecule-Specific Operators and Functions

Syntax
mdlaux.sequencetext(molIndexOrTable, molecule)

Parameter Description

molIndexOrTable The name of a molecule table that contains a single molecule domain index, or
the name of a molecule domain index.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
A CLOB containing the biopolymer sequence text, a string of single letters representing the individual
monomers, for example amino acids.
The operator returns NULL if the structure is not an SCSR sequencemolecule.

Usage
select mdlaux.sequencetext(molIndexOrTable, molecule) from tablename where
condition;

Example
select mdlaux.sequencetext(null, ‘c:\ct18_human.mol’) as “SequenceText” from
dual;

SequenceText
--

MSPPSSMCSPVPLLAAASGQNRMTQGQHFLQKV

mdlaux.setmolname
Given a molfile or Chime CLOB, sets themolecule name and returns a modified molfile or Chime CLOB
which contains themolecule name.

Syntax
mdlaux.setmolname(molecule, molname)

Page 140 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molecule Amolecule that uses one of the following formats:
Molfile string (CLOB). Each line in this string must be terminated either by the line-feed
character LF (0x0a), or by the carriage-return followed by the line-feed characters
CR+LF (0x0d + 0x0a).
Chime string (CLOB)
SMILES string
InChI string
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Note: Themolecule parameter cannot be a filename nor a VARCHAR2 string containing a
molfile or Chime string.

molname The name of themolecule.

Return value
A temporary CLOB that contains themodified molfile or Chime string containing the specified molecule
name. If the input was a Chime string, the output is a Chime string, otherwise it is a molfile string.

Usage
The typical usage for themdlaux.setmolname function is to merge a separately stored molecule name
into a molecule as it is fetched from the table. For example:
SELECT MDLAUX.SETMOLNAME(MOLFILE(ctab),'New molecule name')

FROM moltable
WHERE extreg = 'ABC-123';

If you want to write themolfile containing themolecule name, you can use the writebinaryfile
operator. For example:
select writefile(

(select mdlaux.setmolname(molfile(ctab), 'New molecule name')
from sample2d

where cdbregno=128),
'c:\BIOVIA\direct\testmolrxn\cwtest.mol')

from dual

See also
mdlaux.getsavedmolname

mdlaux.molname

mdlaux.sgroupfields
Returns a character string containing Sgroup field names and types for either the specified index or the
global environment.

Syntax
mdlaux.sgroupfields(molIndexOrTable)

BIOVIA Direct 2021 • Reference Guide | Page 141

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molIndexOrTable The name of a molecule index, or the name of a table which contains exactly one
molecule index. (The schemamay be included, e.g. 'schema.table'.) If the value
of this parameter is NULL, sgroupfields returns Sgroup field information for the
global environment.

Usage
select mdlaux.sgroupfields(molIndexOrTable) from dual;

Return value
A VARCHAR2 that contains the Sgroup field names and types. This function returns NULL if there are no
defined Sgroup fields
Each field is on its own line, lines are terminated by line-feed (\n) characters. Field names occupy the first
30 characters of each line, then one space, then the field type. For example:
AtomData NUMERIC
BondData TEXT

mdlaux.smiles
Returns a SMILES string representation of a molecule.

Syntax
mdlaux.smiles(molecule)

Parameter Description

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated
either by the line-feed character LF (0x0a), or by the carriage-return followed
by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

noncanonical (Optional) To generate noncanonical SMILES strings, use the argument
'noncanonical'. The default SMILES string is canonical.

Return value
A temporary CLOB that contains the SMILES string. Themdlaux.smiles function returns NULL if the
SMILES string cannot be generated. Use mdlaux.errors to see the related error message.

Page 142 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Usage
select mdlaux.smiles(molecule) from dual;

select mdlaux.smiles(molecule, 'noncanonical') from dual;

Example
The following example shows the SMILES string for a molecule:
SQL> select mdlaux.smiles('f:/work/mols/muse1.mol') from dual;

MDLAUX.SMILES('F:/WORK/MOLS/MUSE1.MOL')

CN1C(=O)N(C)c2ncn(C)c2C1=O

The following example shows the non-canonical SMILES string for a molecule:
SQL> select mdlaux.smiles('f:/work/mols/muse1.mol', 'noncanonical') from
dual;

MDLAUX.SMILES('F:/WORK/MOLS/MUSE1.MOL','NONCANONICAL')

c12c(ncn1C)N(C)C(N(C)C2=O)=O

Comments
There are limitations to the generation of SMILES strings. Not all BIOVIAmolecule features can be
handled. If the specified molecule cannot be handled, themdlaux.smiles function returns NULL. Use
mdlaux.errors to see the related error message.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

See also:
smiles

BIOVIA Direct Developers Guide > Using Direct >Getting the SMILES string
BIOVIA Direct Developers Guide > Using Direct > Limitations to the generation of SMILES string

mdlaux.smilestomolfile
Returns a molfile string (CLOB) from a SMILES string (CLOB).

Syntax
mdlaux.smilestomolfile(smiles)

Parameter Description

smiles A CLOB containing a SMILES string

BIOVIA Direct 2021 • Reference Guide | Page 143

Chapter 3: Molecule-Specific Operators and Functions

Return value
A temporary CLOB that contains the converted molfile string. If the SMILES string cannot be converted,
the mdlaux.smilestomolfile function returns NULL. Use mdlaux.errors to see related error
message.

Usage
select mdlaux.smilestomolfile(smiles) from dual;

Example
The following example shows the converted molfile from a SMILES string:
select mdlaux.smilestomolfile('B1=NB=NB=N1') from dual;

MDLAUX.SMILESTOMOLFILE('B1=NB=NB=N1')

-OEChem-12170814082D

6 6 00 0 0 0 0 0999 V2000
2.0000-2.50430.0000 B0 0 0 0 0 0 0 0 0 0 0 0
2.0000-3.50950.0000 N0 0 0 0 0 0 0 0 0 0 0 0
2.8675-4.00700.0000 B0 0 0 0 0 0 0 0 0 0 0 0
3.7350-3.50950.0000 N0 0 0 0 0 0 0 0 0 0 0 0
3.7350-2.50430.0000 B0 0 0 0 0 0 0 0 0 0 0 0
2.8675-1.99660.0000 N0 0 0 0 0 0 0 0 0 0 0 0
1 6 1 0 0 0 0
1 2 2 0 0 0 0
2 3 1 0 0 0 0
3 4 2 0 0 0 0
4 5 1 0 0 0 0
5 6 2 0 0 0 0
M END

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

See also
smiles

BIOVIA Direct Developers Guide > Using Direct > Conversion of SMILES strings to molfile

mdlaux.xhelm
Returns a XHELM string representation of a biopolymer sequencemolecule.

Syntax
mdlaux.xhelm(molIndexOrTable, molecule)

Page 144 | BIOVIA Direct 2021 • Reference Guide

Chapter 3: Molecule-Specific Operators and Functions

Parameter Description

molIndexOrTable The name of a molecule index, or the name of a table which contains exactly
onemolecule index. The schemamay be included, e.g. 'schema.table'. If the
value of this parameter is NULL the global environment is used.

molecule Amolecule that uses one of the following formats:
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server
where Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the
carriage-return followed by the line-feed characters CR+LF (0x0d +
0x0a).

Direct molecule object (BLOB)
HELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
A temporary CLOB that contains the XHELM string. The helm operator returns NULL if the XHELM string
cannot be generated, for example if themolecule is not a biopolymer or if an error occurs. Use
mdlaux.errors to see the related error message.

Usage
select mdlaux.xhelm(molecule) from dual;

select mdlaux.xhelm(molIndexOrTable, molecule) from dual;

Example
The following example shows the XHELM strings for a molecule:
select mdlaux.xhelm(‘f:/work/mols/a20al_human.mol’) from dual;

MDLAUX.SMILES(‘F:/WORK/MOLS/A20AL_HUMAN.MOL’)

--

PEPTIDE1{M.K.L.F.G.F.R.S.R.R.G.Q.T.V.L.G.S.I.D.H.L.Y.T.G.S.G

.Y.R.I.R.Y.S.E.L.Q.K.I.H.K.A.A.V.K.G.D.A.A.E.M.E.R.C.L.A.R.R

.S.G.D.L.D.A.L.D.K.Q.H.R.T.A.L.H.L.A.C.A.S.G.H.V.K.V.V.T.L.L

.V.N.R.K.C.Q.I.D.I.Y.D.K.E.N.R.T.P.L.I.Q.A.V.H.C.Q.E.E.A.C.A

.V.I.L.L.E.H.G.A.N.P.N.L.K.D.I.Y.G.N.T.A.L.H.Y.A.V.Y.S.E.S.T

.S.L.A.E.K.L.L.F.H.G.E.N.I.E.A.L.D.K.V}$$$PEPTIDE1{ChainName

:Putative ankyrin repeat domain-containing protein 20A-like

protein MGC26718}|PEPTIDE1{ChainDescription:chain}$

Comments
XHELM strings can only be generated for biopolymer sequencemolecules which do not contain any
modified residues. Other molecules will return a NULL value from the helm operator.

BIOVIA Direct 2021 • Reference Guide | Page 145

Chapter 3: Molecule-Specific Operators and Functions

The environment is used to specify biopolymer template definitions and XHELMmonomer
definitions. The XHELMmonomer definitions are always taken from the global environment even if a
local environment is specified with the molIndexOrTable parameter.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();

See also
BIOVIADirect Developers Guide > Using Direct > Getting the HELM string

Page 146 | BIOVIA Direct 2021 • Reference Guide

Chapter 4:
Reaction-Specific Operators and Functions
This chapter contains the reference listings for the functions and operators that are useful when working
with reactions.

Reaction-Specific Operators 147
Reaction-Specific Functions 193

Reaction-Specific Operators
In some cases, Direct offers both a function and an operator with the same name that behave identically
to each other. For example, the readfile operator and the mdlaux.readfile function have the
same functionality. In these cases, the description of the operator appears under this section. The
Reaction-Specific Functions section lists the name of the function and then references the description
under this section.
If both a function and an operator are available, use the function name instead of the operator name in
situations where the operator is not allowed. For example, you must use the package function name in a
PL/SQL assignment statement, because PL/SQL assignment statements do not accept operators.

hasnostructs 147
ncomponents 148
rinchi 149
rinchiauxinfo 151
rinchikey 153
rss 154
rsshighlight 160
rsstimeout 161
rxn 162
rxnautomap 165
rxnautomapchange 168
rxnautomapstatus 169
rxnchime 170
rxnctrsim 171
rxnfile 172
rxnflexmatch 173
rxnflexmatchtimeout 176
rxngzip64 177
rxnimage 178
rxnkeys 180
rxnmol 182
rxnmolsim 183
rxnsim 184
rxnsmiles 189
rxnstringsegment 190

hasnostructs
Returns a NUMBER that indicates whether any component of the specified reaction is a nostruct (“no-
structure”). A no-structure is a chemical structure that consists of zero fragments, that is, zero atoms

BIOVIA Direct 2021 • Reference Guide | Page 147

Chapter 4: Reaction-Specific Operators and Functions

and zero bonds.

Syntax
hasnostructs(rxn)

Parameter Description

rxn The name of the BLOB column that contains the reactions.
The value of this parameter can also be a reaction object.

Return value
ANUMBER that indicates whether the specified reaction includes a no-structure. The return value will be
1 if the reaction does include a nostruct and 0 if the reaction does not include a no-structure.

Usage
select hasnostructs(rxn)

[, other-column-data]
from tablename
where condition;

Comments
Applications can use the hasnostructs operator to “test” reactions before using them in an RSS
query. Performing an RSS query using a reaction that contains a no-structure results in an error
condition.

See also
rss

ncomponents
Returns the number of reactants or products in a reaction.

Syntax
ncomponents(rxn, comptype)

Parameter Description

rxn The name of the BLOB column that contains the reactions.
The value of this parameter can also be a reaction object.

comptype ANUMBER that indicates whether the components to count are reactants or products in
the reaction.
The possible values are:
1 - Counts the reactant molecules
2 - Counts the product molecules

Return value
ANUMBER equal to the number of reactants or products in the reaction. ncomponents returns NULL if
comptype is invalid, or if there is an error.
If comptype equals 1, and if the reaction does not contain any reactant, ncomponents returns 0 (zero).
If comptype equals 2, and if the reaction does not contain any product, ncomponents returns 0 (zero).

Page 148 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Usage
select ncomponents(rxn, comptype)

[, other-column-data]
from tablename
where condition;

Alternatively, in PL/SQL:
numvalue := mdlaux.ncomponents(rxn, comptype);

Example
The following example uses ncomponents to return the number of reactants in thematched reactions:

select rxnregno,
ncomponents(rxn, 1)

from isisrx
where rss(rxn,

'/opt/BIOVIA/direct/examples/rxnfiles/query.rxn'
)=1;

The following PL/SQL example uses ncomponents and the constant mdlaux.product to return the
number of products in a reaction:
DECLARE

products NUMBER;
rxnvalBLOB;

BEGIN
select rxn into rxnval from isisrx where rxnregno=10;
products := mdlaux.ncomponents(rxnval, mdlaux.product);

END;

Comments
In PL/SQL, you can use the following constants for comptype:

mdlaux.reactant - Equivalent to 1, counts the reactant molecules
mdlaux.product - Equivalent to 2, counts the product molecules

The typical usage of ncomponents is in a reaction table trigger which is intended to extract the
component molecules from a reaction and insert them into a molecule table. Use ncomponents in
conjunction with the rxnmol operator to determine the number of reactants and products to
extract.

See also
rxnmol

BIOVIA Direct Developers Guide > Using Direct>Working with Molecules in a Reaction

rinchi
Returns an IUPAC standard International Chemical Identifier (standard “RInChI”) string for the specified
reaction.

Syntax
rinchi(reaction, options)

BIOVIA Direct 2021 • Reference Guide | Page 149

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

reaction The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a reaction object.

options (Optional) Specifies a complete set of RInChI library options.
If no additional options are provided in the call to RINCHI, the standard RInChI string is
generated.
If any of the following options are specified, a non-standard RInChI string is generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)
SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)
15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the RInChI string (shows up as a three-
character suffix, a backslash followed by two letters)

Return value
A temporary CLOB that contains the RInChI string. The output string length will exceed 4000 characters
for very large reactions. If the RInChI string cannot be generated, the rinchi operators returns NULL.
Use mdlaux.errors to see the related error message.

Usage
select rinchi(reaction, options) from dual;

Example
The following example shows the RInChI string for a reaction, using the default option:
select rinchi('/work/rxns/test.rxn') from dual;

RINCHI('/WORK/RXNS/TEST.RXN')
--
RInChI=1.00.1S/C2H7ClSi/c1-4(2)3/h4H,1-2H3!C6H10O3/c1-3-9-6(8)4-5(2)7/h3-
4H2,1-2H3<>C8H17ClO3Si/c1-5-11-8(10)6-7(2)12-13(3,4)9/h7H,5-6H2,1-4H3/t7-
/m1/s1/d+

Page 150 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Comments
There are limitations to the generation of RInChI strings. Not all BIOVIA reaction features can be
handled. The rinchi function returns NULL if the specified reaction cannot be handled. Use
mdlaux.errors to see the related error message.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

See also
mdlaux.rinchi

rinchikey

rinchiauxinfo
Returns the auxilliary information (AuxInfo) that is computed along with the IUPAC International
Chemical Identifier (InChI) string for a molecule.

Syntax
rinchiauxinfo(rctab [, options])

Parameter Description

reaction The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a reaction object.

options (Optional) Specifies a complete set of RInChI library options.
If no additional options are provided in the call to RINCHIAUXINFO, the standard RinChI
AuxInfo string is generated.
If any of the following options are specified, a non-standard RinChI AuxInfo string is
generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)
SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)

BIOVIA Direct 2021 • Reference Guide | Page 151

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the RinChI AuxInfo string (shows up as a
three-character suffix, a backslash followed by two letters)

Return value
A temporary CLOB that contains the RinChI AuxInfo string. The output string length will exceed 4000
characters for very large reactions. If the RinChI AuxInfo string cannot be generated, the
rinchiauxinfo operators returns NULL. Use mdlaux.errors to see the related error message.

Usage
select rinchiauxinfo(reaction, options) from dual;

Example
The following example shows the RinChI AuxInfo string for a reaction, using the default option:
select rinchiauxinfo(rctab) from dual;

RINCHIAUXINFO(RCTAB)
--
RAuxInfo=1.00.1/0/N:2,3,4,1/E:
(1,2)/rA:4nSiCCCl/rB:s1;s1;s1;/rC:.7895,.1596,0;.0183,1.4909,0;-.6599,-.369,
0;1.0538,-
1.3563,0;!0/N:9,6,8,1,3,2,7,5,4/rA:9nCCCOOCOCC/rB:s1;s1;s2;d2;s3;d3;s4;s8;/r
C:-1.2727,-.933,0;.0655,-.1637,0;-
2.6067,-.1637,0;1.3995,-.933,0;.0655,1.375,0;-3.9367,-.933,0;-
2.6067,1.375,0;2.7336,-.1637,0;4.0677,-.933,0;<>0/N:13,5,10,11,9,1,2,3,12,7,
6,4,8/E:
(3,4)/it:im/rA:13cCCCOCOOSiCCCClC/rB:s1;s1;P2;s2;s3;d3;s4;s6;s8;s8;s8;s9;/rC
:.2778,.3641,0;-1.1928,1.2072,0;.2778,-1.3365,0;-1.1928,2.9126,0;-
2.6635,.3641,0;1.7485,-2.1892,0;-1.1928,-2.1892,0;.1437,3.8132,0;1.8635,-
3.7988,0;.6467,4.7617,0;.5461,2.8168,0;-.6276,4.5605,0;2.7881,-4.3354,0;

Comments
There are limitations to the generation of RinChI AuxInfo strings. Not all BIOVIA reaction features can
be handled. The rinchiauxinfo function returns NULL if the specified reaction cannot be handled.
Use mdlaux.errors to see the related error message.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

See also
mdlaux.rinchiauxinfo

rinchi

Page 152 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

rinchikey
Returns an IUPAC International standard Chemical Identifier (standard “RInChI”) key for the specified
reaction. The RInChI key is a 27-character hashed form of the RInChI string. The rinchikey operator
generates the key by first generating the RInChI string, and then calling an RInChI library operator to
convert the string into the 27-character key.

Syntax
rinchikey(reaction, options)

Parameter Description

reaction The name of the BLOB field that contains the binary chemical structures. The field name is
normally CTAB. The value of this parameter can also be a reaction object.

options (Optional) Specifies a complete set of RInChI library options. If no additional options are
provided in the call to RINCHI, the standard RInChI string is generated. If any of the
following options are specified, a non-standard RInChI string is generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)
SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)
15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the RInChI string (shows up as a three-
character suffix, a backslash followed by two letters)

Return value
A VARCHAR2 that contains the 27-character RInChI key. The rinchikey operator returns NULL if the
RInChI string cannot be generated. Use mdlaux.errors to see the related error message.

Usage
select rinchikey(reaction,options)

[, other-column-data]
from tablename

where condition;

Example
The following example shows the RInChI key the reactions in a table, using the default option:

BIOVIA Direct 2021 • Reference Guide | Page 153

Chapter 4: Reaction-Specific Operators and Functions

select rinchikey(ctab) from rxntable;
RINCHIKEY(CTAB)
--
MVPPADPHJFYWMZ-UHFFFAOYSA-N

Comments
There are limitations to the generation of RInChI strings. Not allBIOVIA reaction features can be handled.
The rinchikey operator returns NULL if the specified reaction cannot be handled. Use
mdlaux.errors to see the related error message.

See also
mdlaux.rinchikey

rinchi

rss
Finds reactions that contain one (and only one) of the following:

The reaction substructure that you specify in the query. A reaction substructure is a portion of a
reaction with your choice of atom and bond query features, mapped atoms, and restrictions on the
reacting centers.
Themolecule component that you specify in the query. Depending on the contents of the rss-flags
parameter, rsswill search for themolecule as a product or as a reactant component of the reaction.

If query contains reaction information, rss will search for a reaction substructure. In that case, the
rss-flags parameter is optional.
If query contains molecule information, rss will search for a molecule component. In that case, the
rss-flags parameter is required.

Syntax
rss(rxn, query [, rss-flags], rss-number])

Parameter Description

rxn The name of the BLOB column that contains the reactions. rxn can also be a BLOB that
contains a reaction object.

query Reaction substructure or molecule to search for. query can use one of the following
formats:
File path of a rxnfile (VARCHAR2). The rxnfile must be located on the server where
Direct is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).
Filepath of a molfile (VARCHAR2). Themolfile must be located on the server where
Direct is installed.
Molfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).
Chime string (VARCHAR2 or CLOB)

Page 154 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Reaction object created by a previous operation (BLOB)
Molecule object created by a previous operation (BLOB)
Reaction SMILES string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Notes:
If query contains any NOSTRUCTmolecules, the search will fail.
query cannot be NULL.

BIOVIA Direct 2021 • Reference Guide | Page 155

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

rss-
flags

Any or a combination of the following values, separatemultiple options with a space:
NOFS - The presence of 'NOFS' causes sss to refrain from using the fastsearch index
when performing the search. If 'GENERICS' is also specified, the 'NOFS' option is
ignored.
IgnoreChargesInPiSystems –When absent, substructuremapping of pi systems,
i.e. of haptic bonds, takes total charge into account and will not allow a query that has
a charged pi system or metal connected to the pi system to map to a target which is
uncharged. When the option is present, total charge in the pi system and metal
attached to the pi system is ignored in both query and target. This allows the radical
representation of ferrocene to map to the charged representation of ferrocene;
without the option these two will not match.
RingHomologyGroupsOnlyMapTerminalRings –When this option is present,
ring homology query atoms will map only to terminal ring assemblies in the target.
The atoms will not map to ring assemblies which have any non-ring attachments.
InterpretRAtomsLiterally -When this option is present an R atom in the query
will only match an R atom in the target, it does not have its normal meaning of
matching any atom including hydrogen.
InterpretXAtomsLiterally -When this option is present an X atom in the query
will only match an X atom in the target, it does not have its normal meaning of
matching any atom including hydrogen.
InterpretQueryAtomsLiterally -When this option is present an A, Q, X or M
atom in the query will only match a corresponding A, Q, X or M atom in the target, it
does not have its normal meaning as an atom query feature.
IgnoreStereo -When this option is present all atom stereochemistry in the query
will be ignored during matching. This includes enhanced stereochemistry and higher-
order stereochemistry. Double bond stereochemistry is still matched when marked in
the query.

If query is a reaction, the only valid values for rss-flags are the options listed above. If
query is a molecule rss-flags must include one of the following options to specify how the
molecule should be searched:
REACTANT - Find all reactions which contain this molecule as a substructure in one of the
reactants. The query is converted into a reactant-only reaction and used as an RSS query.
REACTANT NOT PRODUCT - Find all reactions which contain this molecule as a
substructure in one of the reactants, and do not contain this substructure in any of the
products. The query is converted into a reactant-only reaction and used as an RSS query.
Each hit is then validated to ensure it does not contain the substructure in any product.
PRODUCT- Find all reactions which contain this molecule as a substructure in one of the
products. The query is converted into a product-only reaction and used as an RSS query.
PRODUCT NOT REACTANT - Find all reactions which contain this molecule as a
substructure in one of the products, and do not contain this substructure in any of the
reactants. The query is converted into a product-only reaction and used as an RSS query.
Each hit is then validated to ensure it does not contain the substructure in any reactant.
Notes:

If the query is a molecule and rss-flag is set to either PRODUCT, REACTANT, PRODUCT

Page 156 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

NOT REACTANT, or REACTANT NOT PRODUCT, the performance is slower than an
equivalent search using SSS and a JOIN or IN clause that converts molecule results
to reactions. See an example in the Comments section.

rss-
number

ANUMBER equal to the rss-number parameter used with the ancillary operator
rsshighlight. This parameter only applies if you use rsshighlight.

Return value
The NUMBER 1 indicates that the query matched the reaction, the number 0 indicates that the query did
not match the reaction. When you use rss in a WHERE clause, always test the return value for a result
of 1.

Usage
select column-data
from tablename
where rss(rxn, query, rss-flags)=1

[operator other-conditions];

The rss operator can also be used in the SELECT clause because it evaluates to a 1 for a hit based on the
parameters passed to the result row, or 0 for no hit. Generally, this type of operation can be expected to
be as slow as a non-indexed search. Although it is not common usage, it can be used to determine if a
reaction is really a reaction substructure search hit from a complexWHERE clause.
select rss(rxn, query, rss-flags)

[, other-column-data]
from tablename
where condition;

Example
The following example uses rss to find reactions that contain a reaction substructure:
select count(*)
from samplerx_reaction
where rss(

rctab,
'/opt/BIOVIA/Direct/examples/rxnfiles/query1.rxn'
)=1;

The query used in this simple example is contained in a rxnfile that is located in the examples/rxnfiles
directory of the Direct installation. For more examples, see Reaction Substructure Search.

Comments
To negate the results of rss, use the SQL operator NOT. For example, to count all reactions that do
not contain a specific reaction substructure:

select count(*) from isisrx
where not rss(rxn,

'/opt/BIOVIA/Direct/examples/rxnfiles/query1.rxn'
)=1;

To highlight the substructure in the resulting structures, use the rsshighlight operator. You can use
any number as the rss-number parameter, but it must match the rss-number parameter used with

BIOVIA Direct 2021 • Reference Guide | Page 157

Chapter 4: Reaction-Specific Operators and Functions

rsshighlight. For example:
select rsshighlight(2)
from samplerx_reaction
where rss(rctab,

'/opt/BIOVIA/Direct/examples/rxnfiles/query1.rxn',
2

)=1;

To check for errors from the rss operator, call the function mdlaux.errors.
If there is no domain index on a reaction column, an rss search will executemore slowly than if a
domain index is present and Oracle chooses to use it. To check if the domain index is part of the
execution plan for the SQL statement, use the Oracle command EXPLAIN PLAN. For details about
creating the reaction domain index, see “Creating Reaction Tables” in the BIOVIA Direct
Administration Guide .
Amapped reaction query improves the performance of rss. As a general guideline, themore
information you provide in your query, the better the search performance.
rss supports attached data (Sgroup data). If the query to be searched contains attached data, any
attached data in the query will bematched with those in the target. The following are the valid query
operators for attached data:

<
>
<=
>=
= like between
exists or is not null
null or is null

Numeric attached data in the reaction query or reaction to be registered can be integers, floating
point numbers, or two numbers separated by white space. Two numbers separated by white space
are considered a range.
Directtrims off leading or trailing white space in the text query data. However, Direct does not trim
white space in the text registration data. Text matching uses Oracle, which is normally case-
dependent. For example, 'ABC' will not match 'abc'. To support case-independent matching, the
attached data query text may be contained within the parentheses of UPPER() or LOWER() Oracle
functions. The text in both query and target will then be upper-cased (or lower-cased) prior to
matching. For example, if case-dependent matching is desired, when defining the attached data
query in BIOVIA Draw, specify the exact text:
Enter query text: John Smith
To enable case-independent matching include UPPER() (case doesn’t matter), for example: Enter
query text: upper(john smith)

Notes:
In order to use the UPPER() (or LOWER()) functions, your text cannot include a closing
parenthesis.
If you use the between query operator and you want to enable case-independent matching,
you must use the UPPER() (or LOWER()) function on both operands, not just one

Page 158 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

If you want to search for quotation marks using a query with a leading quotation mark, enclose the
entire query in quotation marks. You can either use double quotation marks to enclose the query
(see Alternative 1 in the following table), or use single quotation marks to enclose the query and
escape the embedded quotation mark with another single quotation mark (see Alternative 2 in the
following table). The following table shows two alternatives for entering the query text for the desired
query:

Desired query Alternative 1 Alternative 2

'23-x'b "'23-x'b" '''23-x''b'

For more information about attached data see Attached Data in BIOVIA Chemical Representation.
rss does not match reactions that contain Rgroup queries, generic structures, or polymer Sgroups.
Direct currently does not support these features. If a reaction contains polymer Sgroups, the
cartridge returns the following error:
MDL-0427: Rxnfile containing polymer Sgroups is not supported

If a reaction contains Rgroup queries or generic structures, the cartridge returns one or more of the
following errors:
MDL-0279: CTlib error: [RDRFIL]RDRFIL:Error reading reaction generic
molfile (1)
MDL-0279: CTlib error: [RDRFIL]getV2000Rxnfile:Error reading reaction
generic molfile (2)
MDL-0041: Unable to read rxnfile, error=3002

If the RSS query is a product molecule, the performance is slower than an equivalent search using
SSS and a JOIN or IN clause that converts molecule results to reactions. This applies to RSS searches
using a molecule as the query structure, and the rss-flag set to either “product”, “reactant”, “product
not reactant”, or “reactant not product”.
For example, the following query attempts to find all reactions which have the query molecule
substructure in one of the products:
select rxnid from reaction_table where rss(rctab, 'query.mol',
'product')=1;

The above query performs slower than the following query which uses an IN clause and an sss
search:
select rxnid from reaction_table where rxnid in

(select rxnid from product_table p, molecule_table m
where p.molid = m.molid and sss(m.ctab, 'query.mol')=1);

Multi-threaded reaction substructure search can be enabled. Be default, reaction substructure
search is not multi-threaded. To set the number of threads used during substructure searching, use
the administrative function mdlaux.setproperty(‘NTHREADS’, numberOfThreads). For details, see
Command Reference in the BIOVIA Direct Administration Guide.

See also
rsshighlight

Reaction Substructure Search
BIOVIA Direct Developers Guide > Using Direct > Searching for reactions
BIOVIA Direct Developers Guide > About Direct> Direct Domain Indexes

BIOVIA Direct 2021 • Reference Guide | Page 159

Chapter 4: Reaction-Specific Operators and Functions

rsshighlight
Returns a Chime representation of a reaction that:

Matches a reaction substructure query. rsshighlight is an ancillary operator of the rss operator.
To use rsshighlight, you must also use rsswithin the same SQL statement.
Contains highlight information for thematched reaction substructure. The highlighted reaction can
be rendered by BIOVIA Draw or a version of ISIS/Draw, Chime, or Chime Pro that supports molecule
highlighting.

Syntax
rsshighlight(rss-number)

Parameter Description

rss-number ANUMBER equal to the rss-number parameter that is used with the rss operator.

Return value
A CLOB that contains the Chime representation of a candidate reaction, and contains highlight
information for thematched reaction substructure. rsshighlight stores the return value in a
temporary CLOB. The Chime string uses the V3000 format, and contains highlight information as CTlib
collection objects.

Usage
select rsshighlight(rss-number)
[,other-column-data]
from tablename
where rss(rxn, query, rss-number)=1
[operator other-conditions];

Example
The following example returns a Chime string, as a result of a reaction substructure search, that contains
highlight information for a reaction substructure.

select rxnmdlnumber,
rsshighlight(3)

from samplerx_reaction
where rss(

rctab,
'/opt/BIOVIA/direct/examples/rxnfiles/query1.rxn',
3

)=1;

Note: The number 3 is used to correlate the rss operator in theWHERE clause with the
rsshighlight operator in the SELECT clause. This could be any number as long as the values in the
two operators match.

Comments
The rss-number parameters for rsshighlight and rss operators must match. If the rss-
number parameters do not match, or if you use rsshighlight without using rss, you get the
following error:

Page 160 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

ORA-29908: missing primary invocation for ancillary operator

You can convert the highlighted Chime string to a rxnfile. The rsshighlight operator returns a
Chime string because the Chime structure renderer can be typically used to display the highlighted
reactions. To display the highlighted reaction in a rxnfile string instead of a Chime string, use the
mdlaux.chimetoclob function. For example:

select rxnmdlnumber,
mdlaux.chimetoclob(rsshighlight(3))

from samplerx_reaction
where rss(rctab,

'/opt/BIOVIA/direct/examples/rxnfiles/query1.rxn',
3

)=1;

Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object
named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();}

Because the rsshighlight operator is always used with the rss operator, highlighting a reaction
always involves a reaction substructure search. However, if you simply want to highlight a reaction
without searching a table, you can directly map a query to the target, such as the following example:

select rsshighlight(1)
from dual
where rss(mol('/home/users/rxns/target.rxn'),

'/home/users/rxns/query.rxn',1)=1;

The following example shows that you can also put rss with the rsshighlight operator in the SELECT
clause. In this example, if the query is not a reaction substructure of the specified target,
rsshighlight returns the unhighlighted target reaction.

select rss(mol('/home/users/rxns/target.rxn') "RSSResult",
'/home/users/rxns/query.rxn',1),

rsshighlight(1) "RSSHighlight"
from dual;

See also
rss

rsstimeout
Returns a the timeout status value from an rss search.
rss will return as matches those candidates for which thematching algorithm times out. Such
candidates may or may not be actual matches. This ancillary operator gives information about that
timeout status.

Syntax
rsstimeout(rss-number)

BIOVIA Direct 2021 • Reference Guide | Page 161

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

rss-number ANUMBER equal to the rss-number parameter that is used with the rss operator.

Return value
ANUMBER that indicates the status of the reaction substructure search. The possible values are:

Value Description

0 The rss search did not time out.

1 he rss search timed out.

NULL The target was not a match to the query.

Usage
select rsstimeout(rss-number)
[,other-column-data]
from tablename
where rss(rxn, query, rss-number)=1
[operator other-conditions];

Example
The following example returns the timeout status while searching the table.

select extreg,
rsstimeout(3) "Timeout"

from moltable
where rss(

rxncol,
'/opt/BIOVIA/direct/examples/rxnfiles/query1.mol',
3

)=1;

Note: The number 3 is used to correlate the rss operator in theWHERE clause with the
rsstimeout operator in the

SELECT clause. This could be any number as long as the values in the two operators match.

Comments
The rss-number parameters for rsstimeout and rss operators must match. If the rss-number
parameters do not match, or if you use rsstimeout without using rss, you get the following
error:
ORA-29908: missing primary invocation for ancillary operator

See also
rss

rxn
Converts a VARCHAR2 or CLOB reaction into a BLOB reaction object.

Syntax
rxn(structure)

Page 162 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

structure Amolecule that uses one of the following formats:
Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server where
BIOVIADirect is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the
line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
A BLOB that contains the reaction object. The reaction object is a packed, binary representation of a
reaction.

Usage
insert into tablename(
extreg,rxncol,
[,other-column-data]

)
values (
rxnregno,
rxn(rxnfile-structure)
[,other-value-data]

);

insert into tablename(
extreg,rxncol,
[,other-column-data]

)
values (
rxnregno,
rxn(chime-structure)
[,other-value-data]

);

update tablename
set rxncol = rxn(rxnfile-structure)

[,other-column=other-value]
where condition;

update tablename

BIOVIA Direct 2021 • Reference Guide | Page 163

Chapter 4: Reaction-Specific Operators and Functions

set rxncol = rxn(chime-structure)
[,other-column=other-value]

where condition

Example
The following registration example uses rxn to cast into a BLOB the contents of a rxnfile:

insert into samplerx_reaction(
rxnmdlnumber,
rctab

)
values (

'NEWRXN',
rxn('/opt/BIOVIA/direct/examples/rxnfiles/newrxn1.rxn')

);

The following update example uses rxn to cast into a BLOB the contents of a rxnfile:

update samplerx_reaction
set rctab =

rxn('/opt/BIOVIA/direct/examples/rxnfiles/newrxn2.rxn')
where rxnmdlnumber = 'RXCI94006733';

The following PL/SQL example uses the package function namemdlaux.rxn to cast into a BLOB the
contents of a rxnfile, and then insert it into a table:

DECLARE
rxnval blob;

BEGIN
rxnval :=mdlaux.rxn(

'/opt/BIOVIA/direct/examples/rxnfiles/query1.rxn');
insert into samplerx_reaction(rxnmdlnumber, rctab)

values('RXCI94006733', rxnval);
END;

Note: The reactions used in these examples are contained in a rxnfile that are located in the
examples/rxnfiles directory of the Direct installation. For more examples, see Reaction Registration.

Comments
To register or update a reaction, use the rxn operator to convert a VARCHAR2 or aCLOBreaction to
a BLOB.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

Warnings appear when a reaction is modified during registration. The following four warnings occur
when the stereochemistry perception determines that an atom marked as a stereocenter is not

Page 164 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

actually a valid stereocenter. This might occur because a trivalent nitrogen stereocenter was
removed, which caused a remaining stereocenter to be invalid because of symmetry.

MDL-2010: Warning: Removed invalid Chiral flag
MDL-2011: Warning: Removed invalid non-tetrahedral stereo center
(s) MDL-2012: Warning: Removed invalid atom stereo center(s)
MDL-2129: Warning: Flattening 3D molecule to 2D
MDL-2134: Warning: Removed wedge from atom that is not a stereo
center
MDL-2141: Warning: Removed invalid double-either bond(s) MDL-5092:
Warning: Added implicit hydrogens to metal atom

Tips:
To preserve the original molecule or reaction, add a new column to the table and store the original
molfile, rxnfile, or Chimestring in it.

See also
Reaction Registration
BIOVIA Direct Developers Guide >Using Direct > Inserting, Updating, and Deleting Reactions

rxnautomap
Automatically assigns atom-to-atom mapping in a reaction (“automaps a reaction”), and returns a CLOB
that contains the automapped reaction. The automapped reaction contains a uniquemapping number
for each corresponding atom in the reactants and products in the reaction.

Syntax
rxnautomap(rxn, mode)

Parameter Description

rxn Amolecule that uses one of the following formats:
Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server where
BIOVIADirect is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

mode A VARCHAR2 string that specifies how the reaction will be automapped. mode is not case-
sensitive. The possible values are:

BIOVIA Direct 2021 • Reference Guide | Page 165

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

RegenAlter - Computes the atom-atom maps and bond changemarks for the reaction,
using any existing bond marks to guide themapping. RegenAlter assumes the existing
marks might be wrong and can be altered. This mode is used by the Regenerate
AAMappings command in REXEC.
Clear - Removes all existing atom-atom maps and bond marks from the reaction. Clear
does not perform any mapping.
Default - Computes the atom-atom maps and bond changemarks for the reaction,
using the existing bond marks. Default assumes the existing marks are absolutely
correct. This mode is used by ISIS/Base when mapping reactions.
RegenKeep - equivalent to Default.
NULL or empty string - equivalent to Default.
RegenAuto - Computes the atom-atom maps and bond changemarks for the reaction,
without further input. RegenAuto disregards the existing maps.

Return value
A CLOB that contains the rxnfile representation of the automapped reaction. The CLOB includes line-
feed characters (0x0a) that separate the lines within the rxnfile. rxnautomap stores the return value in
a temporary CLOB.
rxnautomap returns an automapped reaction if rxnautomapstatus returns a non-zero value. If
rxnautomapstatus returns 0 (zero), rxnautomap returns NULL.

Usage
select rxnautomap(rxn, mode)

[, other-column-data]
from tablename
where condition;

select column-data
from tablename
where search-operator(

rxn,
rxnautomap(rxn, mode)
[,search-parameter]

)=1;

Example
The following example uses the rxnautomap operator to automap a reaction in a file:

select rxnautomap(
'/opt/BIOVIA/direct/examples/rxnfiles/query.rxn',
'default')

from dual;

The following example uses the rxnautomap operator to automap a reaction query
structure, and use it for a reaction substructure search:
select rxnmdlnumber
from samplerx_reaction

Page 166 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

where rss(
rctab,
rxnautomap('/opt/BIOVIA/direct/examples/rxnfiles/query.rxn',
'regenauto'

)=1;

Comments
After calling rxnautomap, you can get the:

Status of the automap operation. To get the automap status, use the rxnautomapstatus operator.
Number of changes performed by the automap operation. To get the automap changes, use the
rxnautomapchange operator.

The following example automaps a specific reaction, and then gets the automap status and the number
of changes:
select rxnautomap(
(select rctab from samplerx_reaction where rxnmdlnumber='RXCI94070168'),
'regenauto')
from dual;
select rxnautomapstatus(0) from dual;
select rxnautomapchange(0) from dual;

Avoid using a combination of the rxnautomap, rxnautomapstatus, and rxnautomapchange
operators within one SQL statement. Oracle might not call operators in the order they appear in a
SQL statement. Even if the rxnautomap operator appears first in the SELECT statement, Oracle can
call rxnautomapstatus and rxnautomapchange first.
The following example uses the rxnautomap, rxnautomapstatus, and rxnautomapchange
operators in one SELECT statement. This example attempts to automap all reactions in a table, and
stores all themapped reactions and mapping status in a new table. In this example, Oracle actually
calls rxnautomapstatus and rxnautomapchange before rxnautomap. The result is that the
values of themapping status are actually associated with the previous row in the table.

IMPORTANT!
IMPORTANT! In the following example, Oracle does not execute the operators in the order they
appear in the SELECT statement. This example results in corrupted data. Do not use this example in
your application. This example results in corrupted data!
create table automapped (

extreg varchar2(20), rxn blob,
mapstatus number, bondschanged number);

insert into automapped
(select rxnmdlnumber, rxn(rxnautomap(rctab, null)), rxnautomapstatus(0),

rxnautomapchange(0)
from samplerx_reaction);

In a PL/SQL application, use the mdlaux.automap function. This function returns three values: the
mapped reaction, themapping status, and the number of changes. mdlaux.automap is more
efficient because it eliminates additional calls to the server.
The rxnautomap operator ignores all attached data (Sgroup data) when it automaps a reaction.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

BIOVIA Direct 2021 • Reference Guide | Page 167

Chapter 4: Reaction-Specific Operators and Functions

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

See also
rxnautomapchange

rxnautomapstatus

rxnautomapchange
Returns the number of changes performed in the last automap operation.

Syntax
rxnautomapchange(0)

Parameter Description

0 This can be any number. This parameter is not used.

Return value
ANUMBER that indicates the number of changes performed in the last automap operation. The
following are the possible values:

Value Description

0 No change. The last automap operation did not change atom-atom maps, bond marks or
inversion/retention flags. The rxnautomap operator returns a reaction similar to the input
reaction.

>0 The number of atom-atom maps and bond marks which the user had specified, and which
were changed to some other value by rxnautomap. The user should examine the resulting
mapped reaction.

-1 No change in the existing atom-atom maps and bond marks, but new atom-atom maps, bond
marks, or inversion/retention flags were added. If the automap mode for the rxnautomap
operator is RegenAlter, this could also mean that the original atom-atom maps weremodified.

Usage
select rxnautomapchange(0) from dual;

Example
The following example automaps a specific reaction, and uses rxnautomapchange to return the
number of changes in the automapped reactions:

select rxnautomap(
'/opt/BIOVIA/direct/examples/rxnfiles/query.rxn',
'regenalter')

from dual;
select rxnautomapchange(0) from dual;

Page 168 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Comments
Avoid using a combination of the rxnautomap, rxnautomapstatus, and rxnautomapchange
operators within one SQL statement. Oracle might not call operators in the order they appear in a
SQL statement. Even if the rxnautomap operator appears first in the SELECT statement, Oracle can
call rxnautomapstatus and rxnautomapchange first.
In a PL/SQL application, use the mdlaux.automap function. This function returns three values: the
mapped reaction, themapping status, and the number of changes. mdlaux.automap is more
efficient because it eliminates additional calls to the server.

See also
rxnautomap

rxnautomapstatus

BIOVIA Chemical Representation > Reaction Representation

rxnautomapstatus
Returns the status of the last automap operation.

Syntax
rxnautomapstatus(0)

Parameter Description

0 This can be any number. This parameter is not used.

Return value
ANUMBER that indicates the status of the last automap operation. The following are the possible
values:

Value Description

0 The rxnautomap operator failed, and returns NULL.

1 The rxnautomap operator succeeded, and returns the automapped reaction.

2 The automap mode that is specified with the rxnautomap operator is invalid. rxnautomap
returns the input (unchanged) reaction.

3 The rxnautomap operator attempted to map the reaction, but failed. f returns the input
(unchanged) reaction.

>4 The rxnautomap operator succeeded, but themapping might be incorrect and must be
examined by the user. rxnautomap returns the automapped reaction. The actual numeric
return value has no significance. A typical value is 39.

Usage
select rxnautomapstatus(0) from dual;

Example
The following example automaps a specific reaction, and uses rxnautomapstatus to return the status
of the automap operator:

BIOVIA Direct 2021 • Reference Guide | Page 169

Chapter 4: Reaction-Specific Operators and Functions

select rxnautomap(
'/opt/BIOVIA/direct2021/query.rxn',
'regenalter')

from dual;
select rxnautomapstatus(0) from dual;

Notes:
The query used in this simple example is contained in a rxnfile that is located in the examples/rxnfiles
directory of the Direct installation.

Comments
Avoid using a combination of the rxnautomap, rxnautomapstatus, and rxnautomapchange
operators within one SQL statement. Oracle might not call operators in the order they appear in a
SQL statement. Even if the rxnautomap operator appears first in the SELECT statement, Oracle can
call rxnautomapstatus and rxnautomapchange first.
In a PL/SQL application, use the mdlaux.automap function. This function returns three values: the
mapped reaction, themapping status, and the number of changes. mdlaux.automap is more
efficient because it eliminates additional calls to the server.

See also
rxnautomap
rxnautomapchange
BIOVIA Chemical Representation > Reaction Representation

rxnchime
Converts a BLOB reaction object into a CLOB that contains the Chime string representation of a reaction.

Syntax
rxnchime(rxn)

Parameter Description

rxn The name of the BLOB column that contains the reactions. rxn can also be a BLOB that
contains a reaction object.

Return value
A CLOB that contains the Chime string representation of a reaction. rxnchime stores the return value
in a temporary CLOB.

Usage
select rxnchime(rxn)

[, other-column-data]
from tablename
where condition;

Example
The following example uses the rxnchime operator to return the Chime string representation of a
reaction:

select rxnchime(rctab)

Page 170 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

from samplerx_reaction
where rxnmdlnumber='RXCI94070168';

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

See also
rxnfile

Fetching Reactions Using the Chime Format
BIOVIA Direct Developers Guide > Using Direct> Fetching Reactions

rxnctrsim
Returns the reacting center similarity value from a similarity search. Higher values indicate greater
similarity.

Syntax
rxnctrsim(sim-number)

Parameter Description

sim-number ANUMBER equal to the sim-number parameter that is used with the rxnsim operator.

Return value
ANUMBER ranging from 0 to 100 that represents the reacting center similarity value.

Usage
select rxnctrsim(sim-number)

[,other-column-data]

from tablename

where rxnsim(rxn, query, simtype, sim-number)=1 [operator other-conditions];

Example
The following example returns the reacting center similarity values for reactions that are at least 80%
similar to the reacting centers in the query, and at least 20% similar to themolecules in the query:
select rxnmdlnumber,

rxnctrsim(1) "RxnCtrSim"
from samplerx_reaction
where rxnsim(

rctab,
'/opt/BIOVIA/direct/examples/rxnfiles/query.rxn',
'80 20',

BIOVIA Direct 2021 • Reference Guide | Page 171

Chapter 4: Reaction-Specific Operators and Functions

1
) = 1;

Comments
The sim-number parameters for rxnctrsim and rxnsim operators must match. If the sim-
number parameters do not match, or if you use rxnctrsim without using rxnsim, you get the
following error:

ORA-29908: missing primary invocation for ancillary operator

If the query specified in rxnsim does not contain reacting center features such as bond marks, the
reacting center component of similarity is ignored during a search.
If the query specified in rxnsim (or if the candidate) does not contain reacting center features,
rxnctrsim returns NULL. This indicates that the similarity was ignored during the search. For example,
if the specified similarity threshold is 80%, you should only see hits of 80% or greater, or hits where
the rxnctrsim value is NULL (ignored).

See also
rxnsim

rxnmolsim

rxnfile
Converts a BLOB reaction object into a CLOB that contains the rxnfile representation of a reaction.

Syntax
rxnfile(rxn)

Parameter Description

rxn The name of the BLOB column that contains the reactions. rxn can also be a BLOB that
contains a reaction object.

Return value
A CLOB that contains the rxnfile representation of a reaction. The CLOB includes line-feed characters
(0x0a) characters that separate the lines within the rxnfile. rxnfile stores the return value in a
temporary CLOB.

Usage
select rxnfile(rxn)

[, other-column-data]
from tablename
where condition;

Example
The following example uses rxnfile to return the CLOB that contains the rxnfile representation of a
reaction:

select rxnfile(rctab)
from samplerx_reaction
where rxnmdlnumber='RXCI94070168';

The following example uses rxnfile and writebinaryfile to write a reaction to a rxnfile:

Page 172 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

select writefile(
rxnfile(rctab),
'/opt/BIOVIA/direct/examples/rxnfiles/myrxn.rxn')

from samplerx_reaction
where rxnmdlnumber='RXCI94070168';

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

See also
rxnchime

writebinaryfile

Fetching Reactions Using the Rxnfile Format
BIOVIA Direct Developers Guide > Using Direct> Fetching Reactions

rxnflexmatch
Finds reactions that are an exact match of the structure that you specify in the query. rxnflexmatch
accepts flexmatch-parameters that allow you to restrict or relax the definition of an exact match.

Syntax
rxnflexmatch(rxn,query,rxnflexmatch-parameters [,rxnflexmatch-number])

Parameter Description

rxn The name of the BLOB column that contains the reactions. rxn can also be a BLOB
that contains a reaction object.

query Amolecule that uses one of the following formats:
Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server
where BIOVIADirect is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated
either by the line-feed character LF (0x0a), or by the carriage-return
followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)

BIOVIA Direct 2021 • Reference Guide | Page 173

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).
Note: query cannot be NULL.

rxnflexmatch-
parameters

A VARCHAR2 string that contains the following:
[subset] flexmatch-switches where:

subset - Indicates that the candidate can contain more reactants and/or
products than the query
flexmatch-switches - a switch or a combination of switches that allows you to
selectively restrict or relax the search criteria based on the query structure. The
string cannot be NULL.
'all' finds the exact match, and is themost restrictivematch.

For details about the rxnflexmatch parameters, see the “Exact Search
(Flexmatch)” chapter in BIOVIA Chemical Representation Guide.

rxnflexmatch-
number

A number that is equal to the rxnflexmatch-number parameter used with the
rxnflexmatchtimeout operator. This parameter only applies if you use
rxnflexmatchtimeout.

Return value
The NUMBER 1 indicates that the query matched the reaction, the number 0 indicates that the query did
not match the reaction. When you use rxnflexmatch in a WHERE clause, always test the return value for a
result of 1.

Usage

select column-data
from tablename
where rxnflexmatch(rxn, query, flexmatch-parameters)=1

[operator other-conditions];

The rxnflexmatch operator can also be used in the SELECT clause because it evaluates to a 1 for a hit
based on the parameters passed to the result row, or 0 for no hit. Generally, this type of operation can
be expected to be as slow as a non-indexed search. Although it is not common usage, it can be used to
determine if a reaction is really a flexmatch search hit from a complex WHERE clause.
select rxnflexmatch(rxn, query, flexmatch-parameters)

[, other-column-data]

from tablename

where condition;

Example
The following example uses the rxnflexmatch parameter all to search for an exact match of a specific
reaction structure:

select rxnmdlnumber
from samplerx_reaction
where rxnflexmatch(

rctab,

Page 174 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

'/opt/BIOVIA/direct/examples/rxnfiles/query.rxn',
'all'
)=1;

Note: The query used in this simple example is contained in a rxnfile that is located in the
examples/rxnfiles directory of the Direct installation. For more examples, see Reaction Flexmatch
Search.

Comments
To negate the results of rxnflexmatch, use the SQL operator NOT. For example:

select count(*)
from samplerx_reaction
where not rxnflexmatch(

rctab,
'/opt/BIOVIA/direct/examples/rxnfiles/query.rxn',
'all'

)=1;

To find a match, each query component (reactant or product) must match a different component in
the candidate structure. For example, a query structure A + A -> B will not match the candidate A -> B.
To find such results, use a simpler query and specify subset in the flexmatch-parameter. For example:

select rxnmdlnumber
from samplerx_reaction
where rxnflexmatch(

rctab,
'/opt/BIOVIA/direct/examples/rxnfiles/query3.rxn',
'subset all'
)=1;

NOSTRUCT reactant or product molecules in the query reaction are legal, but will match only
NOSTRUCT molecules in the target. Thus the query '-> B' with flags of 'subset match=all' where B is a
NOSTRUCT molecule will match any reaction which has one or more NOSTRUCT products.
Prefix the switches with 'SUBSET' to allowmore reactants and/or products in the hit than were in the
query, or to use a query with zero reactants or products. For example, when searching for a reaction
that has a single stereospecific product there can be a reaction in the table which has multiple
products, one for each of several stereoisomers.
To check for errors from the rxnflexmatch operator, call the function mdlaux.errors.
If there is no domain index on a reaction column, a rxnflexmatch search will executemore slowly than
if a domain index is present and Oracle chooses to use it. To check if the domain index is part of the
execution plan for the SQL statement, use the Oracle command EXPLAIN PLAN.
rxnflexmatch supports attached data (Sgroup data). If the rxnflexmatch parameter is "all",
"match=all", or the combination of specified MATCH switches includes the DAT switch, any
attached data in the query will bematched with those in the target. If the query contains attached
data, rxnflexmatch performs an exact match of the number or text in the attached data; it even
includes any blanks preceding the data in the rxnfile. If the rxnflexmatch parameter is "ignore=dat"
or the combination of specified switches excludes the DAT switch, all attached data in the query and
target reactions will be ignored. For more information about attached data, see the "Attached Data"

BIOVIA Direct 2021 • Reference Guide | Page 175

Chapter 4: Reaction-Specific Operators and Functions

chapter in the BIOVIA Chemical Representation Guide. For information on flexmatch parameters, see
"Exact Search (Flexmatch)" in the BIOVIA Chemical Representation Guide.
flexmatch does not match reactions that contain Rgroup queries, generic structures, or polymer
Sgroups. Direct currently does not support these features. If a reaction contains polymer Sgroups,
Direct returns the following error:

MDL-0427: Rxnfile containing polymer Sgroups is not supported
If a reaction contains Rgroup query features, Direct returns one or more of the following errors:

MDL-0279: CTlib error: [RDRFIL]RDRFIL:Error reading reaction generic molfile (1)
MDL-0279: Ctlib error: [RDRFIL]getV2000Rxnfile:Error reading reaction generic molfile (2)
MDL-0041: Unable to read rxnfile, error=3002

Clearly specify the rxnflexmatch switches. If the specified rxnflexmatch-parameters is NULL, an
empty string, or a string of blank characters, "MATCH=NONE" is assumed. This is also equivalent to
"IGNORE=ALL". For details about the flexmatch switches, see the "Exact Search (Flexmatch)" chapter
in BIOVIA Chemical Representation.
When a timeout occurs during a flexmatch search, a NEMA key match will be performed if it is
possible to do so. In most cases, this will resolve the timeout.

See also:
Reaction Flexmatch Search
BIOVIA Direct Developers Guide > Using Direct > Searching for the reactions
BIOVIA Direct Developers Guide > About Direct > Direct Domain Indexes
BIOVIA Direct Administration Guide > Creating Reaction Tables

rxnflexmatchtimeout
Returns a the timeout status value from an rxnflexmatch search.
rxnflexmatch will return as matches those candidates which for which thematching algorithm times
out. Such candidates may or may not be actual matches. This ancillary operator gives the user
information about that timeout status.

Syntax
rxnflexmatchtimeout(rxnflexmatch-number)

Parameter Description

flexmatch-
number

ANUMBER equal to the rxnflexmatch-number parameter that is used with the
rxnflexmatch operator.

Return value
ANUMBER that indicates the status of the reaction flexmatch search. The possible values are:

Value Description

0 The rxnflexmatch search did not time out.

1 The rxnflexmatch search timed out.

NULL The target was not a match to the query.

Page 176 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Usage
select rxnflexmatchtimeout(rxnflexmatch-number)

[,other-column-data]
from tablename
where flexmatch(rxn, query, v1-v2-options, rxnflexmatch-number)=1

[operator other-conditions];

Example
The following example returns the timeout status while searching for a duplicate.

select extreg,
rxnflexmatchtimeout(3) "Timeout"

from rxntable
where rxnflexmatch(

rxncol,
'/opt/BIOVIA/direct/examples/rxnfiles/query1.rxn',
'match=all',
3
)=1;

Note: The number 3 is used to correlate the rxnflexmatch operator in theWHERE clause with the
rxnflexmatchtimeout operator in the SELECT clause. This could be any number as long as the values in
the two operators match.

Comments
The rxnflexmatch-number parameters for rxnflexmatchtimeout and rxnflexmatch
operators must match. If the rxnflexmatch-number parameters do not match, or if you use
rxnflexmatchtimeout without using rxnflexmatch, you get the following error:
ORA-29908: missing primary invocation for ancillary operator

See also
rxnflexmatch

rxngzip64
Converts a BLOB reaction object into a CLOB that contains the gzip compressed and base-64
representation of a reaction.

Syntax
rxngzip64(rxn)

Parameter Description

rxn The name of the BLOB column that contains the reactions.
The value of this parameter can also be a reaction object.

Return value
A CLOB that contains the gzip compressed and base-64 encoded string representation of a reaction.
rxnchime stores the return value in a temporary CLOB.

BIOVIA Direct 2021 • Reference Guide | Page 177

Chapter 4: Reaction-Specific Operators and Functions

Usage
select rxngzip64(rxn)

[, other-column-data]
from tablename
where condition;

Example
The following example uses the rxngzip64 operator to return the compressed string representation of
a reaction:

select rxngzip64(rctab)
from samplerx_reaction
where rxnmdlnumber='RXCI94070168';

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

rxnimage
Returns a temporary BLOB containing a PNG, BMP, SVG, or EMF image of the reaction.

Syntax
rxnimage(reaction [, options])

Parameter Description

reaction The name of the BLOB field that contains the binary chemical reaction structures. The
field name is normally RCTAB. The value of this parameter can also be a reaction object.

options Optional. A VARCHAR2 argument to control the type of image created, its size, and other
preferences. Specify this argument as a string of comma separated options, each option
takes the form keyword=value.

Possible options are:
imagetype=png - Creates a PNG image (default)
imagetype=bmp - Creates a BMP
imagetype=svg - Creates a SVG
imagetype=emf - Creates a EMF image
width=number- Specifies a width number, typically 100 to 1000 (default is 500)
height=number - Specifies a height number, typically 100 to 1000 (default is 500)
ColorAtomsByType=TRUE|FALSE - Specifies whether to color the atom labels by

Page 178 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

their type. The default is TRUE.
HydrogenDisplayMode=mode- Specifies how to display implicit hydrogen atoms.
The default is HYDROGEN_HETERO. Valid mode values are:

HYDROGEN_OFF - Does not display implicit hydrogen atoms
HYDROGEN_HETERO - Displays implicit hydrogens on heteroatoms.
HYDROGEN_TERMINAL - Displays implicit hydrogens on terminal atoms.
HYDROGEN_TERMINAL_AND_HETERO - Displays implicit hydrogens on terminal
atoms and heteroatoms.
HYDROGEN_ALL - Displays implicit hydrogens on all atoms.

BackgroundColor=color - Specifies the background color. Use either the name of
the color (red, green, others) or the hexadecimal RGB value (FF0000, 00FF00, others).
The default is white.
ForegroundColor=color - Specifies the color of the shape or text. Use either the
name of the color (red, green, others) or the hexadecimal RGB value (FF0000, 00FF00,
others). The default is black.
ChiralityLabels=ANDtext,ABStext,ORtext,MIXEDtext – Specifies the
chirality label text to display for structures with stereocenters. The default is “AND
Enantiomer,,OR Enantiomer,Mixed”. You must include the double quote characters
and four comma-separated fields within the quotes. An empty field will not display
anything for that type of chirality, for example the default text does not display
anything for a structure that has only absolute stereocenters.§
DisplayRS=TRUE|FALSE – Specifies whether to display R and S stereocenter labels
on the structure. The default is FALSE.§
DisplayEZ=TRUE|FALSE – Specifies whether to display E and Z double bond labels
on the structure. The default is FALSE.
DisplayAtomMappings=TRUE | FALSE - Specifies whether atom mapping
numbers should be displayed. Default is TRUE.
ReactingCenterDisplay=mode - Specifies how recting center bonds should be
displayed. Default is HASHES. Valid mode values are:

None - No special display for reacting center bonds.
HASHES - Displays single or double lines across reacting center bonds.
COLOR - Displays reacting center bonds in red.
THICKNESS - Displays reacting center bonds thicker than other bonds.
ALL - Same as HASHES but also displays a circle on bonds that do not change.

PolAtomDisplayMode=POL_STYLE_BEAD|POL_STYLE_TEXT - Specifies how to
indicate the atom(s) that bind the structure to a polymer (atoms of type ‘Pol’). Default
is POL_STYLE_BEAD. Valid values are:

POL_STYLE_BEAD - Displays polymer atoms as shaded circles that resemble beads
POL_STYLE_TEXT - Displays polymer atoms with the label text Pol.

The following shows an example that specify image options:
rxnimage(rxn, 'imagetype=png,width=300,height=100')

BIOVIA Direct 2021 • Reference Guide | Page 179

Chapter 4: Reaction-Specific Operators and Functions

Return value
A BLOB that contains the binary image data. The rxnimage operator returns NULL if an image cannot
be generated for the reaction. Use mdlaux.errors to see related error message.

Usage
select rxnimage(reaction [, options])

[, other-column-data]
from tablename
where condition;

Example
The following example inserts images into a new column for all reaction in a table:
alter table rxntable add (imagefile blob);
update rxntable set imagefile=rxnimage(rctab);

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"blob":

if (((oracle.sql.BLOB)blob).isTemporary()){
((oracle.sql.BLOB)blob).freeTemporary();
}

Applications that use this function in a SQL SELECT statement must be aware that the temporary
LOBs are only freed when the statement ends. If the statement selects many rows Oracle may run
out of temporary space needed to store the LOBs. To work around this you can increase the
temporary tablespace size, or you can convert the SELECT into a PL/SQL function which computes
the image and then frees the BLOB immediately.

See also
mdlaux.rxnimage

rxnkeys
Returns the RSS keys that would be registered for a reaction as a printable string.

Syntax
rxnkeys(reaction, print)

Parameter Description

reaction The name of the BLOB field that contains the reactions. reaction can also be a reaction
object. If reaction is a reaction object, rxnkeys will use the global key definitions.

print Specifies what is to be printed, and how. The specified print string should follow the
format "outputFormat, delimiterType". It can contain the following keywords and
options, separated by whitespace. Extra characters are ignored, thus 'DEC' or 'DECIMAL'
would be allowed. The following values control:
What keys are output:

Page 180 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

CTR - Reacting center keys only.
MOL - Reaction's Ored molecule keys only.
ALL- Both, with molecule keys first.

Default: CTR
Query or registerable key setting:

QRY - Generate keys as if reaction is query
Default: Generates keys as if reaction is registerable
Output format:

BIN - Binary, i.e., '1' and '0'. Delimiter is applied between bits.
HEX - Hexadecimal, i.e., 'fa03'. Lowest key (key 1) is highest bit in first word, thus 'a000'
would set keys 1 and 3. Delimiter is applied between 32-bit words.
DEC - Decimal key numbers. If only reacting center keys are requested, their numbers
start at 1; if both then reacting center keys start immediately after molecule keys.
WTS or WEI - Decimal key weights. All key positions are output, keys which are not set
have a weight of zero.
SET - Returns only the number of keys set, not the key values.
TOT - Returns only the total number of keys, not the key values. This is independent
of themol

Default: BIN
Type and placement of delimiter character:

DELIM=c - Output key values separated by 'c'.
LEAD - Include a leading delimiter.
TRAIL - Include a trailing delimiter.

Default: None
Examples:
Note: If DECIMAL output (which is of limited utility) string exceeds 4000 characters, Oracle
returns an error.

"" Same as "BIN CTR"

"DEC CTR DELIM=," "23,47,230"

"DEC CTR DELIM=, LEAD TRAIL" ",23,47,230,"

"BIN ALL" "000000101011101..."

"CTR TOT" "231" [number of rxnctr keys]

Return value
A VARCHAR2 that contains the RSS keys which would be registered for a molecule as a printable string

Usage
select rxnkeys(rctab, print)

[, other-column-data]

BIOVIA Direct 2021 • Reference Guide | Page 181

Chapter 4: Reaction-Specific Operators and Functions

from tablename
where condition;

Comments
There is no package function identical to the rxnkeys operator, as it is indexed. However, there is a
package function that accepts the index or table name as an argument: mdlaux.rxnkeys.
Although rxnkeys is formally an indexed operator, there is no indexed implementation of it. Thus, the
following search to find all reactions that have no reacting center keys will fail with an error message:

SELECT extreg FROM rxntable WHERE RXNKEYS(rxncol,'CTR SET') = '0';

If you wish to use rxnkeys in a WHERE clause, you must force Oracle to use the non-indexed
implementation. For example:

SELECT extreg FROM rxntable WHERE RXNKEYS(rxncol,'CTR SET')||'X' =
'0X';
or
SELECT extreg FROM rxntable
WHERE TO_NUMBER(RXNKEYS(rxncol,'CTR SET')) = 0;

rxnmol
Returns a CLOB that contains a specified molecule in a reaction.

Syntax
rxnmol(rxn, comptype, compindex)

Parameter Description

rxn A BLOB that contains a reaction object, or the name of the BLOB column that contains
the reactions.

comptype ANUMBER that indicates whether the component to return is a reactant or a product in
the reaction.
The possible values are:
1 - Returns a reactant molecule
2 - Returns a product molecule

compidx NUMBER that represents the component index that identifies which reactant or product
to return.
If comptype is 1, compidx is a number ranging from 1 to the number of reactants. If
comptype is 2, compidx is a number ranging from 1 to the number of products.

Return value
A CLOB that contains themolfile representation of the specified reactant or product. The CLOB includes
line-feed characters (0x0a) that separate the lines within themolfile. rxnmol returns NULL if comptype
or compidx is invalid, or if there is an error.

Usage
select rxnmol(rxn, comptype, compidx)

[, other-column-data]
from tablename
where condition;

Page 182 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Example
The following example uses rxnmol to return the first reactant in a specific reaction:

select rxnmol(rctab, 1, 1)
from samplerx_reaction
where rxnmdlnumber = 'RXCI94070168';

The following example uses rxnmol and ncomponents to return the last product molecule in a
specific reaction:

select rxnmol(rctab, 2, ncomponents(rctab, 2))
from samplerx_reaction
where rxnmdlnumber = 'RXCI94070168';

Comments
In PL/SQL, you can use the following constants for comptype:

mdlaux.reactant - Equivalent to 1, returns a reactant molecule
mdlaux.product - Equivalent to 2, returns a product molecule

The typical usage of rxnmol is in a reaction table trigger that extracts the component molecules in
the registered reaction, and automatically inserts them into a molecule table.
compidx ranges from 1 to the number of reactants or products in the reaction. Use ncomponents
to determine themaximum possible value for compidx.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

See also
ncomponents

BIOVIA Direct Developers Guide > Using Direct >Working with Molecules in a Reaction

rxnmolsim
Returns themolecule similarity value from a similarity search. The higher the value, themore similarity.

Syntax
rxnmolsim(sim-number)

Parameter Description

sim-
number

ANUMBER equal to the sim-number parameter that is used with the rxnsim
operator.

Return value
ANUMBER ranging from 0 to 100 that represents themolecule similarity value.

BIOVIA Direct 2021 • Reference Guide | Page 183

Chapter 4: Reaction-Specific Operators and Functions

Usage
select rxnmolsim(sim-number)

[,other-column-data]
from tablename
where rxnsim(rxn, query, simtype, sim-number)=1

[operator other-conditions];

Example
The following example returns themolecule similarity values for reactions that are at least 80% similar to
the reacting centers in the query, and at least 20% similar to themolecules in the query:

select rxnmdlnumber,
rxnmolsim(2) "MolSim"

from samplerx_reaction
where rxnsim(

rctab,
'/opt/BIOVIA/direct/examples/rxnfiles/query.rxn',
'80 20',
2
) = 1;

Note: The query used in this simple example is contained in a rxnfile that is located in the
examples/rxnfiles directory of the Direct installation.

Comments
The sim-number parameters for rxnmolsim and rxnsim operators must match. If the sim-number

parameters do not match, or if you use rxnctrsim without using rxnsim, you get the following error:
ORA-29908: missing primary invocation for ancillary operator

See also
rxnsim

rxnctrsim

Reaction Similarity Search

rxnsim
Finds reactions that are similar to your query. You can define both the type and degree of similarity in
your query. The type of similarity can be:

Structural - physical resemblance to the substratemolecules in your query
Transformational - similar reacting centers

Syntax
rxnsim(rxn, query, simtype, [sim-number])

Parameter Description

rxn The name of the BLOB column that contains the reactions. rxn can also be a BLOB that
contains a reaction object. If a reaction object is specified, the GLOBAL key definition files
will be used to generate the keys used during searching.

query Amolecule that uses one of the following formats:

Page 184 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server where
BIOVIADirect is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Direct reaction object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Notes:
Reactions used in a similarity query must not include substructure query features.
query cannot be NULL.

BIOVIA Direct 2021 • Reference Guide | Page 185

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

simtype A VARCHAR2 string that specifies the threshold values of similarity, and follows the
following format:
rcmin [rcmax][,] molmin [molmax] [sub|super]

where:
rcmin - A number from 0 to 100 that specifies theminimum percentage of similarity to
the reacting center of the reaction query. A high value for rcmin finds reactions with
nearly identical reacting centers. A lower value results in hits with less related
transformations.
rcmax - A number from 0 to 100 that specifies themaximum percentage of similarity
to the reacting center of the reaction query. This is optional. If you do not specify
rcmax, rcmax defaults to 100. If you specify rcmax, you must also specify molmax
even if you want the default value.
molmin - A number from 0 to 100 that specifies theminimum percentage of structural
similarity to themolecules of the reaction query. A high value for molmin finds
reactions with nearly identical reacting molecules. A lower value causes rxnsim to
ignore nonreacting groups in a reaction.
molmax - A number from 0 to 100 that specifies themaximum percentage of structural
similarity to themolecules of the reaction query. This is optional. If you do not specify
molmax, molmax defaults to 100. If you specify molmax, you must also specify rcmax
even if you want the default value.
sub or SUB - Indicates substructure similarity search. The reaction components that
are retrieved contain more structural complexity than the query. That is, the query is a
substructure. If you specify sub, you must provide threshold values. If you do not
specify sub or super, the reaction components that are retrieved contain the same
structural similarity as the query (“normal” similarity.)
super or SUPER - Indicates superstructure similarity search. The reaction
components that are retrieved contain less structural complexity than the query. That
is, the query is a superstructure. If you specify super, you must provide threshold
values. If you do not specify sub or super, the reaction components that are retrieved
contain the same structural similarity as the query (“normal” similarity.)

Note: The simtype parameter is required. If you specify an empty string (''), simtype
defaults to '80 20', which returns all hits that are at least 80% similar in the reacting center
portion, and at least 20% similar in themolecule portion.For example '60 40 SUB'. If the
third arument is blank or NULL, a value of '80 20' is used. Themin and max values must
range from 0 to 100, with min <=max. The first form is equivalent to specifying rcmax and
molmax as 100 and 100 in the second form. For example, to return all hits which are at
least 80% similar in the reacting center portion, and at least 20% similar in themolecule
portion, use '80 20'. To return all hits which are very dissimilar, for example 5% or less
similarity in both, use '0 5 0 5'.

sim-
number

ANUMBER equal to the sim-number parameter used with the ancillary operators
rxnctrsim and rxnmolsim. This parameter only applies if you use rxnctrsim or
rxnmolsim.

Page 186 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Return value
The NUMBER 1 indicates that the query matched the reaction, the number 0 indicates that the query did
not match the reaction. When you use rxnsim in a WHERE clause, always test the return value for a
result of 1.

Usage
select column-data
from tablename
where rxnsim(rxn, query, simtype)=1

[operator other-conditions];

select rxnctrsim(sim-number)
[, rxnmolsim(sim-number)]
[, other-column-data]

from tablename
where rxnsim(rxn, query, simtype, sim-number)=1

[operator other-conditions];

The rxnsim operator can also be used in the SELECT clause because it evaluates to a 1 for a hit based
on the parameters passed to the result row, or 0 for no hit. Generally, this type of operation can be
expected to be as slow as a non-indexed search. Although it is not common usage, it can be used to
determine if a reaction is really a similarity search hit from a complexWHERE clause.
select rxnsim(rxn,query,simtype)

[, other-column-data]

from tablename

where condition;

Example
The following example finds reactions that are at least 60% similar to the reacting centers in the query,
and at least 40% similar to themolecules in the query:

select rxnmdlnumber
from samplerx_reaction
where rxnsim(

rctab,
'/opt/BIOVIA/direct/examples/rxnfiles/query.rxn',
'60 40'
) = 1;

The following example finds reactions that are very dissimilar, that is, 5% or less similarity in both
reacting centers and molecules. The example also returns the corresponding similarity values. Note that
the parameter “1” for rxnmolsim and rxnctrsim matches the last parameter (sim-number) for
rxnsim.

select rxnmdlnumber,
rxnmolsim(1) "MolSim",
rxnctrsim(1) "RxnCtrSim"

from samplerx_reaction
where rxnsim(

rctab,

BIOVIA Direct 2021 • Reference Guide | Page 187

Chapter 4: Reaction-Specific Operators and Functions

'/opt/BIOVIA/direct/examples/rxnfiles/query.rxn',
'0 5 0 5',
1
) = 1;

Comments
For the required similarity threshold values (simtype parameter), specify one of the following:

Similarity
threshold Value

Description

Empty string
('') or NULL

The default value is ‘80 20’, which returns all hits that are at least 80% similar in
the reacting center portion, and at least 20% similar in themolecule portion.

'rcmin
molmin'

This is equivalent to 'rcmin 100 molmin 100'. Themaximum value for both
reacting center and molecule similarity is 100.

'rcmin rcmax
molmin
molmax'

Specify both minimum and maximum values for both reacting center and
molecule similarity.

The normal similarity calculation uses the Tanimoto coefficient, except that set intersection/union
set counts are replaced with the sum of the key weights for the bits in the set. The 'SUB' calculation
uses the keys of the query in the denominator, thus corresponds to a "substructure similarity". That
is, you will get close to 100% similarity if the query exists as a substructure within the candidate. The
'SUPER' calculation is the reverse, it uses the keys of the candidate in the denominator, thus
corresponds to a "superstructure similarity". That is, you will get close to 100% if the candidate exists
as a substructure within the query. See ISIS docs for more information.
NOSTRUCT molecules in the query (or target) reaction are essentially ignored during the similarity
computation. A query reaction in which all of the component molecules are NOSTRUCTs is not
allowed, and will fail with an error message.
To get the reacting center similarity values for the resulting reactions, use the rxnctrsim ancillary
operator. You can use any number as the sim-number parameter, but it must match the sim-
number parameter used with rxnctrsim.
To get themolecule similarity values for the resulting reactions, use the rxnmolsim ancillary
operator. You can use any number as the sim-number parameter, but it must match the sim-
number parameter used with rxnmolsim.
To check for errors from the rxnsim operator, call the function mdlaux.errors.
rxnsim does not match reactions that contain Rgroup queries, polymer Sgroups, or attached data
(Sgroup data). Direct currently does not support these features.
If there is no domain index on a reaction column, an rxnsim search will executemore slowly than if
a domain index is present and Oracle chooses to use it. To check if the domain index is part of the
execution plan for the SQL statement, use the Oracle command EXPLAIN PLAN. For details about
creating the reaction domain index, see BIOVIA Direct Administration Guide > Creating Reaction
Tables.

See also
rxnctrsim

rxnmolsim

Reaction Similarity Search

Page 188 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Examples of Reaction Similarity Search
BIOVIA Direct Developers Guide > Using Direct> Searching for reactions
BIOVIA Direct Developers Guide > About BIOVIA Direct > Direct Domain Indexes

rxnsmiles
Returns a SMILES string representation of a reaction.

Syntax
rxnsmiles(reaction)

Parameter Description

reaction The name of the BLOB field that contains the binary reaction.

Return value
The rxnsmiles operator returns a non-canonical reaction SMILES string. If the reaction SMILES
string cannot be generated, a NULL is returned. Use mdlaux.errors to see the related error message.

Usage
select rxnsmiles(reaction) from tablename;

Example
The following example shows the SMILES string for the reaction in a table:
SQL> select rxnsmiles(rctab) from samplerx_reaction where rxnmdlnumber =
'RXCI92014607';

RXNSMILES(RCTAB)
--

[C:1]1(=[O:4])[CH2:3][CH2:6][CH2:7][CH2:5][CH2:2]1>>[CH:1]1([OH:4])[CH2:3]
[CH2:6][CH2:7][CH2:5][CH2:2]1

Comments
There are limitations to the generation of SMILES strings. Not all BIOVIAmolecule features can be
handled. If the specified reaction cannot be handled, the rxnsmiles operator returns NULL. Use
mdlaux.errors to see the related error message.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();
}

See also
mdlaux.rxnsmiles

BIOVIA Direct Developers Guide > Using Direct> Retrieving Related Reaction Information

BIOVIA Direct 2021 • Reference Guide | Page 189

Chapter 4: Reaction-Specific Operators and Functions

BIOVIA Direct Developers Guide > Using Direct> Limitations to the Generation of SMILES Strings

rxnstringsegment
Returns a VARCHAR2 string that contains up to 4000 characters of a reaction.
Direct provides this operator to emulate the rxnstringsegment operator of the reaction cartridge
prior to version 6.0. rxnstringsegment is equivalent to stringsegment. See stringsegment for
details.

Syntax
rxnstringsegment([tempclob-number,] rxnclob)

rxnstringsegment(tempclob-number)

Parameter Description

tempclob-
number

ANUMBER from 0 to 4 that specifies the temporary CLOB that stores the input
rxnclob.
If you do not specify tempclob-number in your initial call to rxnstringsegment, the
default is 0. If the reaction contains more than 4000 characters, use
rxnstringsegment(tempclob-number) to get the next portion of the CLOB.

rxnclob A CLOB that contains the reaction to be copied to the temporary CLOB. The reaction can
use either the rxnfile, Chime string format or Gzip compressed and base-64 encoded
molfile string (VARCHAR2 or CLOB).

Return value
The rxnstringsegment([tempclob-number,] rxnclob) syntax returns VARCHAR2 data that
contains the first 4000 characters of a reaction. The reaction can use either the rxnfile or Chime string
format.
The rxnstringsegment(tempclob-number) syntax returns VARCHAR2 data that contains the next
4000 characters.
Both syntax will return NULL if there are no more characters left in the reaction.

Usage
select rxnstringsegment(tempclob-number,rxnclob)

[, other-column-data]
from tablename
where condition;

select rxnstringsegment(rxnclob)
[, other-column-data]

from tablename
where condition;

select rxnstringsegment(tempclob-number)
from dual;

Example
The following example uses rxnstringsegment to get the first 4000 characters of the Chime
representation of a reaction:

Page 190 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

select rxnstringsegment(1, rxnchime(rctab))
from samplerx_reaction
where rxnmdlnumber='RXCI94070168';

The next example uses rxnstringsegment to return the next portion of the same Chime string from
the preceding example. The Chime string is less than 4000 characters, so this statement returns a NULL:

select rxnstringsegment(1)
from dual;

The following is another example that uses rxnstringsegment to get the first 4000 characters of the
rxnfile representation of a reaction. The default number for the temporary CLOB is 0 (zero):

select rxnstringsegment(rxnfile(rctab))
from samplerx_reaction
where rxnmdlnumber='RXCI92071538';

The next example uses rxnstringsegment to return the next portion of the same rxnfile. Note that
the number for the temporary CLOB is 0 (zero):

select rxnstringsegment(0)
from dual;

Comments
Use rxnstringsegment if the application that uses Direct does not support CLOBs. If the
application that uses the reaction cartridge supports CLOBs, use the operator rxnchime or rxnfile
instead of rxnstringsegment.
Repeatedly call rxnstringsegment to retrieve reactions that exceed 4000 characters. The initial call
must use the syntax:

rxnstringsegment([tempclob-number,] rxnclob)

The subsequent calls must use the following syntax. Repeatedly call rxnstringsegment
using this syntax until rxnstringsegment returns NULL or a string whose length is less
than 4000. Use the same tempclob-number that you used in the initial call.
rxnstringsegment(tempclob-number)

For the initial call to rxnstringsegment, the tempclob-number parameter can be an arbitrary
number from 0 to 4. For subsequent calls to rxnstringsegment, the tempclob-number
parameter must be the same as what you used in the initial call. If you did not specify a tempclob-
number parameter in the initial call, the tempclob-number parameter in the subsequent call must
be 0 (zero).
Although it is possible to write a query that contains multiple calls to rxnstringsegment, we do not
recommend it. Oracle does not necessarily call the operators in the order they appear in the SELECT
statement. For example, do not call rxnstringsegment(tempclob-number, clob) and
rxnstringsegment(tempclob-number) in a single SELECT statement, where tempclob-number is the
same for both calls. The syntax rxnstringsegment(tempclob-number, clob) saves the data in a
temporary CLOB, and the syntax rxnstringsegment(tempclob-number) reads the contents of the
temporary CLOB. If Oracle calls rxnstringsegment(tempclob-number) first, you will get the contents
of an old temporary CLOB that might have been created in a separate operation. It is more reliable to
issue separate SELECT statements for each segment, as shown in the following example. Note that
this example uses the default number 0 (zero) for the temporary CLOB:

BIOVIA Direct 2021 • Reference Guide | Page 191

Chapter 4: Reaction-Specific Operators and Functions

DECLARE
strseg VARCHAR2(4000);
bigstr VARCHAR2(32000);
numval NUMBER;

BEGIN
SELECT RXNSTRINGSEGMENT(RXNFILE(rctab)) INTO bigstr
FROM samplerx_reaction WHERE rxnmdlnumber='RXCI92071538';
LOOP

SELECT RXNSTRINGSEGMENT(0) INTO strseg FROM dual;
IF strseg IS NULL THEN EXIT; END IF;
bigstr := bigstr || strseg;

END LOOP;
END;

Use the same number to identify the same temporary CLOB in one Oracle session. The
rxnstringsegment operator shares the package-level, session-duration temporary CLOBs with the
tempclob and writetempclob operators. Make sure that you use the correct, corresponding
numbers in order to referencemultiple temporary CLOBs within one Oracle session. The following
example shows how corresponding numbers are used to referencemultiple temporary CLOBs:

DECLARE
str1 varchar2(4000);
str2 varchar2(4000);
bigstr1 varchar2(32000);
bigstr2 varchar2(32000);

BEGIN
--Fetch the first segments of the:
--unhighlighted Chime string (tempCLOB#1)
--highlighted Chime string (tempCLOB#2)
select rxnstringsegment(1, rxnchime(rctab)),

rxnstringsegment(2, rsshighlight(99))
into bigstr1, bigstr2
from samplerx_reaction

where rss(rctab,
'/opt/BIOVIA/direct/examples/rxnfiles/query.rxn',
99
)=1;

--Fetch the rest of the Chime strings:
--unhighlighted Chime string (tempCLOB#1)
--highlighted Chime string (tempCLOB#2)
loop

select rxnstringsegment(1), rxnstringsegment(2)
into str1, str2
from dual;

if str1 is NULL and str2 is NULL then exit; end if;
bigstr1 := bigstr1 || str1;
bigstr2 := bigstr2 || str2;

end loop;
END;

See also
rxnchime

Page 192 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

rxnfile

tempclob

writetempclob

Examples of Fetching Reactions Using the Rxnfile Format
Examples of Fetching Reactions Using the Chime Format
BIOVIA Direct Developers Guide > Using Direct > Fetching Reactions as String Segments

Reaction-Specific Functions
In some cases, Direct offers both a function and an operator with the same name. The function and
operator behave identically to each other. For example, the readfile operator and the
mdlaux.readfile function have the same functionality. In these cases, the description of the
operator appears under Reaction-Specific Operators. This section lists the name of the function and
then references the description in Reaction-Specific Operators.
If both a function and an operator are available, use the function name instead of the operator name in
situations where the operator is not allowed. For example, you must use the package function name in a
PL/SQL assignment statement, because PL/SQL assignment statements do not accept operators.

mdlaux.automap 193
mdlaux.hasnostructs 196
mdlaux.rinchi 196
mdlaux.rinchiauxinfo 198
mdlaux.rinchikey 200
mdlaux.rinchitorxnfile 201
mdlaux.rxnimage 204
mdlaux.rxnkeys 206
mdlaux.rxnsmiles 209
mdlaux.smilestorxnfile 210

mdlaux.automap
Automatically assigns atom-to-atom mapping in a reaction (“automaps a reaction”) , and returns:

A CLOB that contains the automapped reaction. The automapped reaction contains a unique
mapping number for each corresponding atom in the reactants and products in the reaction.
The number of changes performed in the automapped reaction
The status of the automap operation

mdlaux.automap also provides the option to clear themaps from a reaction.

Syntax
mdlaux.automap(rxn, mode, mappedrxn, changes)

BIOVIA Direct 2021 • Reference Guide | Page 193

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

rxn The reaction to be automapped.
rxn can use one of the following formats:

Full path and file name of a rxnfile (VARCHAR2). The rxnfile must be located on the
server where Direct is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).
Chime string (VARCHAR2 or CLOB)
IUPAC name (VARCHAR2 or CLOB)
InChI string
SMILES string
Reaction column name (BLOB)
Reaction object created by a previous operation (BLOB)
Reaction SMILES string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)

mode A VARCHAR2 string that specifies how the reaction will be automapped. mode is not
case-sensitive.
The possible values are:

RegenAuto - Computes the atom-maps and bond changemarks for the reaction,
without further input. RegenAuto disregards any existing maps or bond change
marks.
RegenAlter - Computes the atom-atom maps and bond changemarks for the
reaction, using any existing bond marks to guide themapping. RegenAlter assumes
the existing marks might be wrong and can be altered. This mode is used by the
Regenerate AAMappings command in REXEC.
Clear - Removes all existing atom-atom maps and bond marks from the reaction.
Clear does not perform any mapping.
Default - Computes the atom-atom maps and bond changemarks for the
reaction, using the existing bond marks. Default assumes the existing marks are
absolutely correct. This mode is used by ISIS/Base when mapping reactions.
RegenKeep - equivalent to Default.
NULL or empty string - equivalent to Default.

mappedrxn A temporary CLOB that has been allocated, is not NULL, and is empty.
If the automap operation succeeds, mappedrxn contains the resulting mapped
reaction. Themapped reaction is a rxnfile string, with each line terminated by a line-
feed character LF (0x0a)

changes A BINARY_INTEGER variable that will contain the number of changes performed, if the
automap operation succeeds.

Page 194 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

The possible values are:
0 - No change. The automap operation did not change atom-atom maps, bond
marks or inversion/retention flags. The mdlaux.automap function returns
mappedrxn as the input reaction.
> 0 - The number of atom-atom maps and bond marks which the user had specified,
and which were changed to some other value by mdlaux.automap. The user should
examine themapped reaction in mappedrxn.
-1 - No change in the existing atom-atom maps and bond marks, but new atom-atom
maps, bond marks, or inversion/retention flags were added. If the automap mode
(mode) for the mdlaux.automap function is RegenAlter, this could also mean
that the original atom-atom maps weremodified.

The changes parameter is not used when mode is Clear. In Clear mode, the
changes parameter is always returned as -1.

Return Value
A BINARY_INTEGER that indicates the status of the automap operation. The possible values are:

Value Description

0 The mdlaux.automap function failed. mdlaux.automap returns an empty CLOB in
mappedrxn

1 The mdlaux.automap function succeeded. rdcaux.automap returns the automapped
reaction in mappedrxn.

2 The specified mode parameter is invalid. mdlaux.automap returns the input (unchanged)
reaction in mappedrxn.

3 The mdlaux.automap function attempted to map the reaction, but failed.
mdlaux.automap returns the input (unchanged) reaction in mappedrxn.

>=4 The mdlaux.automap function succeeded, but themapping might be incorrect and must be
examined by the user. mdlaux.automap returns the automapped reaction in mappedrxn.
The actual value has no significance. A typical return value is 39.

Usage
This function must be called from PL/SQL.
status := mdlaux.automap(

rxn, mode,
mappedrxn,
changes);

Example
The following example uses the rdcaux.automap function to automap a reaction in a file:

DECLARE
mappedrxn CLOB;
status BINARY_INTEGER;

BIOVIA Direct 2021 • Reference Guide | Page 195

Chapter 4: Reaction-Specific Operators and Functions

changes BINARY_INTEGER;
BEGIN

dbms_lob.createtemporary(
mappedrxn,
FALSE,
dbms_lob.call);

status := mdlaux.automap (
'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.rxn',
NULL,
mappedrxn,
changes);

if (status = 0) then
dbms_lob.freetemporary(mappedrxn);
mappedrxn := NULL;

end if;
-- Add statements here to use mappedrxn, status, changes

END;

Comments
Use mdlaux.automap only in PL/SQL. Because the mdlaux.automap function requires variable
input parameters for its return values, you can only use it in PL/SQL. For applications that do not use
PL/SQL, use the rxnautomap, rxnautomapchange, and rxnautomapstatus operators. The
mdlaux.automap function returns three values: themapped reaction, themapping status, and the
number ofmapping changes. mdlaux.automap is more efficient because it eliminates additional
calls to the server.
Check the resulting automapped reaction. If themapping changed, or if themapping status is
greater than 3, the user should inspect the resulting mapped structure to verify its correctness.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

See also
rxnautomap

rxnautomapchange

rxnautomapstatus

mdlaux.hasnostructs
This package function is equivalent to hasnostructs. For more information. see hasnostructs.

mdlaux.rinchi
Returns an IUPAC standard International Chemical Identifier (standard “RInChI”) string for the specified
reaction.

Syntax
mdlaux.rinchi(reaction, options)

Page 196 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

reaction A reaction that uses one of the following formats:
Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server where
Direct is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).
Chime string (VARCHAR2 or CLOB)
Direct reaction object (BLOB)
Gzip compressed and base-64 encoded rxnfile string (VARCHAR2 or CLOB).

options (Optional) Specifies a complete set of RInChI library options.
If no additional options are provided in the call to RINCHI, the standard RInChI string is
generated.
If any of the following options are specified, a non-standard RInChI string is generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)
SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)
15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the RInChI string (shows up as a three-
character suffix, a backslash followed by two letters)

Return value
A temporary CLOB that contains the RInChI string. The output string length will exceed 4000 characters
for very large reactions. If the RInChI string cannot be generated, the mdlaux.rinchi functions
returns NULL. Use mdlaux.errors to see the related error message.

Usage
select mdlaux.rinchi(reaction, options) from dual;

Example
The following example shows the RInChI string for a reaction, using the default option:
select mdlaux.rinchi('/work/rxns/test.rxn') from dual;

BIOVIA Direct 2021 • Reference Guide | Page 197

Chapter 4: Reaction-Specific Operators and Functions

MDLAUX.RINCHI('/WORK/RXNS/TEST.RXN')
--
RInChI=1.00.1S/C2H7ClSi/c1-4(2)3/h4H,1-2H3!C6H10O3/c1-3-9-6(8)4-5(2)7/h3-
4H2,1-2H3<>C8H17ClO3Si/c1-5-11-8(10)6-7(2)12-13(3,4)9/h7H,5-6H2,1-4H3/t7-
/m1/s1/d+

Comments
There are limitations to the generation of RInChI strings. Not all BIOVIA reaction features can be
handled. The mdlaux.rinchi function returns NULL if the specified reaction cannot be handled.
Use mdlaux.errors to see the related error message.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

See also
mdlaux.rinchikey

rinchi

mdlaux.rinchiauxinfo
Returns the axillary information (AuxInfo) that is computed along with the IUPAC International Chemical
Identifier (InChI) string for a molecule.

Syntax
mdlaux.rinchiauxinfo(any-reaction [, options])

Parameter Description

reaction A reaction that uses one of the following formats:
Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server where
Direct is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).
Chime string (VARCHAR2 or CLOB)
Direct reaction object (BLOB)
Gzip compressed and base-64 encoded rxnfile string (VARCHAR2 or CLOB).

options (Optional) Specifies a complete set of RInChI library options.
If no additional options are provided in the call to RINCHIAUXINFO, the standard RinChI
AuxInfo string is generated.
If any of the following options are specified, a non-standard RinChI AuxInfo string is
generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)

Page 198 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)
SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)
15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the RinChI AuxInfo string (shows up as a
three-character suffix, a backslash followed by two letters)

Return value
A temporary CLOB that contains the RinChI AuxInfo string. The output string length will exceed 4000
characters for very large reactions. If the RinChI AuxInfo string cannot be generated, the
mdlaux.rinchiauxinfo functions returns NULL. Use mdlaux.errors to see the related error
message.

Usage
select mdlaux.rinchiauxinfo(reaction, options) from dual;

Example
The following example shows the RinChI AuxInfo string for a reaction, using the default option:
select mdlaux.rinchiauxinfo('/work/rxns/test.rxn') from dual;

MDLAUX.RINCHIAUXINFO('/WORK/RXNS/TEST.RXN')
--
RAuxInfo=1.00.1/0/N:2,3,4,1/E:
(1,2)/rA:4nSiCCCl/rB:s1;s1;s1;/rC:.7895,.1596,0;.0183,1.4909,0;-.6599,-.369,
0;1.0538,-
1.3563,0;!0/N:9,6,8,1,3,2,7,5,4/rA:9nCCCOOCOCC/rB:s1;s1;s2;d2;s3;d3;s4;s8;/r
C:-1.2727,-.933,0;.0655,-.1637,0;-
2.6067,-.1637,0;1.3995,-.933,0;.0655,1.375,0;-3.9367,-.933,0;-
2.6067,1.375,0;2.7336,-.1637,0;4.0677,-.933,0;<>0/N:13,5,10,11,9,1,2,3,12,7,
6,4,8/E:
(3,4)/it:im/rA:13cCCCOCOOSiCCCClC/rB:s1;s1;P2;s2;s3;d3;s4;s6;s8;s8;s8;s9;/rC
:.2778,.3641,0;-1.1928,1.2072,0;.2778,-1.3365,0;-1.1928,2.9126,0;-
2.6635,.3641,0;1.7485,-2.1892,0;-1.1928,-2.1892,0;.1437,3.8132,0;1.8635,-
3.7988,0;.6467,4.7617,0;.5461,2.8168,0;-.6276,4.5605,0;2.7881,-4.3354,0;

BIOVIA Direct 2021 • Reference Guide | Page 199

Chapter 4: Reaction-Specific Operators and Functions

Comments
There are limitations to the generation of RinChI AuxInfo strings. Not all BIOVIA reaction features can
be handled. The mdlaux.rinchiauxinfo function returns NULL if the specified reaction cannot be
handled. Use mdlaux.errors to see the related error message.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected. The following Java example frees the temporary LOB associated
with the LOB locator object named "clob":

if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();

}

See also
mdlaux.rinchi

rinchiauxinfo

mdlaux.rinchikey
Returns an IUPAC International standard Chemical Identifier (standard “RInChI”) key for the specified
reaction. The RInChI key is a 27-character hashed form of the RInChI string. The mdlaux.rinchikey
function generates the key by first generating the RInChI string, and then calling an RInChI library
function to convert the string into the 27-character key.

Syntax
mdlaux.rinchikey(reaction, options)

Parameter Description

reaction A reaction that uses one of the following formats:
Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server where
Direct is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).
Direct Reaction object (BLOB)
Chime string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded rxnfile string (VARCHAR2 or CLOB).

options (Optional) Specifies a complete set of RInChI library options.
If no additional options are provided in the call to RINCHI, the standard RInChI string is
generated.
If any of the following options are specified, a non-standard RInChI string is generated.

NEWPSOFF - Both ends of wedge point to stereocenters (Narrow End ofWedge Points
to Stereocenter OFF)
FixedH - Include Fixed H layer (default is ‘not’)
RecMet - Include reconnected metals results (default is ‘not’)
SAbs - Absolute stereo (default)

Page 200 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

SRel - Relative stereo
SRac - Racemic stereo
SUCF - Use Chiral Flag where On means Absolute stereo and Offmeans Relative
SNon - Exclude stereo
SUU - Include omitted unknown/undefined stereo
SLUUD - Stereolabels for unknown (‘u’) and undefined (‘?’) are different (default for
both is ‘?’)
KET - Account for keto/enol tautomerization (default is off)
15T - Account for 1-5 tautomerization (default is off)
SaveOpt - Save non-default options in the RInChI string (shows up as a three-
character suffix, a backslash followed by two letters)

Return value
A VARCHAR2 that contains the 27-character RInChI key. The mdlaux.rinchikey function returns
NULL if the RInChI string cannot be generated. Use mdlaux.errors to see the related error message.

Usage
select mdlaux.rinchikey(reaction, options) from dual;

Example
The following example shows the RInChI key for a reaction, using the default option:
select mdlaux.rinchikey('/work/rxns/muse2.rxn') from dual;

MDLAUX.RINCHIKEY('/WORK/RXNS/MUSE2.RXN')

UHOVQNZJYSORNB-UHFFFAOYSA-N

Comments
There are limitations to the generation of RInChI strings. Not all BIOVIA reaction features can be
handled. If the specified reaction cannot be handled, the mdlaux.rinchikey functions returns NULL.
Use mdlaux.errors to see the related error message.

See also
mdlaux.rinchi

rinchikey

mdlaux.rinchitorxnfile
Returns the rxnfile string representation of a reaction InChI (IUPAC International Chemical Identifier)
string and optional InChI AuxInfo string.

Syntax
mdlaux.rinchitorxnfile(inchi [, auxinfo])

BIOVIA Direct 2021 • Reference Guide | Page 201

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

inchi A VARCHAR2 or CLOB containing a reaction InChI string.

auxinfo An optional VARCHAR2 or CLOB containing a reaction InChI AuxInfo string. Adding the
optional AuxInfo argument will providemore information to the conversion including the
original atom coordinates, the output reaction will generally bemore similar to the
reaction from which InChI was calculated.

Return value
A temporary CLOB that contains the converted rxnfile string. If the InChI input cannot be converted, the
mdlaux.rinchitorxnfile function returns NULL. Use mdlaux.errors to see related error
message.

Usage
select mdlaux.rinchitorxnfile(inchi) from dual;

select mdlaux.rinchitorxnfile(inchi, auxinfo) from dual;

Examples
The following example shows the converted rxnfile from an InChI string for a simple reaction:
select mdlaux.rinchitorxnfile('RInChI=1.00.1S/C2H6O/c1-2-
3/h3H,2H2,1H3<>C2H7N/c1-2-3/h2-3H2,1H3/d+') from dual;

MDLAUX.RINCHITORXNFILE('RINCHI=1.00.1S/C2H6O/C1-2-3/H3H,2H2,1H3<>C2H7N/C1-2-
3
--
-
$RXN

SciTegic 0622201530

1 1
$MOL
Reactant1

SciTegic06222015302D

3 2 0 0 0 0 999 V2000
0.0000 0.0000 0.0000 C 0 0

-0.8660 0.5000 0.0000 C 0 0
-1.7321 0.0000 0.0000 O 0 0

1 2 1 0
2 3 1 0

M END
$MOL
Product1

SciTegic06222015302D

3 2 0 0 0 0 999 V2000
0.0000 0.0000 0.0000 C 0 0

-0.8660 0.5000 0.0000 C 0 0
-1.7321 0.0000 0.0000 N 0 0

1 2 1 0

Page 202 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

2 3 1 0
M END

This example includes the reaction AuxInfo argument. Note how the coordinates in the computed rxnfile
are now taken from the AuxInfo string:
select mdlaux.rinchitorxnfile('RInChI=1.00.1S/C2H6O/c1-2-
3/h3H,2H2,1H3;<>C2H7N/c1-2-3/h2-
3H2,1H3/d+','RAuxInfo=1.00.1/0/N:1,2,3/rA:3nCCO/rB:s1;s2;/rC:2,-
5.7188,0;3.0232,-5.128,0;4.0463,-
5.7188,0;<>0/N:1,2,3/rA:3nCCN/rB:s1;s2;/rC:9.0938,-.7188,0;10.1875,-
5.0313,0;11.3061,-5.6771,0;') from dual;

MDLAUX.RINCHITORXNFILE('RINCHI=1.00.1S/C2H6O/C1-2-3/H3H,2H2,1H3<>C2H7N/C1-2-
3
--
-
$RXN

SciTegic 0622201608

1 1
$MOL
Reactant1

SciTegic06222016082D

3 2 0 0 0 0 999 V2000
2.0000 -5.7188 0.0000 C 0 0
3.0232 -5.1280 0.0000 C 0 0
4.0463 -5.7188 0.0000 O 0 0

1 2 1 0
2 3 1 0

M END
$MOL
Product1

SciTegic06222016082D

3 2 0 0 0 0 999 V2000
9.0938 -0.7188 0.0000 C 0 0
10.1875 -5.0313 0.0000 C 0 0
11.3061 -5.6771 0.0000 N 0 0

1 2 1 0
2 3 1 0

M END

Comments
InChI has limitations, for example it does not encode information about whether stereochemistry is
relative or absolute nor does it always differentiate between two tautomeric forms of a molecule. Nitro
groups in an InChI string are always converted to the uncharged hypervalent nitrogen form in the
molfile. You will not always get the samemolecule that you started with when converting from molfile to
InChI and then from that InChI back to molfile.

BIOVIA Direct 2021 • Reference Guide | Page 203

Chapter 4: Reaction-Specific Operators and Functions

Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary())
Unknown macro: { ((oracle.sql.CLOB) clob).freeTemporary(); }

See also
rinchi

rinchiauxinfo

mdlaux.rxnimage
Returns a temporary BLOB containing a PNG, BMP, SVG, or EMF image of the reaction.

Syntax
mdlaux.rxnimage(reaction [, options])

Parameter Description

reaction Amolecule that uses one of the following formats:
Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server where
BIOVIADirect is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

options Optional. A VARCHAR2 argument to control the type of image created and its size..
Specify this argument as a string of comma separated options, each option takes the
form keyword=value. Possible options are:

imagetype=png - Creates a PNG image (default)
imagetype=bmp - Creates a BMP image
imagetype=svg- Creates a SVG image
imagetype=emf - Creates a EMF image
width=number - Specifies a width number, typically 100 to 1000 (default is 500)
height=number- Specifies a height number, typically 100 to 1000 (default is 500)
ColorAtomsByType=TRUE|FALSE - Specifies whether to color the atom labels by

Page 204 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

their type. The default is TRUE.
HydrogenDisplayMode=OFF|HETERO|TERMINAL|TERMINAL_AND_HETERO|ALL -
Specifies how to display implicit hydrogen atoms. The default is HETERO. Valid values
are:

OFF - Does not display implicit hydrogen atoms
HETERO - Displays implicit hydrogens on heteroatoms.
TERMINAL - Displays implicit hydrogens on terminal atoms.
TERMINAL_AND_HETERO - Displays implicit hydrogens on terminal atoms and
heteroatoms.
ALL- Displays implicit hydrogens on all atoms.

BackgroundColor=color - Specifies the background color. Use either the name of
the color (red, green, others) or the hexadecimal RGB value (FF0000, 00FF00, others).
The default is white.
ForegroundColor=color - Specifies the color of the shape or text. Use either the
name of the color (red, green, others) or the hexadecimal RGB value (FF0000, 00FF00,
others). The default is black.
ChiralityLabels=ANDtext,ABStext,ORtext,MIXEDtext – Specifies the
chirality label text to display for structures with stereocenters. The default is “AND
Enantiomer,,OR Enantiomer,Mixed”. You must include the double quote characters
and four comma-separated fields within the quotes. An empty field will not display
anything for that type of chirality, for example the default text does not display
anything for a structure that has only absolute stereocenters.§
DisplayRS=TRUE|FALSE – Specifies whether to display R and S stereocenter labels
on the structure. The default is FALSE.§
DisplayEZ=TRUE|FALSE – Specifies whether to display E and Z double bond labels
on the structure. The default is FALSE.
PolAtomDisplayMode=POL_STYLE_BEAD|POL_STYLE_TEXT - Specifies how to
indicate the atom(s) that bind the structure to a polymer (atoms of type ‘Pol’). Default
is POL_STYLE_BEAD. Valid values are:

POL_STYLE_BEAD- Displays polymer atoms as shaded circles that resemble beads
POL_STYLE_TEXT - Displays polymer atoms with the label text Pol. The following
shows an example that specify image options: mdlaux.rxnimage(rxn,
'imagetype=png,width=300,height=100,polatomdisplaymode=pol_
style _text')

DisplayAtomMappings=TRUE | FALSE - Specifies whether atom mapping
numbers should be displayed. Default is TRUE.
ReactingCenterDisplay=mode - Specifies how reacting center bonds should be
displayed. Default is HASHES. Valid mode values are:

None - No special display for reacting center bonds.
HASHES - Displays single or double lines across reacting center bonds.
COLOR - Displays reacting center bonds in red.

BIOVIA Direct 2021 • Reference Guide | Page 205

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

THICKNESS - Displays reacting center bonds thicker than other bonds.
ALL- Same as HASHES but also displays a circle on bonds that do not change.

Return value
A BLOB that contains the binary image data. The mdlaux.rxnimage function returns NULL if an image
cannot be generated for themolecule. Use mdlaux.errors to see related error message.

Usage
select mdlaux.rxnimage(reaction [, options]) from dual;

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
"blob":

if (((oracle.sql.BLOB)blob).isTemporary()){
((oracle.sql.BLOB)blob).freeTemporary();
}

Applications that use this function in a SQL SELECT statement must be aware that the temporary
LOBs are only freed when the statement ends. If the statement selects many rows Oracle may run
out of temporary space needed to store the LOBs. To work around this you can increase the
temporary tablespace size, or you can convert the SELECT into a PL/SQL function which computes
the image and then frees the BLOB immediately.

See also
rxnimage

mdlaux.rxnkeys
Returns the RSS keys for a reaction as a printable string.

Syntax
mdlaux.rxnkeys(rxnIndexOrTable, reaction, print)

Parameter Description

rxnIndexOrTable The name of a reaction index, or the name of a table which contains exactly one
reaction index. (The schemamay be included, e.g. 'schema.table'.) The value
may be NULL, in which case the global environment is used. Use the first
argument to control what molecule 2D key definition file and reacting center key
definition files are used to compute the keys for the reaction. A NULL value will
cause the global ptable to be used.

reaction Amolecule that uses one of the following formats:
Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server
where BIOVIADirect is installed.

Page 206 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be
terminated either by the line-feed character LF (0x0a), or by the carriage-
return followed by the line-feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

BIOVIA Direct 2021 • Reference Guide | Page 207

Chapter 4: Reaction-Specific Operators and Functions

Parameter Description

print Specifies what is to be printed, and how. The specified print string should follow
the format "outputFormat, delimiterType". It can contain the following
keywords and options, separated by whitespace. Extra characters are ignored,
thus 'DEC' or 'DECIMAL' would be allowed.
Control what keys are output:

CTR Reacting center keys only.
MOL Reaction's Ored molecule keys only.
ALL Both, with molecule keys first.

Default: CTR

Control query or registerable key setting:
QRY Generate keys as if reaction is query

Default: Generates keys as if reaction is registerable

Control the output format:
BIN - Binary, i.e. '1' and '0'. Delimiter is applied between bits.
HEX - Hexadecimal, i.e. 'fa03'. Lowest key (key 1) is highest bit in first word,
thus 'a000' would set keys 1 and 3. Delimiter is applied between 32-bit words.
DEC - Decimal key numbers. If only reacting center keys are requested, their
numbers start at 1; if both then reacting center center keys start
immediately after molecule keys.
WTS or WEI - Decimal key weights. All key positions are output, keys which
are not set have a weight of zero.
SET - Returns only the number of keys set, not the key values.
TOT - Returns only the total number of keys, not the key values. This is
independent of the rxn.

Default: BIN

Control type and placement of delimiter character:
DELIM=c - Output key values separated by 'c'.
LEAD - Include a leading delimiter.

TRAIL - Include a trailing delimiter. Default: None

Examples:
"" Same as "BIN CTR"
"DEC CTR DELIM=," "23,47,230"
"DEC CTR DELIM=, LEAD TRAIL" “,23,47,230,"
"BIN ALL" “000000101011101..."
"CTR TOT" “231" [number of rxnctr keys]

Return value
A VARCHAR2 that contains the RSS keys which would be registered for a molecule as a printable string

Page 208 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

Usage
The typical usage for the mdlaux.rxnkeys function is to get the printable keys for registration (using
the same key definition file which is associated with the reaction domain index on the table into which
the reaction is being registered). For example:

INSERT INTO rxntable (extreg, ctab, rxnkeys) VALUES
('ABC-123', RXN('/test/rxn123.rxn'),
MDLAUX.RXNKEYS('rxntable', '/test/rxn123.rxn',
'ctr dec delim=, lead trail'));

Comments
DECIMAL output is of limited utility, since if the string exceeds 4000 characters Oracle will return an error.

See also
rxnkeys

mdlaux.rxnsmiles
Returns a SMILES string representation of a reaction.

Syntax
mdlaux.rxnsmiles(reaction)

Parameter Description

reaction Amolecule that uses one of the following formats:
Filepath of a rxnfile (VARCHAR2). The rxnfile must be located on the server where
BIOVIADirect is installed.
Rxnfile string (VARCHAR2 or CLOB). Each line in this string must be terminated either
by the line-feed character LF (0x0a), or by the carriage-return followed by the line-
feed characters CR+LF (0x0d + 0x0a).

Direct molecule object (BLOB)
IUPAC name (VARCHAR2 or CLOB)
HELM string (VARCHAR2 or CLOB)
XHELM string (VARCHAR2 or CLOB)
Chime string (VARCHAR2 or CLOB)
SMILES string (VARCHAR2 or CLOB)
InChI string (VARCHAR2 or CLOB)
Gzip compressed and base-64 encoded molfile string (VARCHAR2 or CLOB).

Return value
Takes any type of reaction as an argument (filename, file CLOB, binary CTAB BLOB) and returns a non-
canonical reaction SMILES string. If the reaction SMILES string cannot be generated, the
mdlaux.rxnsmiles function returns NULL. Use mdlaux.errors to see the related error message.

Usage
select mdlaux.rxnsmiles(reaction) from dual;

BIOVIA Direct 2021 • Reference Guide | Page 209

Chapter 4: Reaction-Specific Operators and Functions

Example
The following example shows the SMILES string for a molecule:

SQL> select mdlaux.rxnsmiles('f:/work/rxn.rxn') from dual;

MDLAUX.RXNSMILES('F:/WORK/RXN.RXN')

[CH2:6]1[CH2:5][CH2:4][CH2:3][CH2:2][CH2:1]1>>[CH2:6]1[CH2:5]

[CH2:4][CH2:3][CH2:2][C:1]1=O

Comments
There are limitations to the generation of SMILES strings. Not all BIOVIA reaction features can be
handled. If the specified molecule cannot be handled, themdlaux.rxnsmiles function returns NULL.
Usemdlaux.errors to see the related error message.
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value
returned by this function. If the temporary LOBs are not explicitly freed, they will accumulate until
the Oracle session is disconnected.

The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){
((oracle.sql.CLOB)clob).freeTemporary();}

See also
rxnsmiles

BIOVIA Direct Developers Guide > Using Direct > Getting the SMILES string
BIOVIA Direct Developers Guide > Using Direct > Limitations to the generation of SMILES string

mdlaux.smilestorxnfile
Returns a reaction string (CLOB) from a SMILES string (CLOB).

Syntax
mdlaux.smilestorxnfile(smiles)

Parameter Description

smiles A CLOB containing a reaction SMILES string

Return value
A temporary CLOB that contains the converted rxnfile string. if the reaction SMILES string cannot be
converted, the mdlaux.smilestorxnfile function returns NULL. Use mdlaux.errors to see related
error message.

Usage
select mdlaux.smilestorxnfile(smiles) from dual;

Example

SQL> select
mdlaux.smilestorxnfile('[CH2:6]1[CH2:5][CH2:4][CH2:3][CH2:2]
[CH2:1]1>>[CH2:6]1[CH2:5][CH2:4][CH2:3][CH2:2][C:1]1=O') from

Page 210 | BIOVIA Direct 2021 • Reference Guide

Chapter 4: Reaction-Specific Operators and Functions

dual;

MDLAUX.SMILESTORXNFILE('[CH2:6]1[CH2:5][CH2:4][CH2:3][CH2:2]
[CH2:1]1>>[CH2:6]1[C
--

$RXN

SciTegic 0329131054

1 1
$MOL

SciTegic03291310542D

6 6 0 0 0 0999 V2000
1.2990 -0.75000.0000 C 0 0 0 0 0 0 0 0 0 6 0 0
1.2990 0.75000.0000 C 0 0 0 0 0 0 0 0 0 5 0 0
0.0000 1.50000.0000 C 0 0 0 0 0 0 0 0 0 4 0 0

-1.2990 0.75000.0000 C 0 0 0 0 0 0 0 0 0 3 0 0
-1.2990 -0.75000.0000 C 0 0 0 0 0 0 0 0 0 2 0 0
0.0000 -1.50000.0000 C 0 0 0 0 0 0 0 0 0 1 0 0

1 2 1 0
2 3 1 0
3 4 1 0
4 5 1 0
5 6 1 0
6 1 1 0

M END
$MOL

SciTegic03291310542D

7 7 0 0 0 0999 V2000
1.2990 -0.75000.0000 C 0 0 0 0 0 0 0 0 0 6 0 0
1.2990 0.75000.0000 C 0 0 0 0 0 0 0 0 0 5 0 0
0.0000 1.50000.0000 C 0 0 0 0 0 0 0 0 0 4 0 0

-1.2990 0.75000.0000 C 0 0 0 0 0 0 0 0 0 3 0 0
-1.2990 -0.75000.0000 C 0 0 0 0 0 0 0 0 0 2 0 0
0.0000 -1.50000.0000 C 0 0 0 0 0 0 0 0 0 1 0 0
0.0000 -2.70000.0000 O 0 0

1 2 1 0
2 3 1 0
3 4 1 0
4 5 1 0
5 6 1 0
6 1 1 0
6 7 2 0

M END

BIOVIA Direct 2021 • Reference Guide | Page 211

Chapter 4: Reaction-Specific Operators and Functions

Comments
Applications using client interfaces such as JDBC must explicitly free the temporary LOB value returned
by this function. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected. The following Java example frees the temporary LOB associated with the LOB
locator object named "clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();

}

See also
rxnsmiles

mdlaux.rxnsmiles

BIOVIA Direct Developers Guide > Using Direct > Conversion of SMILES strings to molfile

Page 212 | BIOVIA Direct 2021 • Reference Guide

Chapter 5:
Examples

Flexmatch Search 213
Substructure Search 215
Molecule Formula Search 217
Molecule Similarity Search 218
Reading a Molfile 219
Retrieving Molfile Structures 219
Retrieving Chime Structures 220
Structure Registration 220
Reaction Flexmatch Search 222
Reaction Substructure Search 223
Reaction Similarity Search 226
Writing a File 228
Fetching Reactions Using the Rxnfile Format 228
Reading a Rxnfile 230
Fetching Reactions Using the Chime Format 231
Reaction Registration 234

Flexmatch Search
The following are examples of SQL statements that use flexmatch:

Task Example

Finding records that match a structure in a
molfile

select cdbregno
from sample2d
where flexmatch(

ctab,
'/home/users/structx.mol',
'match=all'
)=1;

Finding records that match the tautomers
in a structure in a molfile

select cdbregno
from sample2d
where flexmatch(

ctab,
'/temp/structmorph.mol',
'fra/sal/tau'
)=1;

Finding records that exactly match a
structure in a string variable s1 that
contains a structure from a molfile. The
molfile string contains embedded newline
characters.

select cdbregno
from sample2d
where flexmatch(ctab, :s1, 'all')=1

Note: See Oracle SQL documentation for details about
binding variables in a SQL statement.

Finding records that match a structure
using a variable dcStruc, which contains

select to_char (cdbregno)

BIOVIA Direct 2021 • Reference Guide | Page 213

Chapter 5: Examples

Task Example

a Chime string, and dcFcpOpts which
contains the flexmatch parameters (a
VBScript example)

from sample2d
where flexmatch(

ctab, " &dcStruc & "','" &
dcFcpOpts &"')=1;

Finding records within a range of
cdbregno numbers, and that match a
structure in a molfile

select cdbregno
from sample2d
where dcbregno bteween 200 and 300

and
flexmatch(

ctab,
'/home/users/structx.mol',
'match=all'
)=1;

Finding records that exactly match a BLOB
structure from another table

select cdbregno
from sample2d
where flexmatch(

ctab,
(select ctab

from acd2d_mol
where cdbregno=20),

'all'
)=1;

Finding records that least match a CLOB
structure from another table

select cdbregno
from sample2d
where flexmatch(

ctab,
(select molfile(ctab)

from acd2d_mol
where cdbregno=20),

'none'
)=1;

Finding records that exactly match a
structure that is represented by a SMILES
string

select cdbregno
from sample2d
where flexmatch(ctab,'c1ccccc1','all')=1;

Determining if a query that is represented
by a SMILES string matches a specific
record in the database

select flexmatch(ctab,'C1CCCCC1','all')
from sample2d
where cdbregno=27;

Joining a flexmatch search with a
substructure search on the same table

select b.cdbregno
from sample2d a,

sample2d b
where flexmatch(a.ctab, b.ctab, 'all') =
1

and
sss(b.ctab, 'c1ccccc1')=1;

Page 214 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Task Example

Joining a flexmatch search with a
substructure search on a different table

select b.cdbregno
from sample2d a,

acd2d_mol b
where a.cdbregno = b.cdbregno and

flexmatch(a.ctab,b.ctab,'all')=1 and
sss(b.ctab, 'c1ccccc1')=1;

Substructure Search
The following are examples of SQL statements that use sss:

Task Example

Finding structures that
contain a substructure in a
molfile

select cdbregno
from sample2d
where sss(

ctab,
'/home/users/structx.mol'
)=1;

Finding structures that
contain a substructure in a
string variable s1 that
contains a structure from a
molfile. Themolfile string
contains embedded newline
characters.

select cdbregno
from sample2d
where sss(ctab, :s1)=1;

Note: See Oracle SQL documentation for details about binding
variables in a SQL statement.

Finding structures that
contain a substructure using a
string variable dcStruc that
contains a Chime string (a
VBScript example)

select to_char(cdbregno)
from sample2d
where sss(ctab,'"& dcStruc &"')=1

Counting the structures that
contain a substructure that is
represented by a SMILES
string

select count(*)
from sample2d
where sss(ctab,'c1ccccc1')=1;

BIOVIA Direct 2021 • Reference Guide | Page 215

Chapter 5: Examples

Task Example

Finding records within a range
of cdbregno numbers, and
that contain a substructure in
a temporary table

1. Create a temporary table that will contain a CLOB structure from a
molfile. For example:
create table temp_query(query clob);

2. Insert themolfile structure into the temporary table. For example:
insert into temp_query(query)

values(readmol('/home/users/structx.mol'));
commit;

3. Perform a substructure search on themolfile structure in the
temporary table, for records within the range of cdbregno numbers.
For example:
select cdbregno
from sample2d i,

temp_query t
where cdbregno between 10 and 100

and sss(i.ctab, t.query)=1;

4. Drop the temporary table. For example:
drop table temp_query;

Performing a substructure
search, and saving the results
into an Oracle table that can
be searched by Direct

1. Create a table whose rows are populated from a substructure
search. For example:
create table result_sss as

select * from sample2d
where sss(

ctab,
'/home/users/structx.mol'

=1;

2. Create an index for the table, using the cdbregno field. For
example:
create index result_sss_idx on result_sss
(cdbregno);

3. Create a molecule domain index for the table, using the ctab field.
For example:
create index result_sss_ixmdl on result_sss(ctab)

indextype is c$direct2021.mxixmdl;

4. To test the results, count the number of rows for the newly created
table. The count must match the count of rows from the original
substructure search. For example:
select count(*) from result_sss;
select count(*) from sample2d
where
sss(

ctab,
'/home/users/structx.mol'

Page 216 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Task Example

)=1;

5. Drop the temporary table. For example:
drop table result_sss;

Joining an exact match search
with a substructure search on
the same table

select b.cdbregno
from sample2d a,

sample2d b
where flexmatch(a.ctab, b.ctab, 'all') = 1

and sss(b.ctab, 'c1ccccc1')=1;

Highlighting the query
structure in a Substructure
search that returns themolfile
format of thematching
structure

select sss_highlight_molfile(1)
from sample2d
where sss(

ctab, readmol('/home/users/2dquery.mol'),
1
)=1;

Highlighting the query
structure in a substructure
search that returns the Chime
format of thematching
structures

select ssshighlight(1)
from sample2d
where sss(

ctab,
'/home/users/2dquery.mol',
1
)=1;

Molecule Formula Search

The following are examples of SQL statements that use fmlalike and fmlamatch:

Task Example

Finding records that contain a formula select cdbregno
from sample2d
where fmlalike(ctab, 'C6 H6')=1;

Finding records that contain a formula in a
string variable s1

select cdbregno
from sample2d
where fmlalike(ctab, :s1)=1;

Note: See Oracle SQL documentation for details about
binding variables in a SQL statement.

Finding records that match an exact formula select cdbregno
from sample2d
where fmlamatch(ctab, 'C2 H4')=1;

Finding records and formulas for a range of
cdbregno numbers that contain a formula

select cdbregno,
molfmla(ctab)

from sample2d

BIOVIA Direct 2021 • Reference Guide | Page 217

Chapter 5: Examples

Task Example

where fmlalike(ctab,'c17h19n1o3')=1
and cdbregno between 10 and 50;

Finding records for a range of cdbregno
numbers that do not contain a formula

select cdbregno
from sample2d
where (not fmlalike
(ctab,'c17h19n1o3')=1)

and cdbregno between 10 and 50;

Performing a substructure search, and
saving the results into an Oracle table that
can be searched by Direct

select cdbregno,
molfmla(ctab),
fmlalike(ctab,'c2 h4')

from sample2d
where cdbregno < 5;

Molecule Similarity Search
The following are examples of SQL statements that use similar:

Task Example

Finding records that are similar to the
structure in a molfile, with a similarity degree
of 40 percent or more

select cdbregno
from sample2d
where similar(

ctab,
'c:\temp\structx.mol',
'40'

) = 1;

Finding records that are similar to the
structure using a string variable s1 that
contains a structure from a molfile. Themolfile
string contains embedded newline characters.

select cdbregno
from sample2d
where similar(ctab,:s1,'40') = 1;

Note: See Oracle SQL documentation for details
about binding variables in a SQL statement.

Finding records that are similar to the
structure in a molfile, within a range of
similarity degree

select cdbregno
from sample2d
where similar(

ctab,
readmol('/home/users/structx.mol'),
'10 20'
) = 1;

Counting the records that are similar to a
structure that is represented by a query
string, with a similarity degree of less than 10

select count(*)
from sample2d
where similar(ctab,'c1ccccc1', 'sub
10')
= 1;

Page 218 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Reading a Molfile
The following are examples of SQL statements that use readmol and readbinaryfile:

Task Example

Reading a molfile using the
readmol operator.

select readmol('c:\temp\structx.mol')
from dual;

Reading a molfile using the
readbinaryfile operator.

select readfile('c:\temp\structx.mol')
from dual;

Populating a table queries with
the contents of a molfile, and
using CLOB structures in the table
to perform a substructure search

1. Create a table that will contain a CLOB structure from a molfile.
For example:
create table queries(

qid varchar2(32),
query clob

);
insert into queries(

qid,
query

)
values(

'benzene',
readmol('/home/smith/mols/benzene.mol')

);
commit;

2. Grant select access on the new table queries to the database
owner. For example:
grant select on queries to dcsamples;

3. Perform a substructure search using the CLOB structures in the
table queries. For example:
select cdbregno
from sample2d
where sss(

ctab,
(select query from queries where

qid='benzene')
)=1;

4. Drop the temporary table. For example:
drop table queries;

Note: If you do not grant select access on the user table queries
to the database owner, you will get the error: table does not exist.

Retrieving Molfile Structures
The following are examples of SQL statements that use molfile, molfile_string, and molfile_
string_seg:

BIOVIA Direct 2021 • Reference Guide | Page 219

Chapter 5: Examples

Task Example

Retrieving a molfile CLOB select molfile(ctab)
from sample2d
where cdbregno = 355;

Retrieving a molfile string of a small structure select molfile_string(ctab)
from sample2d
where cdbregno=9;

Retrieving Chime Structures
The following are examples of SQL statements that use molchime and chime_string:

Task Example

Retrieving a molfile CLOB select molchime(ctab)
from sample2d
where cdbregno = 9;

Retrieving a Chime string of a small structure select chime_string(ctab)
from sample2d
where cdbregno=9;

Structure Registration
The following are examples of SQL statements that insert and update structures using the mol
operator.

Task Example

Registering a structure and user data into a
table, using themolfile format of the
structure

insert into sample2d(
ctab,
corp_id,
f_date

)
values(

mol('/home/users/structx.mol'),
'MUSE00100452',
to_date ('13-apr-2000')

);

Updating a structure and themolecule
formula in a table

update sample2d
set ctab =

mol(
(select molfile(ctab)
from sample2d
where flexmatch(

ctab,
'/home/users/structx.mol',
'match=all,bon'

Page 220 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Task Example

)=1
)

),
molformula=(makeclob('C6 H6'))

where cdbregno=367;

Updating a structure and user data in a table update sample2d
set ctab =

mol(
(select molfile(ctab)
from sample2d
where cdbregno=281)

),
molname = 'Sodium hydroxide',
corp_id = 'MUSE00500023',
f_date = to_date ('13-apr-2000')

where molname = 'Thiamine
hydrochloride';

The following examples are UPDATE and DELETE statements that use Direct search operators in the
WHERE clause. These examples work on Oracle 10, but note that these examples may not work correctly
on Oracle 9. In Oracle 9, if theWHERE clause of a DELETE or UPDATE statement uses BIOVIA Direct search
operators and Oracle executes the search using the domain index, the SQL fails with an ORA-04091 error.
For example, the following SQL returns with an ORA-04091 error:
delete from sample2d where fmlamatch(ctab, 'c6 h5 c11')=1;

If the search is modified so that it does not use the domain index, by adding a zero to the FMLAMATCH
result, then the operation will succeed. The following SQL successfully deletes a row:
delete from sample2d where fmlamatch(ctab, 'c6 h5 c11')+0 =1;

Task Example

Updating a structure in a table, using a
structure in a molfile

update sample2d
set ctab =

mol('/home/users/structx.mol')
where flexmatch(ctab,
'c1ccccc1','all')=1;

Deleting rows from a table that match a
flexmatch search

delete
from sample2d
where flexmatch(
ctab,

'/home/users/structx.mol',
'all'

)=1;

BIOVIA Direct 2021 • Reference Guide | Page 221

Chapter 5: Examples

Task Example

Deleting rows from a table that match a
substructure search

delete
from sample2d
where sss(ctab,

'/home/users/structx.mol'
)=1;

Deleting rows from a table that match a
formula search

delete

from sample2d
where fmla_like(ctab, 'Mn O2')=1;

Reaction Flexmatch Search
The following are examples that use rxnflexmatch:

Task Example

Finding an exact match
of a reaction in a rxnfile

select rxnmdlnumber
from samplerx_reaction
where rxnflexmatch(

rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rxn',
'all'
)=1;

Finding reactions that
contain an exact match
of a reaction that is
stored in a temporary
CLOB. This example uses
writetempclob to
construct a reaction that
can contain more than
4000 characters into a
temporary CLOB, and
uses tempclob to get
its contents. For an
example of how to do
this within a client
application, see
“Copying string
segments into a
temporary CLOB” in the
BIOVIA Direct
Developers Guide.

select writetempclob(query-string, 0) from dual;
select writetempclob(next-query-string, 1) from dual;
select writetempclob(last-query-string, 1) from dual;
select rxnmdlnumber
from samplerx_reaction

where rxnflexmatch(
rctab, tempclob(0),
'subset all'
)=1;

Page 222 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Task Example

Finding records that
exactly match a reaction
in a string variable s1
that contains a structure
from a rxnfile. The rxnfile
string contains
embedded newline
characters, and only
contains up to 4000
characters.

select rxnmdlnumber
from samplerx_reaction
where rxnflexmatch(rctab, :s1,'all')=1;

Note: See Oracle SQL documentation for details about binding variables in
a SQL statement.

Finding records that
match a Chime reaction
that is embedded in a
query HTML page (a
VBScript example)

'This embed HTML tag defines the Chime box:
' <embed type="chemical/x-mdl-rxnfile"
' width=400 height=200
' queryformbox="document.query.queryrxn" > 'Get the

Chime string
rxnChime = document.query.queryrxn.value;
'Use the Chime string in the SQL query

sqlString = "select rxnmdlnumber from
samplerx_reaction
where rxnflexmatch(rctab," &
rxnChime &
", 'all')=1";

Finding records that
contain an exact match
of a BLOB reaction in a
table

select rxnmdlnumber
from samplerx_reaction
where rxnflexmatch(
rctab,

(select rctab

from samplerx_reaction

where rxnmdlnumber='RXCI94067703'),
'all'
)=1;

SQL> set serveroutput on

Reaction Substructure Search
The following are examples that use rss:

Task Example

Finding structures that
contain a substructure in a
rxnfile

select rxnmdlnumber
from samplerx_reaction
where rss(

rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rx
n'

)=1;

Finding reactions that
contain a reaction that is
stored in a temporary CLOB.
This example uses
writetempclob to
construct a reaction that can
contain more than 4000
characters into a temporary
CLOB, and uses tempclob to
get its contents. For an
example of how to do this
within a client application,
see “Copying string segments
into a temporary CLOB” in
the BIOVIA Direct Developers
Guide.

select writetempclob(query-string, 0) from dual;
select writetempclob(next-query-string, 1) from
dual;
select writetempclob(last-query-string, 1) from
dual;
select rxnmdlnumber
from samplerx_reaction
where rss(

rctab,
tempclob(0)
)=1;

Finding reactions that
contain a reaction in a string
variable s1 that contains a
reaction from a rxnfile. The
rxnfile string contains
embedded newline
characters, and only contains
up to 4000 characters.

select rxnmdlnumber
from samplerx_reaction
where rss(

rctab,
:s1
)=1;

Note: See Oracle SQL documentation for details about binding
variables in a SQL statement.

Finding records that contain
a Chime reaction that is
embedded in a query HTML
page (a VBScript example)

'This embed HTML tag defines the Chime box:
' <embed type="chemical/x-mdl-rxnfile"
' width=400 height=200
' queryformbox="document.query.queryrxn" >
'Get the Chime string

rxnChime = document.query.queryrxn.value;
'Use the Chime string in the SQL query

sqlString = "select rxnmdlnumber

BIOVIA Direct 2021 • Reference Guide | Page 223

Chapter 5: Examples

Task Example

from samplerx_reaction
where rss(

rctab,"
& rxnChime & "
)=1";

Highlighting the query in a
reaction substructure search
that returns the highlighted
Chime string

select rsshighlight(1)
from samplerx_reaction
where rss(

rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.rx
n',1

)=1;

Finding reactions that
contain an automapped
reaction in a rxnfile

select rxnmdlnumber
from samplerx_reaction
where rss(

rctab,
rxnautomap(

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rx
n',

NULL)
)=1;

Page 224 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Task Example

Determining if a BLOB
reaction that was converted
from a rxnfile contains the
structure in another rxnfile.
This example uses the
package function name for
rxn to convert a rxnfile to a
BLOB, and uses the package
function name for
readbinaryfile to read
the contents of the second
rxnfile. This is a PL/SQL
example. If you want to see
the output value, execute the
following SQL*Plus command
before running this sample
code:
SQL> set
serveroutput on

/DECLARE
candidate BLOB;
query CLOB;
match NUMBER;

BEGIN
--Convert rxnfile to BLOB
candidate := mdlaux.rxn(

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rx
n');

--Read rxnfile to a CLOB
query := mdlaux.filetoclob(

'/opt/BIOVIA/direct2021/examples/rxnfiles/query3.rx
n');

select rss(
candidate,
query)

into match
from dual;
dbms_output.put_line('Match=' || to_char(match));

END;
/

Retrieving multiple
(highlighted and
unhighlighted) Chime strings
for a specific reaction that
matches a reaction
substructure search. This
example assumes that a
Chime string can bemore
than 4000 characters.

DECLARE
str1 varchar2(4000);
str2 varchar2(4000);
bigstr1 varchar2(32000);
bigstr2 varchar2(32000);

BEGIN
--Fetch the first segments of the unhighlighted
--and highlighted Chime strings
select rxnstringsegment(1, rxnchime(rxn)),

rxnstringsegment(2, rsshighlight(99))
into bigstr1, bigstr2
from samplerx_reaction
where rss(rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/rssq1.rx
n',

99
)=1;
--Fetch the rest of the Chime strings
loop

select rxnstringsegment(1), rxnstringsegment(2)
into str1, str2

BIOVIA Direct 2021 • Reference Guide | Page 225

Chapter 5: Examples

Task Example

from dual;
if str1 is NULL and str2 is NULL then exit; end

if;
bigstr1 := bigstr1 || str1;
bigstr2 := bigstr2 || str2;

end loop;
END;

Joining a reaction flexmatch
search with a reaction
substructure search on the
same table

select b.rxnmdlnumber
from samplerx_reaction a,

samplerx_reaction b
where rxnflexmatch(

a.rctab,
b.rctab,

'all') = 1
and rss(

b.rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query4.rx
n')=1
;

Reaction Similarity Search
The following are examples that use rxnsim:

Task Example

Finding reactions that
are at least 80% similar in
the reacting center
portion in the query,
and at least 20% similar
in themolecule portion
in the query. This is the
default.

select rxnmdlnumber
from samplerx_reaction
where rxnsim(

rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rxn',
''
)=1;

Finding reactions that
are at least 60% similar in
the reacting center
portion in the query,
and at least 40% similar
in themolecule portion
in the query. The query
is stored in a temporary
CLOB. This example uses
writetempclob to
construct a reaction that

select writetempclob(query-string, 0)
from dual;
select writetempclob(next-query-string, 1)
from dual;
select writetempclob(last-query-string, 1)
from dual;
select rxnmdlnumber
from samplerx_reaction
where rxnsim(

rctab,
tempclob(0),
'60 40'

)=1;

Page 226 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Task Example

can contain more than
4000 characters into a
temporary CLOB, and
uses tempclob to get
its contents. For an
example of how to do
this within a client
application, see
“Copying string
segments into a
temporary CLOB” in the
BIOVIA Direct
Developers Guide.

Finding reactions that
are at between 20% and
80% similar in the
reacting centers and
molecule portion in the
query.

select rxnmdlnumber
from samplerx_reaction
where rxnsim(

rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rxn',
'20 80 20 80'
)=1;

Finding reactions that
are very dissimilar, that
is, at most 3% similar to
both reacting centers
and molecules of a
structure in a rxnfile. This
example also shows
molecule and reacting
center similarity values.
The ORDER BY clause
orders the results by
descending similarity to
see themost dissimilar
first.

select rxnmdlnumber,
rxnmolsim(1) "Molecule Similarity",
rxnctrsim(1) "Reacting Center Similaritiy"

from samplerx_reaction
where rxnsim(

rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rxn',
'0 3 0 3',
1
)=1;
order by rxnctrsim(1) desc, rxnmolsim(1) desc;

Finding reactions that
are similar to a
substructure in a rxnfile

select rxnmdlnumber
from samplerx_reaction
where rxnsim(

rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rxn',
'80 20 sub'
)=1;

Finding reactions that
are similar to a

select rxnmdlnumber
from samplerx_reaction

BIOVIA Direct 2021 • Reference Guide | Page 227

Chapter 5: Examples

Task Example

superstructure in a
rxnfile

where rxnsim(
rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rxn',
'20 40 20 40 super'
)=1;

Writing a File
The following are examples that use writebinaryfile:

Task Example

Writing a rxnfile
for a specific
reaction

select writefile(
rxnfile(rctab),
'/opt/BIOVIA/direct/examples/rxnfiles/rxn1.rxn')

from samplerx_reactionwhere rxnmdlnumber='RXCI94061946';

Writing a molfile
for the first
molecule
component in the
product of a
reaction

select writefile(
rxnmol(rctab, 2, 1),
'/opt/BIOVIA/direct/examples/rxnfiles/rxn1.mol')

from samplerx_reactionwhere rxnmdlnumber='RXCI94061946';

Writing a file that
contains the
Chime string
representation of
a reaction

select writefile(
rxnchime(rctab),
'/opt/BIOVIA/direct/examples/rxnfiles/rxnchime.txt'
)

from samplerx_reaction
where rxnmdlnumber='RXCI94061946';

Converting a
Chime string in a
file into the rxnfile
format, and
writing it to
another file

select writefile(
mdlaux.chimetoclob(
readfile(

'/opt/BIOVIA/direct2021/examples/rxnfiles/rxnchime.txt')),
'/opt/BIOVIA/direct2021/examples/rxnfiles/rxnfile.rxn')

from dual;

Converting the
contents of a
rxnfile into a
Chime string, and
writing it to
another file

select writefile(
mdlaux.clobtochime(
readfile(
'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.rxn')),
'/opt/BIOVIA/direct2021/examples/rxnfiles/rxn1.txt')

from dual;

Fetching Reactions Using the Rxnfile Format
The following are examples that use rxnfile, rxnstringsegment, tempclob, and writetempclob:

Page 228 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Task Example

Retrieving a
rxnfileCLOBfrom a reaction
substructure search

select rxnfile(rctab)

from samplerx_reaction

where rss(rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.rx
n'

)=1;

Retrieving a rxnfile CLOB
representation of a
reaction, and saving it to a
variable

DECLARE
rxnfileclob CLOB;

BEGIN
select rxnfile(rctab)
into rxnfileclob
from samplerx_reaction
where rxnmdlnumber='RXCI94061946';

END;

Retrieving a rxnfile CLOB
representation of a
reaction, and writing it to a
rxnfile

select writefile(
rxnfile(rctab),

'/opt/BIOVIA/direct2021/examples/rxnfiles/rxn1.rxn')
from samplerx_reaction
where rxnmdlnumber='RXCI94061946';

Retrieving an automapped
rxnfile CLOB from a reaction
substructure search

select rxnautomap(rxnfile(rctab), NULL)
from samplerx_reaction
where rss(

rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.rx
n'

)=1;

Highlighting the query
structure in a reaction
substructure search that
returns the highlighted
Chime string, and retrieving
its rxnfile representation

select mdlaux.chimetoclob(rsshighlight(1))
from samplerx_reaction
where rss(

rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.rx
n',

1
)=1;

Retrieving segments of
rxnfile strings from a
search. This is a PL/SQL
example that:

Gets the first string
segment of a reaction

DECLARE
strseg VARCHAR2(4000);
bigstr VARCHAR2(32000);
rxnval BLOB;
match NUMBER;

BIOVIA Direct 2021 • Reference Guide | Page 229

Chapter 5: Examples

Task Example

using
rxnstringsegment

Uses
rxnstringsegment(0)
to get the subsequent
segments of the
reaction, and
accumulate the
segments into another
string variable
Uses the package
function name of rxn
to convert the big string
to a BLOB, and compare
it with the original
reaction

If you want to see the
output value, execute the
following SQL*Plus
command before running
this sample code:
SQL> set
serveroutput on

BEGIN
--Get the first string segment of reaction
select rxnstringsegment(rxnfile(rctab))
into bigstr
from samplerx_reaction where rxnmdlnumber =

'RXCI94061946';
loop

--Get the next string segment
select rxnstringsegment(0)

into strseg from dual;
IF strseg IS NULL THEN EXIT; END IF;

bigstr := bigstr || strseg;
end loop;
--Convert the complete reaction string to a BLOB
rxnval := mdlaux.rxn(bigstr);
--Check if the BLOB matches original reaction
select rxnflexmatch(rctab, rxnval, 'all')
into match from samplerx_reaction
where rxnmdlnumber='RXCI94061946';

dbms_output.put_line ('Match=' || to_char(match));
END;

Reading a Rxnfile
The following are examples that read a rxnfile:

Task Example

Performing a
reaction flexmatch
search based on a
structure in a
rxnfile

select rxnmdlnumber
from samplerx_reaction
where rxnflexmatch(

rctab,
'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.rxn',

'all'
)=1;

Performing a
substructure search
based on a structure
in a rxnfile

select rxnmdlnumber
from samplerx_reaction
where rss(

rctab,
'/opt/BIOVIA/direct2021/examples/rxnfiles/query4.rxn'
)=1;

Page 230 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Task Example

Performing a
reaction similarity
search based on a
structure in a
rxnfile. This
example uses the
package function
name for rxn to
convert a rxnfile to a
BLOB, and uses the
package function
name for
readbinaryfile

to read the contents
of the second
rxnfile. This is a
PL/SQL example. If
you want to see the
output value,
execute the
following SQL*Plus
command before
running this sample
code:
SQL> set
serveroutput on

DECLARE
candidate BLOB;

query CLOB;
match NUMBER;
rcsim NUMBER;
molsim NUMBER;

BEGIN
candidate := mdlaux.rxn(

'/opt/BIOVIA/direct2021/examples/rxnfiles/query2.rxn') ;

query := mdlaux.readfile(
'/opt/BIOVIA/direct2021/examples/rxnfiles/query3.rxn')
;

select rxnctrsim(1), rxnmolsim(1),
rxnsim(candidate,query, '50 50', 1)

into rcsim,
molsim,
match

from dual;
dbms_output.put_line('Match=' || to_char(match));
dbms_output.put_line('RCtr=' || to_char(rcsim));
dbms_output.put_line('Mol=' || to_char(molsim));

END;

Fetching Reactions Using the Chime Format
The following are examples that use rxnchime and rxnstringsegment:

Task Example

Retrieving a Chime
CLOB from a reaction
substructure search

select rxnchime(rctab)
from samplerx_reaction
where rss(

rctab,
'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.rxn'
)=1;

Retrieving a Chime
CLOB representation of
a reaction, and saving it
to a variable

DECLARE
chimeclob CLOB;

BEGIN
select rxnchime(rctab)
into chimeclob
from samplerx_reaction
where rxnmdlnumber='RXCI94061946';

END;

BIOVIA Direct 2021 • Reference Guide | Page 231

Chapter 5: Examples

Task Example

Retrieving a Chime
CLOB representation of
a reaction, and writing
it to a rxnfile

select writefile(
rxnchime(rctab),

'/opt/BIOVIA/direct2021/examples/rxnfiles/rxn1chime.tx
t')
from samplerx_reaction
where rxnmdlnumber='RXCI94061946';

Highlighting the query
structure in a reaction
substructure search
that returns the
highlighted Chime
string

select rsshighlight(1)
from samplerx_reaction
where rss(

rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/query1.rxn',
1
)=1;

Retrieving a Chime
string representation of
a reaction. This
example assumes that
the Chime string is not
more than 4000
characters. (Chime
strings are generally
smaller than rxnfile
strings.)

select rxnstringsegment(
rxnchime(rctab))

from samplerx_reaction
where rxnmdlnumber='RXCI94061946';

Retrieving segments of
Chime strings from a
search. This example
assumes that a Chime
string can bemore
than 4000 characters.
This is a PL/SQL
example that:

Gets the first string
segment of a
reaction using
rxnstringsegmen
t

Uses
rxnstringsegmen

t(0) to get the
subsequent
segments of the
reaction, and
accumulate the

DECLARE
strseg VARCHAR2(4000);
bigstr VARCHAR2(32000);
rxnval BLOB;
match NUMBER;

BEGIN
--Get the first Chime string segment of reaction
select rxnstringsegment(rxnchime(rctab))
into bigstr
from samplerx_reaction where

rxnmdlnumber='RXCI94061946';
loop

--Get the next string segment
select rxnstringsegment(0)

into strseg
from dual;

IF strseg IS NULL THEN EXIT; END IF;
bigstr := bigstr || strseg;

end loop;
--Convert the complete Chime string to a BLOB
rxnval := mdlaux.rxn(bigstr);
--Check if the BLOB matches original reaction

Page 232 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Task Example

segments into
another string
variable
Uses the package
function name of
rxn to convert the
big string to a BLOB,
and compare it with
the original reaction

If you want to see the
output value, execute
the following SQL*Plus
command before
running this sample
code:
SQL> set
serveroutput on

select rxnflexmatch(rctab, rxnval, 'all')
into match from samplerx_reaction where

rxnmdlnumber='RXCI94061946'; dbms_output.put_line
('Match=' || to_char(match)); END;

Retrieving multiple
(highlighted and non-
highlighted) Chime
strings for a specific
reaction that matches a
reaction substructure
search. This example
assumes that a Chime
string can bemore
than 4000 characters.

DECLARE
str1 varchar2(4000);
str2 varchar2(4000);
bigstr1 varchar2(32000);
bigstr2 varchar2(32000);

BEGIN
--Fetch the first segments of the unhighlighted
--and highlighted Chime strings
select rxnstringsegment(1, rxnchime(rctab)),

rxnstringsegment(2, rsshighlight(99))
into bigstr1, bigstr2
from samplerx_reaction
where rss(rctab,

'/opt/BIOVIA/direct2021/examples/rxnfiles/rssq1.rxn',
99
)=1;

--Fetch the rest of the Chime strings
loop

select rxnstringsegment(1), rxnstringsegment(2)
into str1, str2
from dual;

if str1 is NULL and str2 is NULL then exit;
end if;
bigstr1 := bigstr1 || str1;
bigstr2 := bigstr2 || str2;

end loop;
END;

BIOVIA Direct 2021 • Reference Guide | Page 233

Chapter 5: Examples

Reaction Registration
The following are examples that insert and update reactions using the rxn operator. These examples
also include SQL statements that delete reactions from a database:

Task Example

Registering a
reaction in a rxnfile

insert into samplerx_reaction(
rxnmdlnumber,
rctab

)
values(

'NEWRXN99910',
rxn

('/opt/BIOVIA/direct2021/examples/rxnfiles/query1.rxn')
);

Registering a
reaction in a rxnfile
(a PL/SQL example)

DECLARE
rxnval blob;

BEGIN
rxnval := mdlaux.rxn(

'/opt/BIOVIA/direct91/examples/rxnfiles/query1.rxn');
insert into samplerx_reaction(

rxnmdlnumber,
rctab)

values(
'NEWRXN99911',
rxnval

);
END;

Registering a
reaction in a Chime
string that is stored
in a file

insert into samplerx_reaction(
rxnmdlnumber,
rctab

)
values(

'NEWRXN99912',
rxn(

readfile(

'/opt/BIOVIA/direct2021/examples/rxnfiles/rxnchime.txt')
)

);

Registering a
reaction that is
stored in a
temporary CLOB.
This example uses
writetempclob to
construct a
reaction that can

select writetempclob(rxn-string, 0) from dual;
select writetempclob(next-rxn, 1) from dual;
select writetempclob(last-rxn, 1) from dual;
insert into samplerx_reaction(

rxnmdlnumber
rctab

)
values(

'NEWRXN99913',

Page 234 | BIOVIA Direct 2021 • Reference Guide

Chapter 5: Examples

Task Example

contain more than
4000 characters
into a temporary
CLOB, and uses
tempclob to get its
contents. For an
example of how to
do this within a
client application,
see “Copying string
segments into a
temporary CLOB”
in the BIOVIA Direct
Developer’s Guide.

rxn(tempclob(0))
);

Updating a reaction
with a different
reaction

update samplerx_reaction
set rctab =

(select rctab
from samplerx_reaction
where rxnmdlnumber='RXCI94013284')

where rxnmdlnumber = 'RXCI94070168';

BIOVIA Direct 2021 • Reference Guide | Page 235

Chapter 6:
Molecule Searches

Flexmatch Search 236
Substructure Search 237
Similarity Search 238
Molecule Formula Search 239

Flexmatch Search
A flexible match (flexmatch) search finds structures that match your query molecule exactly, except in
ways that you specify with any of the flexmatch switches. The flexmatch switches allow you to selectively
restrict or relax the criteria that are used to determine whether a structure is an exact match.To perform
a flexmatch search, use the flexmatch operator.
The flexmatch operator requires you to specify flexmatch parameters, such as the following:

select cdbregno
from moltable
where flexmatch(ctab, '/home/user/query.mol', flexmatch-
parameters)=1;

where flexmatch-parameters is a string that consists ofMATCH or IGNORE parameters. MATCH and
IGNORE parameters allow you to selectively restrict or relax the search criteria based on a query
structure. The format of the string flexmatch-parameters is:

MATCH|IGNORE=FP1[,FP2,FP3,...]

where FP1, FP2, FP3 are the flexmatch switches. For additional information and examples of
flexmatch switch settings, see the Exact Search (Flexmatch) chapter in BIOVIA Chemical Representation.
You can combinemore than one flexmatch switch with either the MATCH or the IGNORE parameter (not
both). If you specify more than one flexmatch switch, use a comma (,) or a forward slash (/) to separate
them. If you do not specify MATCH or IGNORE, the cartridge assumes the MATCH parameter. For
example, the following flexmatch parameters are equivalent. Both specify an exact match:

flexmatch(ctab, '/home/user/query.mol', 'match=all')
flexmatch(ctab, '/home/user/query.mol', 'all')

The MATCH parameter allows you to specify features of the retrieved structures that must match the
query. If you want a less restrictive definition of exact match, use MATCH= to enable only those switches
that you want to apply. Any switches not listed in MATCH= are ignored. MATCH=NONE is the loosest
possible definition. Each switch you add in MATCH= tightens thematch criteria, and thus generally
permits fewer hits.
To enable a flexmatch switch in the search criteria, do one of the following:

Include the switch in the MATCH parameter.
Exclude the switch from the IGNORE parameter.

The IGNORE parameter allows you to specify features of the structures that will be ignored in the query.
If you want a relatively tight definition of exact match with the switches, use IGNORE= to specify only
those switches that you want to disable. Any switches not listed in IGNORE= arematched.
IGNORE=NONE is the tightest possible definition (It is equivalent to an exact match). Each switch you add
in IGNORE= relaxes thematch criteria.

Page 236 | BIOVIA Direct 2021 • Reference Guide

Chapter 6: Types of Molecule Searches

IMPORTANT! Be careful when using IGNORE, since any switches that you do not explicitly include in
the listwill be turned on.

To disable a flexmatch switch in the search criteria, do one of the following:
Exclude the switch from the MATCH parameter.
Include the switch in the IGNORE parameter.

See also
Flexmatch Search of Generic Structures
Flexmatch Search of Biopolymer Sequence Structures

Flexmatch Search of Generic Structures
The flexmatch operator allows searching of generic structures. flexmatch can accept a specific or a
generic query molecule and finds all generics or specifics in the table which enumerates to exactly the
same set of specifics. Fastsearch is not used, instead the pre-screen consists of theminimum and
maximum molecule weights and the number of enumerated specifics.

See also
Biopolymer Searching and Registration in the BIOVIA Direct Developers Guide
GENERICS option in the flexmatch.

Flexmatch Search of Biopolymer Sequence Structures
You can search biopolymer sequence structures with the flexmatch operator.

Substructure Search
A substructure search finds structures that contain your query as a substructure within a larger
structure. A substructure is a portion of a larger molecule structure. For example:

To perform a two-dimensional (2D) substructure search, use the sss operator.

See also
Substructure search of generic structures
Substructure search of biopolymer structures

BIOVIA Direct 2021 • Reference Guide | Page 237

Chapter 6: Types of Molecule Searches

Substructure Search of Generic Structures
The sss operator allows you to search generic structures. sss accepts specific structures as the query
molecule, and uses Fastsearch to perform a substructure search of both generic and specific structures.

See also
BIOVIA Direct Developers Guide >Using Direct > Searching Generic Structures
BIOVIA Direct Developers Guide >Using Direct > Biopolymer Searching and Registration
sss> GENERICS

Substructure Search of Biopolymer Structures
You can search biopolymer substructures using the sss operator.
Because of the potential for a very large number of atoms in a biopolymer, only modified monomer
units and cross-linked monomer units are indexed for structure searching. If an sss query contains only
unmodified and un-cross-linked monomers Direct will use a text search to find all registered biopolymers
that have sequence text containing the query sequence text.
For example, the query leu-leu-leu-leu would generate the sequence text LLLL which would find proteins
such as human protein CM036which has the sequence text:

MSEPDTSSGFSGSVENGTFLELFPTSLSTSVDPSSGHLSNVYIYVSIFLSLLAFLLLLLIIALQRLKNIISSSSSYP
EYPSDAGSSFTNLEVCSISSQRSTFSNLSS

See also
BIOVIA Direct Developers Guide > Substructure Searching ofModified and Unmodified Monomers

Similarity Search
A similarity search finds structures that are structurally similar to the structure in your query, and
returns the degree of similarity between the query and retrieved structures. To perform a similarity
search, use the similar operator. Its ancillary operator similarity returns a number between 0 and
100 that indicates the degree of similarity between the query structure and the retrieved structure. The
higher the value, themore similarity.
The degree of structural similarity is based on the ratio of number of features a stored structure has in
common with the query and the total number of features contained in both. For a traditional similarity
search, each feature is one of the 960 searchable substructure keys in the database. A searchable key
defines a specific structural feature, such as a ring structure or the arrangement of a heteroatom in a
molecule. With a fingerprint similarity search, each feature is an Accord or Scitegic fingerprint value.
There are 384 Accord fingerprints and a user-defined number of Scitegic fingerprint values. As with
traditional similarity search, each fingerprint value defines a specific structural feature. For more
information about fingerprints, see "Fingerprint Searching" in theDirect Administration Guide.
In contrast to the substructure search, which finds results that are precisely specified by a carefully
constructed query structure, similarity search finds a group of structures that are loosely related to the
query structure.

Types of Similarity
The similar operator allows you to specify the type of similarity:

Page 238 | BIOVIA Direct 2021 • Reference Guide

Chapter 6: Types of Molecule Searches

Fingerprint ('fingerprint') - The search uses the predefined Accord or Scitegic fingerprint type. If this
option is not specified, the search uses the traditional substructure keys.
Normal ('normal') - The retrieved molecules can contain the same structural complexity as the query
structure. The query structure is neither a substructure nor a superstructure.
Subsimilar ('sub') - The retrieved molecules can contain more structural complexity than the query
structure. They are typically larger than the query structure, which is a substructure. The similar
operator disregards the attributes of the candidate structure that are not found in the query
structure.
Supersimilar ('super') - The retrieved molecules can contain less structural complexity than the query
structure. They are typically smaller than the query structure, which is a superstructure. The
similar operator disregards the attributes of the query structure that are not found in the
candidate structure.

The default is Normal if normal, sub, or super are not specified.

Molecule Formula Search
Amolecule formula search finds records that contain or match themolecule formula that you specify in
your query. To find records that contain a molecule formula, use the operator fmlalike. To find
records that exactly match a molecule formula, use the operator fmlamatch.
To perform a molecule formula search, you specify the atomic symbols and the numbers of atoms in the
formula. The format of the formula is:

ATOM(COUNT) ATOM(COUNT) ... ATOM(COUNT)

where ATOM represents an atomic symbol from the periodic table, and COUNT is an integer or range of
integers such as C(8-9)02.

To optimize search performance, include at least one of the atoms C, H, N or O and preferably more
than one of these atoms in your query. These are the only atom types which are indexed, and including
these atoms can decrease search time.
Your formula query can be:

An exact formula and no other atoms, such as C17 H19 NO3. Use fmlamatch for an exact formula
search.
A subformula and any additional atoms, such as C5 H10. Use fmlalike for a subformula search.
A subformula and any additional atoms except a specific atom, such as C5 H10 N0, where N0
represents zero nitrogens. Use fmlalike for a subformula search.

Use the operato rfmlamatch to find records that contain the exact formula in your query. Your exact
formula query must include all hydrogens, standard atom symbols, and atom counts. You can use a
single space to separate atoms, and capital letters are not required. For example: To find phenol, enter
C6 H6O.
Use the operator fmlalike to find records that contain only specific atoms. Your subformula query
can include a range of atom counts, and typically excludes the hydrogens. You can use a single space to
separate atoms, and capital letters are not required. For example, to find molecules that are sodium
salts, enter Na. To find molecules that contain twelve carbon atoms, one to two bromine atoms, and
two sulfur atoms, enter: C12 Br(1-2) S2. To find molecules that contain six carbons, six hydrogens, and
any number of other atom types, enter: C6 H6.

BIOVIA Direct 2021 • Reference Guide | Page 239

Chapter 6: Types of Molecule Searches

Note: If you enter a single atom within your query but you do not include spaces, you must also
enter a value of 1 for the single atom. For example: F1H5.

Page 240 | BIOVIA Direct 2021 • Reference Guide

Chapter 7:
Reaction Searches

Reaction Flexmatch Search 241
Reaction Substructure Search 242
Reaction Similarity Search 242

Reaction Flexmatch Search
A flexible match (flexmatch) search finds reactions whosemolecules match your query reaction’s
molecule exactly. You can specify exceptions with any of the flexmatch switches. The flexmatch switches
allow you to selectively restrict or relax the criteria that are used to determine whether a structure is an
exact match. To perform a reaction flexmatch search, use the rxnflexmatch operator.
The rxnflexmatch operator requires you to specify flexmatch parameters, such as the following:

select rxnmdlnumber
from samplerx_reaction
where rxnflexmatch(

rctab,
'/home/user/query.rxn',
rxnflexmatch-parameters
)=1;

where rxnflexmatch-parameters is a string that consists of MATCH or IGNORE parameters. MATCH
and IGNORE parameters allow you to selectively restrict or relax the search criteria based on a query
structure. The format of the string rxnflexmatch-parameters is:

MATCH|IGNORE=FP1[,FP2,FP3,...]

where FP1, FP2, FP3 are the reaction flexmatch switches.
You can combinemore than one flexmatch switch with either the MATCH or the IGNORE parameter
(not both). If you specify more than one flexmatch switch, use a comma (,) or a forward slash (/) to
separate them. If you do not specify MATCH or IGNORE, the cartridge assumes the MATCH parameter.
For example, the following rxnflexmatch parameters are equivalent (Both specify an exact match.):

rxnflexmatch(rxn, '/home/user/query.rxn', 'match=all')
rxnflexmatch(rxn, '/home/user/query.rxn', 'all')

The MATCH parameter allows you to specify features of the retrieved reactions that must match the
query. If you want a less restrictive definition of exact match, use MATCH= to enable only those switches
that you want to apply. Any switches not listed in MATCH= are ignored. MATCH=NONE is the loosest
possible definition. Each switch you add in MATCH= tightens thematch criteria, and thus generally
permits fewer hits.
To enable a flexmatch switch in the search criteria, do one of the following:

Include the switch in the MATCH parameter.
Exclude the switch from the IGNORE parameter.

The IGNORE parameter allows you to specify features of the structures that will be ignored in the query.
If you want a relatively tight definition of exact match with the switches, use IGNORE= to specify only
those switches that you want to disable. Any switches not listed in IGNORE= arematched.

BIOVIA Direct 2021 • Reference Guide | Page 241

Chapter 7: Reaction Searches

IGNORE=NONE is the tightest possible definition (It is equivalent to an exact match). Each switch you add
in IGNORE= relaxes thematch criteria.

IMPORTANT! Be careful when using IGNORE, since any switches that you do not explicitly include in
the list will be turned on.

To disable a flexmatch switch in the search criteria, do one of the following:
Exclude the switch from the MATCH parameter.
Include the switch in the IGNORE parameter.

See also
BIOVIA Chemical Representation > Exact Search (Flexmatch)

Reaction Substructure Search
A reaction substructure search finds reaction records in your database that contain your query as a
reaction substructure wholly within a larger reaction. Your reaction substructure query is a two-
dimensional representation of a portion of a reaction (a reaction substructure) with mapped atoms and
your choice of restrictions on the reacting centers. For example:

To perform a reaction substructure search, use the rss operator.
The highlighted portion of the reaction in the example shows the substructure query. Note that the
record retrieved does not highlight the query . If you want to highlight the substructure in the records
that match the query, use the rsshighlight operator.

Reaction Similarity Search
A reaction similarity search finds reaction records that are similar to your query. You can specify both
the type and degree of similarity in your query. To perform a reaction similarity search, use the rxnsim
operator.

See also
Types of similarity
Degrees of similarity

Types of Similarity
The types of similarity:

Page 242 | BIOVIA Direct 2021 • Reference Guide

Chapter 7: Reaction Searches

Structural - Physical resemblance to the substratemolecules in your query. You specify a structural
similarity by specifying degrees ofmolecule similarity. For more information, see Degrees of
Similarity.
Transformational - Similar reacting centers. You specify a transformational similarity by specifying
degrees of reacting center similarity. For more information, see Degrees of Similarity.

In addition, you can also specify one of the following types of similarity:
Subsimilar ('sub') - The reaction components that are retrieved contain more structural complexity
than your query. Your query is a substructure.
Supersimilar ('super') - The reaction components that are retrieved contain less structural complexity
than your query. Your query is a superstructure.
Normal (neither 'sub' nor 'super') - The reaction components that are retrieved contain the same
structural complexity as your query. Your query is not a substructure or a superstructure.

Degrees of Similarity
The degree of similarity is an arbitrary value between 0 and 100 (these are not actual units). The higher
the value, themore similarity. You can specify the degree of:

Reacting center similarity. A high value finds reactions with nearly identical reacting centers. A lower
value results in hits with less related transformations.
Molecule similarity. A high value finds reactions with nearly identical molecules in the reaction. A
lower value causes rxnsim to ignore nonreacting groups in a reaction.

The degree of structural similarity depends on the number of searchable structural keys that a stored
reaction component has in common with the query compared to the total number of searchable
structural keys BIOVIA sets approximately 960 searchable keys in the database. A searchable key defines
a specific structural feature, such as a ring structure or the arrangement of a heteroatom in a molecule.
The degree of transformational similarity depends on number of searchable reacting center keys that a
stored reaction has in common with the query compared to the total number of searchable reacting
center keys BIOVIA sets approximately 654 searchable reacting center keys in the database.
If the query specified in rxnsim does not contain reacting center features such as bond marks, the
reacting center component of similarity is ignored during a search. If the query specified in rxnsim (or if
the candidate) does not contain reacting center features, rxnctrsim returns NULL. This indicates that
the similarity was ignored during the search. For example, if the specified similarity threshold is 80%, you
should only see hits of 80% or greater, or hits where the rxnctrsim value is NULL (ignored).

BIOVIA Direct 2021 • Reference Guide | Page 243

Chapter 8:
Specifying the Query Structure
This section explains the possible formats for the query operand for the Direct search operators
flexmatch,similar, and sss. When you specify the query structure for these operators, you can use
one of the following formats:

Molfile 244
Chimestring 245
BLOB (Binary Large Object) 246
CLOB (Character Large Object) 247
HELM String 247
SMILES String 247

Molfile
Amolfile uses th e.mol file extension, and contains information about a single molecule structure.
Use one of the following to specify themolfile representation of a query structure:

Molfile
representation

Example

filepath of a
molfile

select cdbregno
from sample2d
where sss(ctab,’/home/johnx/mymol.mol’)=1;

molfile select cdbregno,
molname

from mysample
where flexmatch(

ctab,
(select molfile(ctab)
from sample2d
where cdbregno=1),
'all'
)=1;

molfile_string select cdbregno,
molname

from mysample
where flexmatch(

ctab,
(select molfile_string(ctab)
from sample2d
where cdbregno=1),
'all'
)=1;

molfile_string_
seg

select cdbregno,
molname

Page 244 | BIOVIA Direct 2021 • Reference Guide

Chapter 8: Specifying the Query Structure

Molfile
representation

Example

from mysample
where flexmatch(

ctab,
(select molfile_string_seg(ctab, 1, 3000)
from sample2d where cdbregno=1),
'all'
)=1;

molfile-string select cdbregno
from sample2d
where flexmatch(ctab, :s1, 'all')=1;

Note: s1 is a bound variable, up to 4000 characters long, that contains the structure
in a molfile. The string includes the embedded newline characters in a molfile. See
Oracle SQL documentation for details about binding variables in a SQL statement.

Notes:
For large structures, use molfile or molfile_string_seg instead of molfile_string.
molfile_string returns only the first 4000 characters of themolfile. If themolfile exceeds 4000
characters, molfile_string returns an incomplete value.
If you use an embedded SELECT query to represent the query structure, the embedded query
must evaluate to exactly one query structure. In the preceding examples, the embedded SELECT
queries return only onemolfile structure for a specific cdbregno.

See also
Retrieving Molfile Structures.
CLOB (Character Large Object).

Chimestring
A Chime string is an encrypted string that represents a chemical structure.
Use one of the following to specify the Chime string representation of a query structure:

Chime string
representation

Example

molchime select cdbregno,
molfmla(ctab)

from mysample
where sss(

ctab,
(select molchime(ctab)
from sample2d
where cdbregno=356)
)=1;

chime_string select cdbregno,

BIOVIA Direct 2021 • Reference Guide | Page 245

Chapter 8: Specifying the Query Structure

Chime string
representation

Example

molfmla(ctab)
from mysample
where sss(

ctab,
(select chime_string(ctab)
from sample2d
where cdbregno=1)

)=1;

chime_string_
seg

select cdbregno,
molfmla(ctab)

from mysample
where sss(

ctab,
(select chime_string_seg(ctab, 1, 3000)
from sample2d
where cdbregno=120)
)=1;

chime-string select cdbregno
from sample2d
where flexmatch(ctab, :s1, ’all’)=1;

Note: s1 is a bound variable, up to 4000 characters long, that contains the Chime
string. See Oracle SQL documentation for details about binding variables in a SQL
statement.

Notes:
For large structures, use molchime or chime_string_seg instead of chime_string. chime_
string returns only the first 4000 characters of the Chime string. If the Chime string exceeds 4000
characters, chime_string returns an incomplete value. For more examples, see Retrieving
Chime Structures.
If you use an embedded SELECT query to represent the query structure, the embedded query
must evaluate to exactly one query structure. In the preceding examples, the embedded SELECT
queries return only one Chime structure for a specific cdbregno.

See also
CLOB (Character Large Object)

BLOB (Binary Large Object)
You can use the BLOB field from a table that stores the binary chemical structures to represent the
query structure. This BLOB field is typically called CTAB. Use an embedded query that retrieves the CTAB
field to represent the query structure in your search. For example:
select cdbregno
from mysample
where flexmatch(

ctab,

Page 246 | BIOVIA Direct 2021 • Reference Guide

Chapter 8: Specifying the Query Structure

(select ctab
from sample2d
where cdbregno=1),

'all'
)=1;

Note: If you use an embedded SELECT query to represent the query structure, the embedded
query must evaluate to exactly one query structure. In the preceding example, the embedded
SELECT query returns only one ctab for a specific cdbregno.

CLOB (Character Large Object)
You can use the operators molfile, molchime, or readmol to represent the query structure. They
return a molfile or Chime representation of the structure, which is of type CLOB. Use one of these
operators to represent large structures that exceed 4000 characters. To see examples, seeMolfile or
Chime string representation of a query.

HELM String
HELM, Hierarchical Editing Language for Macromolecules, is a format that can represent natural and
modified biological sequences including peptides, proteins and nucleic acids, linked to each other and to
small molecules to form complex structures.
The format specifications are described in "HELM: A Hierarchical Notation Language for Complex
Biomolecule Structure Representation", Tianhong Zhang, Hongli Li, Hualin Xi, Robert V. Stanton, and
Sergio H. Rotstein, J. Chem. Inf. Model. 2012, 52, 2796−2806.

SMILES String
SMILESTM(Simplified Molecular Input Line Entry System) is a language that represents molecules by
using ASCII character strings that specify atoms and bonds. You can use a SMILES string to specify a
query structure. For more information about SMILES, see
https://www.daylight.com/smiles/index.html.

BIOVIA Direct 2021 • Reference Guide | Page 247

https://www.daylight.com/smiles/index.html

Appendix A:
RDCAPPS Procedures
This section contains information about the procedures in the PL/SQL package RDCAPPS. RDCAPPS
contains a set of useful procedures that:

Reads reactions and one data field from a reaction RDfile, and insert them into a reaction table. See
ReadRxnRDF.
Reads molecules and one data field from a molecule RDfile, and insert them into a molecule table.
See ReadMolRDF.
Creates a sample trigger on a reaction column in a reaction table. The trigger automatically inserts
the component molecules in a reaction into a molecule table. SeeMakeMolXrefTrigger.

Using the RDCAPPS Procedures 248
ReadRxnRDF 248
ReadMolRDF 250
MakeMolXrefTrigger 252

Using the RDCAPPS Procedures
To use the RDCAPPS procedures, execute these procedures on a SQL*Plus command line. But before
you can use one of these procedures, you must create the RDCAPPS package in your SQL*Plus session.
To create the RDCAPPS package, execute the following SQL script:
SQL> @/opt/BIOVIA/direct/examples/rdcapps.sql

where /opt/BIOVIA/direct is the location of your Direct installation.

ReadRxnRDF
ReadRxnRDF reads reactions and one data field in a reaction RDfile, and inserts them into a reaction
table.
A reaction RDfile is an BIOVIA file type that uses the .rdf file extension. RDfiles have a hierarchical-file
structure that stores reactions and associated data that are exported from the top-level of a database
hierarchy. RDfiles also store text and numeric data that is exported from lower levels of a hierarchical
database.
ReadRxnRDF requires that the RDfile must contain:

Reactions ($RFMT entries), and
Either one data field which uniquely identifies each reaction ($DTYPE/$DATUM entries), or one
internal reaction registration number ($RIREG entries on the $RFMT line)

Syntax
ReadRxnRDF(filename, xrgfld, rxntab, rxncol, xrgcol)

Parameter Description

filename The full path and name of the RDfile.

xrgfld Specifies what data value to be inserted into the table along with the reaction.

Page 248 | BIOVIA Direct 2021 • Reference Guide

Appendix A: RDCAPPS Procedures

Parameter Description

xrgfld can be one of the following:
The name of a leaf-level field which appears in the RDfile
The keyword ‘RIREG’ (or ‘rireg’), which causes ReadRxnRDF to extract each reaction’s
internal registry number from the reaction’s start-of-record ($RFMT) line.

rxntab The name of the reaction table. This table contains a BLOB column which contains the
reactions.

rxncol The name of the BLOB column that contains the reactions. The rxncol column belongs
to the specified rxntab table.

xrgcol The name of the column which is the destination of the data value specified by the
xrgfld parameter.

Usage
This proceduremust be executed from SQL*Plus:
call rdcapps.readrxnrdf(

filename,
xrgfld,
rxntab,
rxncol,
xrgcol);

Example
The following is a portion of a sample RDfile, /home/user/rdfiles/rxnsfile.rdf. The examples
in this section will use this sample RDfile. “...” indicates deleted portions of the RDfile:
$RFMT $RIREG 33
$RXN
...
M END
$DTYPE RXN:VARIATION(1):VARIATION_NO
$DATUM 1
$DTYPE RXN:VARIATION(1):MDLNUMBER
$DATUM RXCI97000001
...
$DTYPE RXN:VARIATION(1):VARIATION_NO
$DATUM 2
$DTYPE RXN:VARIATION(1):MDLNUMBER
$DATUM RXCI97000002

The following example stores reactions and their internal regno from the RDfile into a new reaction table.
SQL> create table rxntable (rxnregno number(6), rxn blob);
SQL> call rdcapps.readrxnrdf(

'/home/user/rdfiles/rxnsfile.rdf',
'rireg',
'rxntable',
'rctab',
'rxnregno');

BIOVIA Direct 2021 • Reference Guide | Page 249

Appendix A: RDCAPPS Procedures

Using the sample RDfile rxnsfile.rdf, the preceding example will insert the reaction into
rxntable, with the value of 33 for rxnregno.
The following example stores reactions and their first VARIATION’s MDLNUMBER from a RDFile into a
new reaction table.
SQL> create table rxntable (extreg varchar2(12), rxn blob);
SQL> call rdcapps.readrxnrdf(

'/home/user/rdfiles/rxnsfile.rdf',
'mdlnumber',
'rxntable',
'rctab',
'extreg');

Using the sample RDfile rxnsfile.rdf, the preceding example will insert the reaction into
rxntable, with the value of RXCI97000001 for extreg. In this example, the second MDLNUMBER
record will be ignored because ReadRxnRdf uses the first value it encounters.

Comments
RDfiles that are written using the ISIS/Host Command Line Interface, and that use a FIELDS file
containing the single line:
rxnstructure *rxn

contain only $RFMT and $RIREG entries. BIOVIA databases do not contain a unique identifier for each
reaction. Instead of a unique identifer for each reaction, there is a unique identifier for each variation.
For these databases, the internal reaction registration number (regno) should be used as the identifier.
Use ReadRxnRDF to migrate reactions from an ISIS/Host reaction database into a reaction table. For
more information, see Converting Reactions into a Reaction Table in the BIOVIA Direct Developers
Guide.

ReadMolRDF
ReadMolRDF reads molecule structures and one data field in a molecule RDfile, and inserts them into a
molecule table.
Amolecule RDfile is an BIOVIA file type that uses the .rdf file extension. RDfiles have a hierarchical-file
structure that stores molecules and associated data that are exported from the top-level of a database
hierarchy. RDfiles also store text and numeric data that is exported from lower levels of a hierarchical
database.
ReadMolRDF requires that the RDfile must contain:

Molecule structures ($MFMT entries), and
Either one data field which uniquely identifies each reaction ($DTYPE/$DATUM entries), or one
internal molecule registration number ($MIREG entries on the $MFMT line)

Syntax
ReadMolRDF(filename, xrgfld, moltab, molcol, xrgcol)

Parameter Description

filename The full path and name of the RDfile.

xrgfld Specifies what data value to be inserted into the table along with themolecule.

Page 250 | BIOVIA Direct 2021 • Reference Guide

Appendix A: RDCAPPS Procedures

Parameter Description

xrgfld can be one of the following:
The name of a leaf-level field which appears in the RDfile
The keyword ‘MIREG’ (or ‘mireg’), which causes ReadMolRDF to extract each
molecule’s internal registry number from themolecule’s start-of-record ($MFMT) line.

moltab The name of themolecule table.

molcol The name of the BLOB column that contains themolecules. This column is typically
named CTAB.

xrgcol The name of the column which is the destination of the data value specified by the
xrgfld parameter.

Usage
This proceduremust be executed from SQL*Plus:
call rdcapps.readmolrdf(

filename,
xrgfld,
moltab,
molcol,
xrgcol);

Example
The following is a portion of a sample RDfile, /home/user/rdfiles/molsfile.rdf. The examples in
this section will use this sample RDfile. “...” indicates deleted portions of the RDfile:
...
$MFMT $MIREG 33

IH(4.0) 060501121810.002780.0000033
...
M END
$DTYPE MOL:SYMBOL(1):LINE_NO
$DATUM 1
$DTYPE MOL:SYMBOL(1):SYMBOL
$DATUM ZrCl2(Cp)2
$DTYPE MOL:SYMBOL(2):LINE_NO
$DATUM 2
$DTYPE MOL:SYMBOL(2):SYMBOL
$DATUM ZrCp2Cl2
...

The following example stores molecules and their internal regno from the RDfile into a newmolecule
table. From SQL*Plus:
create table moltable (ctab blob, molregno number(9));
call rdcapps.readmolrdf(

'/home/user/rdfiles/molsfile.rdf',
'mireg',
'moltable',
'ctab',
'molregno');

BIOVIA Direct 2021 • Reference Guide | Page 251

Appendix A: RDCAPPS Procedures

Using the sample RDfile molsfile.rdf, the preceding example will insert themolecule structure
into moltable, with the value of 33 for molregno.
The following example stores molecules and their first SYMBOL value from a RDFile into a new table.
From SQL*Plus:
create table moltable(first_symbol varchar2(200), ctab blob);
call rdcapps.readmolrdf(

'/home/user/rdfiles/molsfile.rdf',
'symbol',
'moltable',
'ctab',
'first_symbol');

Using the sample RDfile molsfile.rdf, the preceding example will insert themolecule structure into
moltable, with the value of ZrCl2(Cp)2 for extreg. In this example, the second SYMBOL record will be
ignored because ReadMolRdf uses the first value it encounters.

Comments
RDfiles that are written using the ISIS/Host Command Line Interface, and that use a FIELDS file
containing the single line:
molstructure *structure

contain only $MFMT and $MIREG entries.

MakeMolXrefTrigger
Creates a sample trigger on a reaction table. When a user inserts or updates a reaction into the reaction
table, the sample trigger:

Automatically inserts the component molecules in a reaction into a molecule table
Maintains a cross-reference table that correlates each reaction in the reaction table with its
molecules in themolecule table. If the cross-reference table does not yet exist,
MakeMolXrefTrigger creates it.

You can use the sample trigger as a basis for creating your own trigger that more closely meets your
business requirements. To customize the trigger, examine the code for the MakeMolXrefTrigger
procedure in examples/rdcapps.sql.
The following lists the Requirements and the Trigger Operations for the reaction table trigger that
MakeMolXrefTrigger creates.

Requirements
Verify that the following requirement is met before using MakeMolXrefTrigger:

The trigger on the reaction table must not yet exist. The name of the trigger is specified in the
optional InTriggerName parameter, or the default name assigned by the MakeMolXrefTrigger
procedure. See description of the InTriggerName parameter. For example, to determine if the
trigger already exists:
select trigger_name from user_triggers
where trigger_name like 'MY_RXN_TABLE%';

where MY_RXN_TABLE is the name of your reaction table. If the trigger already exists, drop it prior to
running MakeMolXrefTrigger. For example, to drop the trigger:
drop trigger my_rxn_table_trigger;

Page 252 | BIOVIA Direct 2021 • Reference Guide

Appendix A: RDCAPPS Procedures

where my_rxn_table_trigger is the name of the existing trigger on your reaction table.
Themolecule table must contain a column named CDBREGNO, and the values in this column must be
automatically generated. The reaction table trigger assumes that the CDBREGNO number is
automatically generated on themolecule table. If the CDBREGNO number is not automatically
generated on themolecule table, the reaction table trigger will insert NULL CDBREGNO values.
If you are creating a newmolecule table, you must create a trigger on themolecule table that
automatically generates CDBREGNO numbers. The following example creates a molecule table, its
domain index, and a trigger that automatically generates CDBREGNO numbers on insert:
create table mol_table (cdbregno number(9), ctab blob);
create index mol_table_ix on mol_table (ctab)

indextype is c$direct2021.mxixmdl;
create sequence mol_table_sequence start with 1;
create trigger mol_table_trigger

before insert on mol_table
for each row
declare
begin

if ((inserting and :new.cdbregno is not null) or
(updating('CDBREGNO'))) then
raise_application_error(-20100, 'CDBREGNO is not updatable');

end if;
if (inserting) then

select mol_table_sequence.nextval into :new.cdbregno from dual;
end if;

end;

Trigger Operations
MakeMolXrefTrigger creates a sample trigger that performs the following operations on:

Insert
The trigger decomposes the reaction into its component reactant and product molecules. For each
molecule, the trigger performs a flexmatch query against themolecule table. If a molecule is found,
the trigger retrieves its CDBREGNO number. If a molecule is not found, the trigger inserts the
molecule and its newly assigned CDBREGNO number into themolecule table. Then the trigger inserts
the following values into the cross-reference table:

The primary key value of the reaction row
The CDBREGNO number of themolecule
The component type (‘R’ for reactant, ‘P’ for product)
The component index number ranging from 1 to the number of reactants or products

Update
The trigger deletes the old reaction value using the primary key value from the cross-reference table,
and inserts the new reaction value.
Delete
Using the primary key value on the reaction table row, the trigger deletes all rows in the cross-
reference table that contain the same primary key value. The trigger does not deletemolecules from
themolecule table.

BIOVIA Direct 2021 • Reference Guide | Page 253

Appendix A: RDCAPPS Procedures

Note: You can use the sample trigger as a basis for creating your own trigger that more closely meets
your business requirements. To customize the trigger, examine the code for the
MakeMolXrefTrigger procedure in examples/rdcapps.sql.

Syntax
MakeMolXrefTrigger(InRxnTableName, InRxnTablePKCol, InMolTableName)
MakeMolXrefTrigger(InRxnTableName, InRxnTablePKCol, InMolTableName,

InRxnTableRxnCol, InRxnTablePKType,InMolTableMolCol,
InFlexmatchSwitches,InTriggerName, InXRefTableName)

Parameter Description

InRxnTableName The name of the reaction table. The reaction table contains a BLOB column
which contains the reactions. InRxnTableName is required.

InRxnTablePKCol The name of the primary key column in the reaction table.
InRxnTablePKCol is required.

InMolTableName The name of themolecule table that will receive component molecules
during reaction insert and update operations. InMolTableName is
required.

InRxnTableRxnCol The name of the BLOB column that holds the reactions.
InRxnTableRxnCol belongs to the specified table InRxnTableName.
If you do not specify InRxnTableRxnCol, or if you specify NULL:

If InRxnTableName contains only one BLOB column, this column is
used.
If InRxnTableName contains more than one BLOB column,
MakeMolXrefTrigger returns an exception. You must rerun
MakeMolXrefTrigger, and must specify the column name in
InRxnTableRxnCol.

InRxnTablePKType The name of the column which is the destination of the data value
specified by the xrgfld parameter.

InRxnTablePKType The Oracle datatype of the primary key column that you specified in the
InRxnTablePKCol parameter. InRxnTablePKType is only used when
MakeMolXrefTrigger creates the cross-reference table.
If you do not specify InRxnTablePKType, or if you specify NULL,
MakeMolXrefTrigger determines the datatype from the data
dictionary table. MakeMolXrefTrigger produces an error if it fails to
determine the datatype for less common datatypes. In this situation, you
must rerun MakeMolXrefTrigger with a specified
InRxnTablePKType.

Page 254 | BIOVIA Direct 2021 • Reference Guide

Appendix A: RDCAPPS Procedures

Parameter Description

InMolTableMolCol The name of the BLOB column that contains themolecules. This column
belongs to the specified InMolTableName.
If you do not specify InMolTableMolCol, or if you specify NULL:

If InMolTableName contains only one BLOB column, this column is
used.
If InMolTableName contains more than one BLOB column,
MakeMolXrefTrigger fails returns an exception. You must rerun
MakeMolXrefTrigger, and must specify the column name in
InMolTableMolCol.

InFlexmatchSwitches The flexmatch switches to be used when the trigger executes a molecule
search for a reaction’s component molecules.
If you do not specify InFlexmatchSwitches, or if you specify NULL,
MakeMolXrefTrigger uses ‘match=all’.

InTriggerName The name of the trigger to be created.
If you do not specify InTriggerName, or if you specify NULL,
MakeMolXrefTrigger uses the first of the following names which fits 30
characters:
InRxnTableName + '_TRIGGER'
InRxnTableName + '_TRIG'
SUBSTR(InRxnTableName,1,26) + '_TRIG'

MakeMolXrefTrigger fails if an object with this name already exists. In
this situation, you
must drop the trigger, and rerun MakeMolXrefTrigger.

InXRefTableName The name of the cross-reference table that correlates each reaction in the
reaction table with its molecules in themolecule table. If you do not
specify InXRefTableName, or if you specify NULL,
MakeMolXrefTrigger uses the first of the following names which fits 30
characters:
InRxnTableName + '_MOLXREF'
InRxnTableName + '_XREF'
InRxnTableName + '_XRF'
SUBSTR(InRxnTableName,1,26) + '_XRF'

If the table does not exist, MakeMolXrefTrigger creates it using the
following definition:
CREATE TABLE InXRefTableName (

InRxnTablePKCol InRxnTablePKType,
COMPTYPE CHAR(1),
COMPIDX NUMBER(3),
CDBREGNO NUMBER(10));

CREATE INDEX
<SUBSTR(InXRefTableName,1,26)||'_IX1'>
ON InXRefTableName (InRxnTablePKCol);

BIOVIA Direct 2021 • Reference Guide | Page 255

Appendix A: RDCAPPS Procedures

Parameter Description

CREATE INDEX
<SUBSTR(InXRefTableName,1,26)||'_IX2'>
ON InXRefTableName (CDBREGNO);

If the table or its indices require specific storage requirements, you must
create them
before using MakeMolXrefTrigger. The table you createmust use
specified the column
names and datatypes in the preceding definitions.

Usage
This proceduremust be executed from SQL*Plus:
call rdcapps.makemolxreftrigger(

InRxnTableName,
InRxnTablePKCol,
InMolTableName);

call rdcapps.makemolxreftrigger(
InRxnTableName,
InRxnTablePKCol,
InMolTableName,
InRxnTableRxnCol,
InRxnTablePKType,
InMolTableMolCol,
InFlexmatchSwitches,
InTriggerName,
InXRefTableName);

Example
The following steps showwhat happens to a newmolecule table and a new reaction table after an insert
operation to the reaction table that has the sample trigger:
1. Create a newmolecule table. From SQL*Plus: create table moltable(cdbregno number

(9), ctab blob);

2. Create a new reaction table. From SQL*Plus: create table rxntable (rxnregno number
(6), rxn blob);

3. Create the sample trigger on the reaction table. From SQL*Plus: call
rdcapps.makemolxreftrigger('rxntable', 'rxnregno', 'molview');

4. Verify that themolecule and cross-reference tables are empty. The following SQL*Plus commands
should return zero for both tables: select count(*) from moltable; select count(*)
from rxntable_molxref;

5. Insert a row to the reaction table. From SQL*Plus: insert into rxntable values (1,rxn
('c:\rxns\file.rxn'));

6. Verify that themolecule and cross-references tables contain molecules and references to the new
reaction in the reaction table. The following SQL*Plus commands should return non-zero for both
tables:
select count(*) from moltable;
select count(*) from rxntable_molxref;

Page 256 | BIOVIA Direct 2021 • Reference Guide

Appendix A: RDCAPPS Procedures

Comments
If you only specify the required three parameters, MakeMolXrefTrigger uses the NULL (default)
value for all the optional parameters. If you specify at least one optional value, you must also specify
the rest of the optional values. Use NULL if you want to use the default value for an optional
parameter.
Use MakeMolXrefTrigger to create a sample trigger that maintains an association between
reactions in a reaction table and the component molecules in a molecule table.
If you use the sample trigger that is created by MakeMolXrefTrigger, users must only insert into
themolecule table. MakeMolXrefTrigger creates a trigger on the reaction table, but not on the
molecule table. If you use the sample trigger that maintains a cross-reference table between the
reaction table and a molecule table, a user must not update or deletemolecules from themolecule
table. The users must only insert into themolecule table.
For multiple reaction tables that share the samemolecule table, execute MakeMolXrefTrigger for
each reaction table.
To customize the sample trigger on the reaction table, examine the code for the
MakeMolXrefTrigger procedure in examples/rdcapps.sql.

BIOVIA Direct 2021 • Reference Guide | Page 257

	Chapter 1: Reference List, By Name
	Chapter 2: General Operators and Functions
	General Operators
	readbinaryfile
	readfile
	stringsegment
	tempclob
	writebinaryfile
	writefile
	writetempclob

	General Functions
	mdlaux.chimetoclob
	mdlaux.clobtochime
	mdlaux.clobtogzip64
	mdlaux.errors
	mdlaux.externalcommand
	mdlaux.gzip64toclob
	mdlaux.readbinaryfile
	mdlaux.readfile
	mdlaux.stringsegment
	mdlaux.tempclob
	mdlaux.version
	mdlaux.writebinaryfile
	mdlaux.writefile
	mdlaux.writetempclob

	Chapter 3: Molecule-Specific Operators and Functions
	Molecule-Specific Operators
	chime
	chime_string
	chime_string_seg
	flexmatch
	flexmatchhighlight
	flexmatchtimeout
	fmla_eq
	fmla_like
	fmlalike
	fmlamatch
	helm
	helm2
	inchi
	Syntax
	Return value
	Usage
	Example
	Comments

	inchiauxinfo
	Syntax
	Return value
	Usage
	Example
	Comments

	inchikey
	isgeneric
	isnostruct
	isotopicformula
	isrna
	issequence
	iupacname
	makeclob
	mol
	molchime
	molfile
	molfile_string
	molfile_string_seg
	molfmla
	molgzip64
	molimage
	molkeys
	molnemakey
	molsim
	molwt
	molwtmax
	molwtmin
	molwtrange
	monoisotopicmass
	numspecifics
	overlap
	overlaptimeout
	pctoverlap
	readmol
	sequencesearch
	sequencetext
	similar
	similarity
	smiles
	sss
	sss_highlight_chime
	sss_highlight_molfile
	ssshighlight
	ssssequenceids
	ssstimeout
	writemol
	xhelm

	Molecule-Specific Functions
	mdlaux.getsavedmolname
	mdlaux.helm
	mdlaux.helm2
	mdlaux.helmtomolfile
	mdlaux.inchi
	mdlaux.inchiauxinfo
	mdlaux.inchikey
	mdlaux.inchitomolfile
	mdlaux.isgeneric
	mdlaux.isnostruct
	mdlaux.isotopicformula
	mdlaux.isrna
	mdlaux.issequence
	mdlaux.iupacname
	mdlaux.iupacnametomolfile
	mdlaux.mol
	mdlaux.molchime
	mdlaux.molfile
	mdlaux.molfmla
	mdlaux.molimage
	mdlaux.molkeys
	mdlaux.molname
	mdlaux.molnemakey
	mdlaux.molwt
	mdlaux.molwtmax
	mdlaux.molwtmin
	mdlaux.monoisotopicmass
	mdlaux.numspecifics
	mdlaux.rownemakey
	mdlaux.sequencetext
	mdlaux.setmolname
	mdlaux.sgroupfields
	mdlaux.smiles
	mdlaux.smilestomolfile
	mdlaux.xhelm

	Chapter 4: Reaction-Specific Operators and Functions
	Reaction-Specific Operators
	hasnostructs
	ncomponents
	rinchi
	rinchiauxinfo
	rinchikey
	rss
	rsshighlight
	rsstimeout
	rxn
	rxnautomap
	rxnautomapchange
	rxnautomapstatus
	rxnchime
	rxnctrsim
	rxnfile
	rxnflexmatch
	rxnflexmatchtimeout
	rxngzip64
	rxnimage
	rxnkeys
	rxnmol
	rxnmolsim
	rxnsim
	rxnsmiles
	rxnstringsegment

	Reaction-Specific Functions
	mdlaux.automap
	mdlaux.hasnostructs
	mdlaux.rinchi
	mdlaux.rinchiauxinfo
	mdlaux.rinchikey
	mdlaux.rinchitorxnfile
	mdlaux.rxnimage
	mdlaux.rxnkeys
	mdlaux.rxnsmiles
	mdlaux.smilestorxnfile

	Chapter 5: Examples
	Flexmatch Search
	Substructure Search
	Molecule Formula Search
	Molecule Similarity Search
	Reading a Molfile
	Retrieving Molfile Structures
	Retrieving Chime Structures
	Structure Registration
	Reaction Flexmatch Search
	Reaction Substructure Search
	Reaction Similarity Search
	Writing a File
	Fetching Reactions Using the Rxnfile Format
	Reading a Rxnfile
	Fetching Reactions Using the Chime Format
	Reaction Registration

	Chapter 6: Molecule Searches
	Flexmatch Search
	Flexmatch Search of Generic Structures
	Flexmatch Search of Biopolymer Sequence Structures

	Substructure Search
	Substructure Search of Generic Structures
	Substructure Search of Biopolymer Structures

	Similarity Search
	Types of Similarity

	Molecule Formula Search

	Chapter 7: Reaction Searches
	Reaction Flexmatch Search
	Reaction Substructure Search
	Reaction Similarity Search
	Types of Similarity
	Degrees of Similarity

	Chapter 8: Specifying the Query Structure
	Molfile
	Chimestring
	BLOB (Binary Large Object)
	CLOB (Character Large Object)
	HELM String
	SMILES String

	Appendix A: RDCAPPS Procedures
	Using the RDCAPPS Procedures
	ReadRxnRDF
	ReadMolRDF
	MakeMolXrefTrigger

