
DEVELOPERS GUIDE
BIOVIA DIRECT 2021

Copyright Notice

©2020 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo,
CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3DVIA, 3DSWYM, BIOVIA,
NETVIBES, IFWE and 3DEXCITE, are commercial trademarks or registered trademarks of Dassault
Systèmes, a French "société européenne" (Versailles Commercial Register # B 322 306 440), or its
subsidiaries in the U.S. and/or other countries. All other trademarks are owned by their respective
owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written
approval.

Acknowledgments and References

To print photographs or files of computational results (figures and/or data) obtained by using Dassault
Systèmes software, acknowledge the source in an appropriate format. For example:

"Computational results were obtained by using Dassault Systèmes BIOVIA software programs.
BIOVIA Direct was used to perform the calculations and to generate the graphical results."

Dassault Systèmes may grant permission to republish or reprint its copyrighted materials. Requests
should be submitted to Dassault Systèmes Customer Support, either by visiting
https://www.3ds.com/support/ and clicking Call us or Submit a request, or by writing to:

Dassault Systèmes Customer Support
10, RueMarcel Dassault
78140 Vélizy-Villacoublay
FRANCE

https://www.3ds.com/support/

Contents
Chapter 1: About Direct 1

Direct Overview 1

Direct in a SQL Query 1

Direct Operators and Functions 2

Molecule-Related Tasks 3

Reaction-Related Tasks 4

Read and Write Files 5

Perform Administrative Tasks 5

Perform Other Tasks 6

Molecules and Reactions as Large Objects 6

Molecule and Reaction Objects in SQL Statements 6

Temporary LOBs 7

Molecule and Reaction Tables 9

Direct Domain Indexes 9

Direct Domain Index and the Oracle Optimizer 10

Chapter 2: How to Use Direct 12

Get Information About Molecules 12

Fetch Structures 12

Retrieve Related Structure Information 13

Navigate Structure Search Results 17

Save Structure Search Results 17

Insert, Update, and DeleteMolecules 19

Insert and UpdateMolecule Objects 19

Insert Related Structure Information 20

Null Structures 21

Propagate New Primary Key Value 22

Multi-user Registration and Locking 23

Biopolymer Search and Registration 24

Overview 24

Search Monomers in a Biopolymer Sequence 24

Substructure Search ofModified Monomers 26

Store Biopolymer Sequences 26

Get the HELM String 27

BIOVIA Direct 2021 • Developers Guide | Page i

Contents

Convert HELM Strings to molfiles 27

Get Information About Reactions 28

Search for Reactions 28

Fetch Reactions 28

Retrieve Related Reaction Information 30

Navigate Search Results 32

Save the Search Results 32

Inserting, Updating, and Deleting Reactions 33

Inserting and Updating Reaction Objects 34

Inserting Related Reaction Information 35

Multi-user Registration and Locking 35

Accessing Files 36

Checking Errors 36

Working with Molecules in a Reaction 37

Extracting Molecules from a Reaction 37

Inserting Component Molecules into a Molecule Table 39

Registration Trigger on a Reaction Table 39

Using MakeMolXrefTrigger 40

Reaction Tables that Share a Molecule Table 41

Maintaining Referential Integrity 41

Homology Group Searching and Registration 42

Registering Molecules and Homology Group Information 43

Searching Structures with Homology Groups 43

Chapter 3: Performance Guidelines 45

Guidelines Overview 45

Indexed Implementation of a Search Operator 45

Non-indexed Implementation of a Search Operator 45

extprocMemory Usage 45

Configuration Issues 46

Lack of a Valid Domain Index 46

Lack of Valid Statistics 46

SchemaMismatch 46

Lack of a Valid Fastsearch Index 47

Oracle Cache Size 47

Optimizing Queries 47

Page ii | BIOVIA Direct 2021 • Developers Guide

Contents

Efficient Structure and Reaction Queries 48

Performing an Incremental Search 48

Avoiding PRODUCT NOT REACTANT and REACTANT NOT PRODUCT Searches 48

Usage of the DISTINCT SQL Keyword 49

Temporary LOB Usage of Oracle Temporary Tablespace 50

Optimizer Hints 50

FIRST_ROWS 50

INDEX 50

FULL 51

ORDERED 51

SQL Complexity 51

WHERE Clause Guidelines 51

FROM Clause Guidelines 52

SELECT List Guidelines 52

Checking the Execution Plan of a SQL Statement 52

Generating and Locking Table Statistics 53

Chapter 4: Limitations on Resource Conservation Techniques 54

Using Oracle Shared Server 54

Client Connection and Session Pooling 54

Parallel Processes 54

BIOVIA Direct 2021 • Developers Guide | Page iii

Chapter 1:
About Direct

Direct Overview
Direct is a read/write data cartridge for searching and registering molecules and reactions in Oracle.
Direct extends the features of Oracle to provide direct access to BIOVIA-specific chemical searching and
registration capabilities. Direct:

Stores and manages binary molecules and reactions using the large object data types. SeeMolecules
and Reactions as Large Objects.
Defines BIOVIA-specific SQL operators to search, retrieve, and register molecules and reactions. See
Direct Operators and Functions.
Defines and uses domain indexes to increase performance of chemical reaction searching. See Direct
Domain Indexes.

Direct in a SQL Query
Direct allows you to use a SQL statement to search and retrievemolecules and reactions from an Oracle
table. It also allows you to insert, update, and deletemolecules and reactions.
The following is an example of a SQL query that uses Direct:
select rxnmdlnumber,

rxnfile(rctab)

from samplerx_reaction
where rss(rctab, '/opt/BIOVIA/direct2021/examples/rxnfilesquery.rxn')=1;

The SQL query selects the primary key, rxnmdlnumber, and the reactions that match a reaction
substructure search. rxnfile is a Direct operator that returns the rxnfile format of a reaction that the
search matched in the rctab column of samplerx_reaction. rss is a Direct operator that performs
the reaction substructure search. The search parameters are contained in a reaction file (or rxnfile),
query.rxn.
The diagram that follows shows howDirect is invoked when a user submits a SQL query from an Oracle
application or from SQL*Plus.
An example of using Directwithin Oracle to access a reaction table:

BIOVIA Direct 2021 • Developers Guide | Page 1

Chapter 1: About Direct

The following list summarizes the flow of control that happens when a user executes a SQL query that
uses Direct:
1. The user connects to Oracle from a client application that uses Oracle database drivers.

Alternatively, the user connects to Oracle in a SQL*Plus session. The application or the user submits
a SQL statement that queries an Oracle table that contains molecule or reaction objects.

2. Oracle parses the SQL statement. When the SQL parser detects a Direct operator (such as rss),
Oracle alerts the Oracle listener process.

3. The Oracle listener process receives the request, and spawns a session-specific Oracle process called
extproc. The listener transfers control to extproc.

4. extproc loads the library that is registered with the cartridge operator that was detected in Step 2.
extproc runs the Direct external procedure that is associated with the operator.

5. If there is no domain index on the column, or if Oracle decides not to use the domain index, Oracle
provides molecule objects or reaction objects to the extproc process. It determines whether each
record in the reaction table is a match to the query that was provided to the operator.

6. If a domain index exists and Oracle uses it, the extproc process performs a complete reaction
substructure search on the reaction table.

7. The extproc process returns ROWIDs of the records that match the query to the Oracle server.
8. The Oracle server returns the requested data for thematching records back to the SQL interface.
For general information about Oracle data cartridges, see the Oracle documentation at
https://docs.oracle.com/database/121/ADDCI/index.html.

Direct Operators and Functions
Direct provides a set of BIOVIA-specific SQL operators and functions that are analogous to the Oracle
SQL operators such as SORT and LENGTH.

Page 2 | BIOVIA Direct 2021 • Developers Guide

https://docs.oracle.com/database/121/ADDCI/index.html

Chapter 1: About Direct

This section lists Direct operators and functions by task. For details about how to use Direct operator
and functions, see "Cartridge Management Functions and Procedures" in theDirect Administration
Guide.

Molecule-Related Tasks
Search molecules
Use the following operators to search for molecule structures in a molecule table:

flexmatch

fmlalike

fmlamatch

similar

sss

For an overview, see Get Information about Structures.

Search generic and specific structures
Use the following operators to search for generic (markush) and specific structures in a generic
molecule table:
flexmatch

sss

overlap

For an overview, see Searching generic structures.

Search biopolymers
Use the following operators to search for biopolymer molecule structures:

flexmatch

fmlalike

fmlamatch

sss

sequencesearch

For an overview, see Biopolymer Search and Registration.

Retrieve molecules
Use the following operators to represent molecule structures:

helm, mdlaux.helm

molchime

molfile

molimage

smiles, mdlaux.smiles
iupcacname

stringsegment

writetempclob

tempclob

For an overview, Fetch Structures.

BIOVIA Direct 2021 • Developers Guide | Page 3

Chapter 1: About Direct

Register molecules
Use the following operator to cast data types for registering or updating molecules in a molecule table:
mol

For an overview, see Insert, Update, and DeleteMolecules.

Highlight molecules
Use the following operators to highlight the query structures in the results of a substructure search:

ssshighlight

ssssequenceids

Use the following operator to orient target structures in the results of a Flexmatch search:
flexmatchhighlight

Retrieve similarity values
Use the following operator to get the similarity value from a similarity (similar) search:

similarity

Retrieve molecule weight and formula
Use the following operators to get the weight or formula of a molecule:

molwt

monoisotopicmass

molfmla

isotopicformula

Retrieve key values
Use the following operators to get themolecule key values:

molkeys

molnemakey, mdlaux.molnemakey
mdlaux.rownemakey

inchi, mdlaux.inchi
inchikey, mdlaux.inchikey

Reaction-Related Tasks
Search reactions
Use the following operators to search reactions in a table:

rss

rxnflexmatch

rxnsim

For an overview, see Searching for Reactions.

Retrieve reactions
Use the following operators to retrieve reactions from a table:

rxnchime

rxnfile

rxnimage

Page 4 | BIOVIA Direct 2021 • Developers Guide

Chapter 1: About Direct

rxnsmiles

stringssegment

writetempclob

tempclob

For an overview, see Fetching Reactions.

Register reactions
Use the following operator to cast data types for inserting or updating reactions in a table:
rxn

For an overview, see Inserting, Updating, and Deleting Reactions.

Highlight reactions
Use the following ancillary operator to fetch and highlight the query in the resulting reactions of a
reaction substructure (rss) search:
rsshighlight

Extract component molecules
Use the following operators to extract the reactant and product molecules from a reaction:

rncomponents

rxnmol

For an overview, see Extracting Molecules from a Reaction.

Automapp reactions
Use the following functions and operators to provide for automatic determination of reacting center
bonds and atom-atom mapping in one or more reactions:

rxnautomap

rxnautomapchange

rxnautomapstatus

mdlaux.regenaamaps

For information about mdlaux.regenaamaps, see "Using the Automapper" in the BIOVIA Direct
Administration Guide.

Read and Write Files
Use the following operators to read and write files such as rxnfiles and molfiles:

readfile

readbinaryfile

writefile

writebinaryfile

For an overview, see Accessing Files.

Perform Administrative Tasks
Direct provides functions that perform administrative tasks such as setting the global Direct chemical
environment, getting the current settings in the Direct chemical environment, and determining the
number ofmolecule or reaction substructure search keys are pending inversion. For information about
these functions, see theDirect Administration Guide.

BIOVIA Direct 2021 • Developers Guide | Page 5

Chapter 1: About Direct

Perform Other Tasks
Direct provides the following functions to perform miscellaneous tasks such as displaying error
messages and displaying product information:

mdlaux.errors

mdlaux.version

For overview of error handling, see Checking Errors.

Molecules and Reactions as Large Objects
Direct uses the following Oracle large object (LOB) data types to store and represent BIOVIA-specific
formats ofmolecules and reactions:

Binary large object (BLOB) data type - Stores and represents binary data. BIOVIA Direct uses the
BLOB data type to:

Store the binary, packed representation of a molecule or reaction.
Specify a molecule or reaction object in a query.

Character large object (CLOB) data type - Stores and represents data that is longer than the 4000-
character limit on a variable-length string. Direct uses the CLOB data type to allow users to:

Retrieve largemolecules and reactions as variable-length strings.
Specify a molecule or reaction string in a query.

Themaximum length for a VARCHAR2 string is 4000 characters. Reaction file (rxnfile) representations
of reactions typically exceed that length. Representations ofmolecules and Chime string representations
of reactions also sometimes exceed that length.
If your client application does not support Oracle LOBs, Direct provides operators that allow your
application to use string segments to access, insert, or update reactions in a database. For more details,
see "Fetching Reactions as String Segments" and "Copying String Segments into a Temporary CLOB" in
Fetch Reactions.

Molecule and Reaction Objects in SQL Statements
The LOB data types that represent molecules and reactions do not support ordinality and the standard
relational operations. This implies that you cannot compare binary reaction and molecule objects, and
you cannot use binary reaction and molecule objects in SQL clauses such as DISTINCT, ORDER BY, and
GROUP BY. For example, the following SQL statements that use a reaction column are not valid:
--These SQL statements are invalid!
select A.rxnmdlnumber
from my_rxn_table A, samplerx_reaction B
where A.rxn = B.rctab;

select distinct rctab from samplerx_reaction;

select rxnmdlnumber from samplerx_reaction order by rctab asc;

Additionally, reactions and molecules can be drawn in different ways. Because equivalent reactions or
molecules can be drawn differently, it is possible for the same reaction or molecule to havemany
different binary representations. Therefore, you cannot use Oracle binary comparison functions such as
dbms_lob.compare to compare reactions in a SQL statement.

Page 6 | BIOVIA Direct 2021 • Developers Guide

Chapter 1: About Direct

To compare, search, and retrievemolecules and reactions in SQL statements, use the BIOVIA-specific
SQL operators and functions that Direct provides.

Temporary LOBs
The cartridge uses temporary LOBs in some of its operations. A LOB is an Oracle large object that is of
character large object (CLOB) or binary large object (BLOB) data type. The cartridge operators and
functions that return BLOB or CLOB data return temporary LOBs.

Call-duration temporary LOBs
A call-duration temporary LOB is only available within the SQL statement that generated it. Some of the
Direct operators and functions use call-duration temporary LOBs. These operators and functions create
and return a new temporary LOBwith each call. Use the call-duration temporary LOBwithin the same
SQL statement that generated it. If you attempt to use the temporary LOB after the SQL statement has
finished executing, the temporary LOB appears empty, or Oracle might return the following Oracle error:
ORA-22922: nonexistent LOB value

To use a call-duration temporary LOB outside the SQL statement that generated it, use the tempclob
operator which returns a session-duration temporary LOB. You can also avoid this error by disabling the
prefetch feature in the Oracle database driver that you use with your application. For example, in a Java
application that uses JDBC:
((OracleConnection)conn).setDefaultRowPrefetch(1);

The following Direct operators and functions return call-duration temporary LOBs:
helm

inchi

isotopicformula

makeclob

mol

molchime

molfile

molfmla

molimage

readmol

readbinaryfile

rsshighlight

rxn

rxnautomap

rxnchime

rxnfile

rxnimage

rxnmol

smiles

ssshighlight

mdlaux.automap

mdlaux.chimeclob

BIOVIA Direct 2021 • Developers Guide | Page 7

Chapter 1: About Direct

mdlaux.clobchime

mdlaux.helm

mdlaux.helmtomolfile

mdlaux.inchi

mdlaux.iupacnametomolfile

mdlaux.molimage

mdlaux.rsximage

mdlaux.smiles

mdlaux.smilestomolfile

Freeing temporary LOBs
The temporary LOBs that are returned by Direct operators are of CALL duration. They occupy space in
the temporary tablespace of the Oracle instance until they are freed. Oracle will automatically free
temporary LOBs as they are consumed on the server in SQL*Plus, PL/SQL, or server OCI programs.
However, applications using client interfaces such as JDBC create additional temporary LOBs which must
be explicitly freed. If the temporary LOBs are not explicitly freed, they will accumulate until the Oracle
session is disconnected.
The following Java example frees the temporary LOB associated with the LOB locator object named
clob:
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

Session-duration temporary LOBs
A session-duration temporary LOB is available during an Oracle session. Within an Oracle session, Direct
provides five session-duration temporary LOBs, indexed from 0 to 4.
The following reaction cartridge operators use session-duration temporary LOBs:

stringsegment

tempclob

writetempclob

For more information on these operators, see BIOVIA Direct Reference Guide.
If Oracle returns an error when you attempt to access a call-duration temporary CLOB that was returned
by one of the Direct functions or operators (see Call-duration temporary LOBs), you can use tempclob
or writetempclob to write the call-duration temporary CLOB into a session-duration temporary CLOB.
For example:
select tempclob(rxnchime(rctab))
from samplerx_reaction where rxnmdlnumber='RXCI94058988';

In the preceding example, rxnchime returns a call-duration temporary CLOB, which tempclobwrites
into a session-duration temporary CLOB. As shown in this example, use tempclob only if your query
returns a CLOB. If your query uses a CLOB as an input to an operator or function, or if your query
returns a VARCHAR2 string instead of a CLOB, you do not need to use tempclob. The following example
uses stringsegment, which returns a VARCHAR2 string:
select stringsegment(rxnchime(rctab))
from samplerx_reaction where rxnmdlnumber='RXCI94006733';

Page 8 | BIOVIA Direct 2021 • Developers Guide

Chapter 1: About Direct

IMPORTANT!
If you use the tempclob operator in an Oracle OCI or PL/SQL application, do not attempt to free
the temporary LOB that tempclob returns. The temclob operator does not creat a new tempary
LOB at each call. Instead, it uses or reuses on of the five LOBs that are resident on the cartridge.
The use of the session-duration LOBs is incompatible with session pooling.

For more information about temporary LOBs, see the Oracle Application Developer's Guide.

Molecule and Reaction Tables
You can use Direct on any table that contains a column ofmolecule objects. Themolecule column must
be of type BLOB. Similarly, Direct operates on any table that contains a column of reaction objects,
which also must be of type BLOB.
The following example shows how to create a molecule table:
--Create molecule table
create table my_mol_table (

mol_id varchar2(30),
mol_name varchar2(80),
ctab blob);

The following example shows how to create a reaction table:
--Create reaction table
create table my_rxn_table (

rxn_id varchar2(30),
rxn_name varchar2(80),
rctab blob);

To efficiently search a molecule or reaction table using Direct operators, create a domain index on the
table. See Direct Domain Indexes.
For more information about creating the reaction tables, see "Creating Reaction Tables" in theDirect
Administration Guide.

Notes:
Oracle provides a mechanism, Fine-Grained Access Control (FGAC), which applies filtering rules that
prevent a user from seeing records in a table, based on that user’s rights and some value in the row
that specifies who can see the row. For more information about FGAC, see theOracle Application
Developer’s Guide - Fundamentals. FGAC can be applied to tables that have reaction and molecule
columns. However:

Users should not try to apply FGAC to the tables that Direct creates as components of the domain
index. (See Direct Domain Indexes).
The owner of themolecule or reaction table should always have rights to see all records.
Maintenance operations done on the domain indexmust be done by a user that has full rights to
see all the records. (See Direct Domain Indexes).

Direct Domain Indexes
Direct can use an Oracle domain index to enable efficient indexing methods for searching molecules or
reactions. Note that the Direct does not require a domain index. If a domain index does not exist on a
molecule or reaction table, Oracle compares each record in themolecule or reaction table with the query
in order to find a match.

BIOVIA Direct 2021 • Developers Guide | Page 9

Chapter 1: About Direct

BIOVIA Direct uses two types of domain indexes:
c$direct2021.mxixmdl for a molecule column
c$direct2021.rxixmdl for a reaction column

ADirect domain index provides a search index on a column which contains molecule or reaction objects.
This column must be of type BLOB.
The following example shows how to create a Direct domain index on a table that contains reaction
objects:
--Create domain index on reaction table
create index mytable_idx on mytable(rctab)

indextype is c$direct2021.rxixmdl
parameters ('tablespace=bigspace');

For more details about creating the BIOVIA Direct domain indexes, see theDirect Administration Guide >
Creating and Managing Tables and Indexes.

Note: After you create a Direct domain index, call the mdlaux.errors function to check if there is an
error. Oracle might still create an invalid index even if there was an error. If mdlaux.errors returns
an error, you must drop and recreate the index, if Oracle created it.

See also
Direct Domain Index and the Oracle Optimizer
Molecule and Reaction Tables

Direct Domain Index and the Oracle Optimizer
The Oracle optimizer might use the Direct domain index if it finds an indexed Direct operator in a SQL
statement. An indexed 2021 operator (such as rss and flexmatch) is used for searching, and typically
has an associated domain index. However, if the Oracle optimizer chooses not to use the Direct domain
index, your SQL statement might executemore slowly than when the optimizer uses the domain index.
The Oracle command EXPLAIN PLAN explains howOracle chooses to execute a SQL statement. The
command also explains how optimal your SQL statement is. For SQL statements that involvemore than
one expression in the WHERE clause, Oracle hints might be needed to optimize the execution of the SQL
statement.
If the Direct domain index appears later in the execution plan, you can use Oracle optimizer hints to
control the access path for the Oracle optimizer, or to ensure that Oracle optimizer will use the domain
index.
For more information about using Oracle hints, see the Oracle documentation for guidelines on tuning
and optimization, and for details about using Oracle hints.

Page 10 | BIOVIA Direct 2021 • Developers Guide

Chapter 1: About Direct

Notes:
To improve performance, BIOVIA recommends that you apply statistics to any table that contains
a Direct domain index. To apply statistics to a table containing a Direct domain index, use one of
the following Oracle commands:
ANALYZE TABLE tablename ESTIMATE STATISTICS
ANALYZE TABLE tablename COMPUTE STATISTICS

where tablename is the name of the table containing a Direct domain index.
An invalid domain index can also affect performance.

See also
Generating and Locking Table Statistics
Lack of a Valid Domain Index

BIOVIA Direct 2021 • Developers Guide | Page 11

Chapter 2:
How to Use Direct
The following are examples of the different types of applications that can use Direct:

Microsoft .NET
COM Automation and ActiveX
Web
Java
Oracle Call Interface (OCI)
PL/SQL

To access Oracle data objects in your application, use the application programming interface of your
chosen data access technology. Examples are the API for ActiveX Data Objects (ADO), Java Database
Connectivity (JDBC), Oracle Call Interface (OCI), and Oracle Objects for OLE (OO4O).
For the usage and syntax of the Direct operators and functions, see the BIOVIA Direct Reference Guide.
To learn about how to execute SQL statements in an application, see the Application Developer’s Guide
from Oracle, or the reference documentation of your chosen data access technology.

Get Information About Molecules

Fetch Structures
Use Direct operators to fetch themolecules that match your search, either as CLOBs or as string
segments.

Fetch structures as images
Use the following Direct operator that returns the image of a structure:

molimage - Returns a BLOB that contains the image of a structure. The image can use either the
PNG, BMP, SVG, or EMF format.

Fetch structures as CLOBs
If your client application supports CLOBs, use the following Direct operators that return structure
CLOBs:

molchime - Returns a CLOB representation of a Chime string.
molfile - Returns a CLOB representation of a molfile.
ssshighlight - Returns a CLOB representation of a Chime structure that matches a substructure
query. The structure contains highlight information for thematched substructure.
flexmatchhighlight - Returns a CLOB representation of a Chime structure that matches a
Flexmatch query. The structure is oriented to the query.

Fetch structures as string segments
If your client application does not support CLOBs, use the following Direct operator that returns string
segments of the structure:

stringsegment - Returns a VARCHAR2 string that contains a 4000-character segment of a CLOB
structure. For an example, see Fetch reactions > Fetching Reactions as String Segments.

BIOVIA Direct 2021 • Developers Guide | Page 12

Chapter 2: How to Use Direct

Copy string segments into a temporary CLOB
If your client application does not support CLOBs, you can write string segments to Oracle temporary
CLOBs, and retrieve them later. Direct provides the following operators to write into and read from
temporary CLOBs:

writeclob -Writes string segments of the reaction or molecule to be inserted or updated into a
temporary CLOB on the server.
tempclob - Retrieves the temporary CLOB for inserting or updating.

The following ASP.NET example uses the writeclob operator to write string segments into a temporary
CLOB, and calls the tempclob operator to return CLOB #0:

' Function to return a string representing a rnxfile or molfile suitable
' for use in a SQL statement.
' qrxn is a Chime rxnfile or molfile.
' If it is less than 4000 characters long, it can be used as-is;
' in that case return the string enclosed in single quotes.
' If longer than 4000 characters, use the operator WRITETEMPCLOB to
' construct a package-level temporary CLOB containing the qrxn and
' return the operator TEMPCLOB which when called by Oracle will
' returnCLOB#0, containing qrxn.
' Uses global variable oCon As OdbcConnection.
Function setChimeOrTempclob(ByVal qrxn As String) As String

Dim rxlen As Integer = Len(qrxn)
If (rxlen <= 4000) Then

setChimeOrTempclob = "'" & qrxn & "'"
Else

' Write the string to temporary CLOB #0
Dim oCmd As New OdbcCommand("select writetempclob(0,?,?) from

dual",oCon)
oCmd.Parameters.Add("@STRING",OdbcType.VarChar)
oCmd.Parameters.Add("@APPEND",OdbcType.Int)
Dim append As Integer = 0
Dim sstart As Integer = 1
Do While (sstart <= rxlen)

oCmd.Parameters("@STRING").Value = Mid(qrxn,sstart,4000)
oCmd.Parameters("@APPEND").Value = append
If oCmd.ExecuteScalar() <> 1 Then

' Should handle error if command did not execute properly
' and should run this in a Try block

End If
sstart += 4000
append = 1

Loop
' Get the string from the temporary CLOB #0
setChimeOrTempclob = "tempclob(0)"
oCmd.Dispose()

End If
End Function

Retrieve Related Structure Information
Direct provides operators that return related information about the structures that match your query.
You can use the following operators in the SELECT clause of your SQL query:

Page 13 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

molwt - Returns themolecular weight.
mdlaux.molwt - Returns themolecular weight.

Note: When inserting themolecular weight, you must use the mdlaux.molwt function instead of
the molwt operator. The mdlaux.molwt function allows you to specify a molecule table or a
molecule domain index that specifies which Ptable to use. The molwt operator is not appropriate
for registration because it uses the global Ptable when the specified parameter is a molecule
object.

molfmla - Returns themolecular formula.

Note: molfmla returns a CLOB; this operator cannot be used in a DISTINCT, ORDER BY, nor
GROUP BY clause.

mdlaux.molfmla - Returns themolecular formula.

Note: When inserting themolecular formula, you must use the mdlaux.molfmla function
instead of the molfmla operator. The mdlaux.molfmla function allows you to specify a
molecule table or a molecule domain index that specifies which Ptable to use. The molfmla
operator always uses the global Ptable, which is not appropriate for registration.

monoisotocpicmass - Returns themono-isotopic mass of a molecule.
helm - Returns the HELM string for a given biopolymer sequencemolecule. For details see Get the
HELM String.
isotopicformula - Returns themolecular formula including isotope labels.
molkeys - Returns the SSS key string which would be registered for a structure
isnostruct - Indicates whether or not a structure has atoms ("no-structure")
Operators and functions that generate NEMA keys.
Operators and functions that generate InChI strings and keys.
smiles - Returns the SMILES string for a given molecule. . For details, see Getting the SMILES string.
molwtmin - Returns theminimum molecular weight for a generic structure.
mdlaux.molwtmin - Returns theminimum molecular weight for a generic structure.

Note: When inserting theminimum molecular weight, you must use the mdlaux.molwtmin
function instead of the molwtmin operator. The mdlaux.molwtmin function allows you to
specify a molecule table or a molecule domain index that specifies which ptable to use. The
molwtmin operator is not appropriate for registration because it uses the global Ptable when the
specified parameter is a molecule object.

molwtmax - Returns themaximum molecular weight for a generic structure.
mdlaux.molwtmax - Returns themaximum molecular weight for a generic structure.

Note: when inserting themaximum molecular weight, you must use the mdlaux.molwtmax
function instead of the molwtmax operator. The mdlaux.molwtmax function allows you to
specify a molecule table or a molecule domain index that specifies which ptable to use. The
molwtmax operator is not appropriate for registration because it uses the global Ptable when the
specified parameter is a molecule object.

isgeneric - Indicates whether or not a structure is generic.

BIOVIA Direct 2021 • Developers Guide | Page 14

Chapter 2: How to Use Direct

issequence - Indicates whether or not a structure is a biopolymer sequence. (Its function
equivalent is mdlaux.issequence.)
numspecifics - Returns the number of specific structures which would be enumerated by a generic
structure.
iupacname - Returns the IUPAC name for a molecule.

The following SQL example returns the cdbregno and themolecular weight of a structure:
select cdbregno,
molwt(ctab)
from sample2d
where cdbregno = 337;

For the usage and syntax of the different Direct operators and functions, see BIOVIA Direct Reference.

Ancillary Operators for Structure Searches
Direct provides ancillary operators or functions that return related structure information from a
structure search. Use an ancillary operator in the SELECT clause of the same query that used the Direct
search operator. The ancillary functions take a single parameter, which is an arbitrary number. This
number must match the appropriate parameter passed to the search operator. In the following
example, the parameter for the ssshighlight operator matches the last parameter of the sss
operator.
select ssshighlight(2)
from sample2d
where sss(ctab, 'c:\BIOVIA\Direct\testmolrxn\struct128.mol', 2)=1;

The following table lists the ancillary operators that are available with the different search operators.

Search
Operator

Ancillary operators

flexmatch flexmatchtimeout - Indicates if the flexmatch search timed out
flexmatchhighlight - Returns an oriented Chime structure

sss ssshighlight - Returns a highlighted Chime structure
ssstimeout - Indicates if the substructure search timed out

similar similarity - Returns the percentage of similarity between the query and the
matched structure

overlap overlaptimeout - Returns the timeout status of the overlap search.
pctoverlap - Returns the percentage estimated overlap between the query and a
hit.

Get the InChI String and Key
Direct can generate IUPAC standard International Chemical Identifier (standard InChITM) strings and
keys. The InChI key is a 27-character hashed form of the InChI string. BIOVIA functions generate the key
by first generating the InChI string, and then calling an InChI library function to convert the string into
the 27-character key. See http://www.iupac.org/inchi (or http://old.iupac.org/inchi)
for more information about the standard InChI string and key.
Direct provides the following operators and functions that return InChI strings and keys for molecules:

inchi

inchikey

Page 15 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

mdlaux.inchi

mdlaux.inchikey

Limitations to the Generation of InChI Strings
Direct does not generate InChI strings for molecules with the following features. The InChI string or key
will be returned as NULL, and a suitable error will be placed onto the error stack, if themolecule contains
any of the following features:

Query features
Enhanced stereochemistry
Polymer Sgroups
Rgroups
Rgroup atoms
Pseudo-atoms
Atoms with more than 20 neighbors
Attachment points
Multi-endpoint bonds

Molecules with data Sgroups are allowed to generate an InChI string, but the string will not contain any
information about the data Sgroups and will thus not be structure differentiating.
No structuremolecules generate a NULL InChI string.
The InChI library uses its own list of allowed atom types. Thus molecules which contain pseudo-atoms
which are unknown to InChI (even though they exist in the Ptable used by the domain index) will
generate a NULL return value.

Get the SMILES String
SMILES TM (Simplified Molecular Input Line Entry System) is a language that represents molecules by
using ASCII character strings that specify atoms and bonds. (For more information about SMILES, see
http://www.daylight.com/smiles/index.html.) Direct provides the following operators and
functions that return SMILES strings for molecules:

mdlaux.smiles

smiles

There are limitations to the generation of SMILES strings. Not all BIOVIAmolecule features can be
handled. For more information, see the Limitations to the generation of SMILES strings section that
follows.

Conversion of SMILES Strings to Molfile
Direct also provides the following function that converts a SMILES string to a molfile string:
mdlaux.smilestomolfile

Any function or operator which takes a general molecule argument also accept a SMILES string. When a
SMILES string is used as an input parameter, an implicit conversion of the SMILES string to a molfile
string occurs. Thus a SMILES string can be inserted into a table and used in a query.
The following example uses a SMILES string as the structure query parameter for the sss operator:
select cdbregno from sample2d where sss(ctab,'B1=NB=NB=N1')=1;

The following example uses a SMILES string as the structure to be inserted. The mol operator converts
the SMILES string to a BLOB.

BIOVIA Direct 2021 • Developers Guide | Page 16

Chapter 2: How to Use Direct

SQL> create table moltable (id number, ctab blob);
Table created.
SQL> insert into moltable values (1, mol('Cn1cnc2c1c(=O)n(c(=O)n2C)C'));
1 row created.
SQL> select molfmla(ctab) from moltable;
MOLFMLA(CTAB)
--
C8 H10 N4 O2

Limitations to the Generation of SMILES Strings
Direct does not generate SMILES strings for molecules with the following features. The SMILES string will
be returned as NULL, and a suitable error will be placed onto the error stack, if themolecule contains
any of the following features:

Query features
Enhanced stereochemistry
Polymer Sgroups
Rgroups
Rgroup atoms
Attachment points
Multi-endpoint bonds

Molecules with data Sgroups are allowed to generate a SMILES string. However the string will not
contain any information about the data Sgroups and will thus not be structure differentiating.
No structuremolecules (that is, molecules with zero atoms) return a NULL value for the SMILES string.
Molecules with pseudo-atoms will generate a SMILES string where the pseudo-atoms are denoted by "
[*]".

Navigate Structure Search Results
To navigate the search results of a structure search, use themethods of the application programming
interface that you use to access Oracle data objects. Examples are the API for ActiveX Data Objects
(ADO), Java Database Connectivity (JDBC), Oracle Call Interface (OCI), and Oracle Objects for OLE
(OO4O). Another example is the use of the CURSOR construct in PL/SQL.
For information about how to use the application programming interface to navigate the result set, see
the reference documentation of the database connectivity package you use, or the Oracle Application
Developer’s Guide.

Save Structure Search Results
This section describes how to save the search results of a structure search.

Create a Search Results List
To create a list of ROWID or primary key values from the search results, save the results of your query in
a temporary Oracle table. For example, in the example table SAMPLE2D, the primary key is CDBREGNO:
1. Create a table whose cdbregno numbers are populated from your query. For example:

create table temp_list as
select cdbregno
from sample2d
where sss(ctab,'/home/users/molfiles/query.mol')=1;

Page 17 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

2. Create an index for the new table, using the cdbregno field. For example:
create index temp_list_idx

on temp_list(cdbregno);

3. Use the temporary table as a reference list in other searches. For example:
select a.cdbregno,

molwt(a.ctab)
from sample2d a,

temp_list b
where a.cdbregno = b.cdbregno

and cdbregno < 100;

Save Reactions to a Searchable Table
You can create a newOracle table to store the reaction objects from the results of your search on a
reaction table:
1. Create a table whose rows are populated from your query. For example:

create table temp_result as
select *
from samplerx_reaction
where rss

(rctab,'/opt/BIOVIA/direct2021/examples/rxnfilesquery.rxn')=1;

2. Create an index on the primary key column of the new table. For example:
create index temp_result_pkix

on temp_result(rxnmdlnumber);

3. If you plan to search the reactions in the new table, and the table is large, create a reaction domain
index for the new reaction column. For example:
create index temp_result_rxnidx

on temp_result(rctab)
indextype is c$direct2021.rxixmdl;

Note: c$direct2021.rxixmdl indicates that the index is a reaction domain index.

4. If you performed Step 3, call the mdlaux.smiles function to check if there is an error. Oracle
might still create an invalid index even if there was an error. If mdlaux.smiles returns an error,
you must drop and recreate the index, if Oracle created it.

5. If you performed Step 3, BIOVIA highly recommends that you apply statistics on this table for better
performance. To apply statistics to any table to which you have applied a domain index, use the
Oracle command:
ANALYZE TABLE tablename ESTIMATE STATISTICS

6. To test the results, select from the newly created table. For example:
select count(*)
from temp_result
where rss(rctab,'/opt/BIOVIA/direct2021/examples/rxnfilesquery.rxn')=1;

This should return the total number of rows in the temporary table.

See also
Generating and Locking Table Statistics

BIOVIA Direct 2021 • Developers Guide | Page 18

Chapter 2: How to Use Direct

Insert, Update, and Delete Molecules
Using Direct, you can insert into, update, and deletemolecule objects directly from an Oracle table that
contains them. If the structure table does not have a domain index, Oracle simply performs the insert,
update, or delete operation on this table. If the structure table has a domain index on the structure
column, Oracle calls the related insert, update, or deletemethod of the domain index, and performs
related operations that support the domain index.

Notes:
You must register insert and update structures of BLOB data type. For more details, see Insert and
UpdateMolecule Objects.
Do not register structures that contain query features. A query feature is a restriction on a
structure that specifies that a search will retrieve only certain types of structures from a database.
An example of a structure that contains query features is a molfile structure that contains query
atoms.
The user that executes the SQL command must have the correct Oracle INSERT, UPDATE, or
DELETE privilege in order to update data in the reaction table.
Triggers must not reference the table for which the trigger fired. If a trigger or function attempts to
access or modify a table that is being modified by the statement which fired the trigger, Oracle
returns the following error:
ORA-04091: table table_name is mutating, trigger/function may not see
it

For information about structural features that can or cannot be registered, and for information about
duplicate structures, see "Registration ofMolecules" in the BIOVIA Chemical Representation Guide.

Insert and Update Molecule Objects
Direct stores binary, packed structures, or molecule objects, in a BLOB column in an Oracle table. To
insert or update a molecule object in a structure table, themolecule that you use for the insert or
update operation must be a BLOB. Direct provides the following operator for registration:

mol - Converts a molfile or Chime string representation of a structure to a two-dimensional molecule
object

The following example uses the mol operator to convert the contents of a molfile into a BLOB, and insert
the BLOB into a molecule table:
insert into sample2d (

ctab,
corp_id,
f_date

)
values (

mol('C1CCCCC1'),
'MUSE00100452',
to_date ('25-jul-2006')

);

Note: Although it is generally not advisable to register NULL structures, Direct allows the registration
of NULLmolecule objects. See Null structures.

The following example uses the mol operator to convert into a BLOB the CLOB Chime structure selected
from a different table,

Page 19 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

and use the BLOB to update a specific molecule:
update sample2d
set ctab =

mol(
(select molchime(ctab)
from temp_result
where flexmatch(

ctab,
'c:\BIOVIA\direct2021\testmolrxn\struct100.mol', 'match=all')=1
)

)
where cdbregno=100;

Note: The SELECT query mut return one structure.

Alternatively, you can also transfer molecule objects from one table to another without using the mol
operator. Using the preceding example, you can also select the value of the ctab column directly, and
use it in the update:
update sample2d
set ctab =

(select ctab
from temp_result
where flexmatch(

ctab,
'/home/users/molfiles/struct100.mol',
'match=all'
)=1

)
where cdbregno=100;

Insert Related Structure Information
To insert related structure information, such as molecule weight and formula, into a structure table,
insert the values returned by the following Direct functions:

mdlaux.molwt - Returns themolecular weight. Note that when inserting themolecular weight, you
must use the mdlaux.molwt function instead of the molwt operator. The mdlaux.molwt function
allows you to specify a molecule table or molecule domain index that specifies which ptable to use.
The molwt operator is not appropriate for registration (because it uses the global Ptable when the
specified parameter is a molecule object).
mdlaux.molfmla - Returns themolecular formula. Note that when inserting themolecular formula,
you must use the mdlaux.molfmla function instead of the molfmla operator. The
mdlaux.molfmla function allows you to specify a molecule table or molecule domain index that
specifies which ptable to use. The molfmla operator always uses the global Ptable which is not
appropriate for registration.
mdlaux.molkeys - Returns the SSS key string which would be registered for a structure. Note that
when inserting themolecular formula, you must use the mdlaux.molkeys function instead of the
molkeys operator. The mdlaux.molkeys function allows you to specify a molecule table or
molecule domain index that specifies which key definitions to use. The molkeys operator always
uses the global key definitions which are not appropriate for registration.
mdlaux.monisotopicmass - Returns themono-isotopic mass of a molecule.
mdlaux.isotopicformula - Returns themolecular formula including isotope labels.

BIOVIA Direct 2021 • Developers Guide | Page 20

Chapter 2: How to Use Direct

isnostruct - Indicates whether or not a structure has atoms ("no-structure").
mdlaux.molname - Returns the name of themolecule that is stored in the given molfile.
molfile - Returns a molfile from a binary structure.
molchime - Returns a Chime string from a binary structure.
inchi - Returns the InChI string representation of a molecule.
inchikey - Returns the InChI key for a molecule.
smiles - Returns the SMILES string representation of a molecule.
mdlaux.molwtmin - Returns theminimum molecular weight for a generic structure. Note that when
inserting theminimum molecular weight, you must use the mdlaux.molwtmin function instead of
the molwtmin operator. The mdlaux.molwtmin function allows you to specify a molecule table or a
molecule domain index that specifies which ptable to use. The molwtmin operator is not appropriate
for registration because it uses the global Ptable when the specified parameter is a molecule object.
mdlaux.molwtmax - Returns themaximum molecular weight for a generic structure. Note that
when inserting themaximum molecular weight, you must use the mdlaux.molwtmax function
instead of the molwtmax operator. The mdlaux.molwtmax function allows you to specify a
molecule table or a molecule domain index that specifies which ptable to use. The molwtmax
operator is not appropriate for registration because it uses the global Ptable when the specified
parameter is a molecule object.
mdlaux.isgeneric - Indicates whether or not a structure is generic.
mdlaux.issequence - Indicates whether or not a structure is a biopolymer sequence.
mdlaux.numspecifics - Returns the number of specific structures which will be enumerated by a
generic structure.
iupacname - Returns the IUPAC name for a molecule.

The following example shows an INSERT statement that inserts a molecule along with related structure
information into a structure table:
insert into
sample2d(ctab, molwt, molformula)
values(

mol('/home/users/myfiles/struct123.mol'),
mdlaux.molwt('sample2d', '/home/users/myfiles/struct123.mol'),
mdlaux.molfmla('sample2d', '/home/users/myfiles/struct123.mol'));

Null Structures
BIOVIA does not recommend the use of NULL values for structures (NULL CTAB values). NULL is not a
valid input for most Direct operators. The presence of NULL values may prevent the completion of
searches that involve the CTAB column as a query. The convention for an omitted structure is to store a
molecule with zero atoms. Users can prevent the registration of NULL CTAB values by applying a NOT
NULL constraint to the CTAB column.

Note: Starting with version 6.0, Direct:
Allows the registration of NULL structures. However, users should avoid registration of NULL
structure.
Does not return NULL structures as hits in any structure search.
Does not allow a NULL value as the query structure.

Page 21 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

For more information about converting a database to Direct, see the BIOVIA Direct Administration
Guide.

Using a No-structure
If you need to represent a NULL CTAB value, use a no-structure, or nostruct. A no-structure is a
structure with zero atoms. To create a no-structure, select the Chemistry > No Structuremenu item in
BIOVIA Draw and save it as a molfile.
To use the no-structure in a query or for registration, use the readfile operator to read the no-
structuremolfile. If you use the no-structure frequently, you can create a single-row table that only
contains the no-structure, which can either be a BLOB or a CLOB. The following example shows how to
store the no-structuremolfile into a single-row table with a CLOBmolfile:
create table nostruct_table(ctab clob);
insert into nostruct_table(ctab)

values(
(select readfile('/home/users/nostruct.mol') from dual)

);
commit;
grant select on nostruct_table to user;

You can select from this table to represent the no-structure in your query, for example:
select cdbregno

from sample2d
where flexmatch(

ctab,
(select ctab from nostruct_table),
'all'
)=1

and cdbregno > 300;

Propagate New Primary Key Value
Direct does not automatically generate any primary key or other user-column values in a molecule table.
It is up to an application or trigger to do this. If the primary key of a molecule table is linked to other
tables in the database, the application or trigger must propagate the primary key values to the related
tables during structure registration.
Note that when a relational chemical (RCG) database is converted to Direct, the conversion program,
convertrcg, provides the option to add triggers which automatically generate the CDBREGNO values. The
rest of this section describes how to obtain the new CDBREGNO values that should be propagated into
the related user tables. If your database is not converted from an RCG database and does not use the
CDBREGNO field, you can use the information in this section as an example of how to get a newly
inserted primary key value.
There are two ways to obtain a newly registered CDBREGNO into the related tables:

Use :NEW.CDBREGNO in an AFTER INSERT trigger on themain table
Use the RETURNING clause in an INSERT statement

Note: Themolecule cartridge function cdcaux.getregnofrominsert is not available in Direct
2021. If your application used this function and a trigger that automatically inserts the CDBREGNO field
to related tables, use one of themethods described in this section to get the newly generated
CDBREGNO.

BIOVIA Direct 2021 • Developers Guide | Page 22

Chapter 2: How to Use Direct

To Use :NEW.CDBREGNO in an AFTER INSERT Trigger
To obtain the new CDBREGNO value that Direct generated in the last structure registration, you can use
the :NEW trigger PL/SQL construct that provides a reference to the new value of a column.
To propagate the new CDBREGNO value from themain table to a related table, create an AFTER INSERT

trigger on themain table. The following example is a trigger on themain table mydb_moltable that
automatically inserts a newly inserted CDBREGNO into another table mydb_alternate_names:
CREATE OR REPLACE TRIGGER copyregno
AFTER INSERT ON mydb_mol
FOR EACH ROW
BEGIN

-- Insert a record into mydb_alternate_names
-- using the cdbregno from the newly inserted row
-- on mydb_moltable.
-- mydb_moltable contains the new CTAB structure.
INSERT INTO mydb_alternate_names(cdbregno,name)
VALUES (:NEW.cdbregno,'my new structure');

END;

To uUse the RETURNING Clause in an INSERT Statement
You can use the RETURNING clause of an INSERT statement to get the value of the newly generated
CDBREGNO. Specify RETURNING CDBREGNO INTO :CDBREGNO_VARIABLE to store the generated
CDBREGNO into a bound variable. For example:
insert into molTable(molColumn)

values (mol(:molval))
returning cdbregno into :cdbregno

Multi-user Registration and Locking
In versions prior to Direct 6.0, the entire molecule table was locked in exclusivemode during structure
registration to prevent duplicate records from being inserted. This technique limited the rate at which
records could be inserted, since only one process could insert records at a time. This also resulted in
interactive users being able to halt all registration to a database by starting a transaction and then
leaving the transaction open for long periods of timewithout issuing a COMMIT or ROLLBACK.
Starting with version 6.0, Direct locks with a finer degree of granularity, which allows many users to
register at the same timewith relatively fewwait states. The locking mechanism alleviates both the
multi-user throughput limitation and makes it much less likely that an interactive user with an open
transaction will interfere with any other transaction. The lock identifier that is used to prevent duplicates
from being registered is based on the structure's features. It is still possible for structures that are very
similar to require the same lock; so very rarely, two processes might need the same lock at the same
time, resulting in one process waiting for the other to COMMIT its transaction.
This also means that with Direct, it is possible for deadlock situations to occur. If two processes are each
registering more than one structure in a single transaction, it is possible for both processes to need a
lock that the other process already holds. This results in ORA-00060:deadlock detected, and one
of the two processes will have its transaction rolled back. Applications should either COMMIT frequently
enough to avoid deadlock conditions, or they should be written to roll back and retry a transaction that
encounters an ORA-00060 condition. Deadlock conditions should be relatively rare, since they require
two transactions running at the same time that both want to register two pairs of structures that are
similar to each other.

Page 23 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

This locking mechanism applies when uniqueness checking has been turned on, and it applies for
structures other than no-structures. No-structures are inserted without any duplicate check, since they
are considered to be unique by definition.

Biopolymer Search and Registration
Overview
Direct provides the ability to store and search biopolymers. Biopolymers are potentially very large
molecules with thousands ofmonomers. However, biopolymers are composed of a relatively small
number of distinct monomer types. This allows for significant compression of the structure stored in the
database and transmitted in molfile format between different programs, while still retaining the ability
to elaborate the atoms and bonds in the full structure.

Templates for Common Distinct Monomer Types
Direct defines a set of standard templates for common amino acid monomer types. This set of
templates contains the twenty common natural amino acids, selenocysteine, and pyrrolysine.
Having templates available allows a peptide of 1000 naturally occurring amino acids to be stored with
just 1000 template atoms, the bonds between the amino acids, and the template definitions needed for
each of the distinct amino acids present in the peptide. However, BIOVIA chemistry functions can, when
necessary, access the full molecular structure of the peptide by expanding template atoms into the full
set of atoms and bonds. The expansion is only done as necessary, and is usually only done for one
amino acid at a time.

See also
StoreMonomer Representations

Template Atoms vs Normal Atoms
Template atoms differ from normal (non-template) atoms in that template atoms include:

Attachment point information (left, right, first cross-link, second cross-link, and others)
A sequence ID (residue) number
A class name (for example, AA)

They are similar to abbreviation Sgroups, but provide for more efficient storage because each template
connection table is stored only once in themolecule.

Search Monomers in a Biopolymer Sequence
Substructure Searching of Modified and Unmodified Monomers
Direct supports substructure searching (sss) ofmodified and unmodified monomers in a biopolymer
sequence, with limitations described here.
Atom-by-atom substructuremapping of biopolymer, even when template-compressed, is not generally
feasible due to the large number of non-template atoms and bonds which might be present. Thus Direct
indexes (using Fastsearch and key screens) only the non-template atoms and bonds ofmonomers which
are not present in the set of template definitions associated with the database. Those atoms and bonds
may be contained in a template. If the template definition is not included in the database template
definitions, the atoms and bonds will be indexed.
In addition to the indexing information for atoms and bonds in modified monomers, Direct also stores
the text of the biopolymer sequence. The following types of substructure search are supported:

BIOVIA Direct 2021 • Developers Guide | Page 24

Chapter 2: How to Use Direct

Query contains no monomers (that is, template atoms) and only normal atoms and bonds.
Examples are benzene, alanine drawn out as the full structure: The Fastsearch or inverted keys index
is used to find all structures in the database which contain modified or cross-linked monomers
containing the same atoms and bonds in the query, note that alanine drawn as N-C(-C)-COO will not
match an unmodified alaninemonomer.
Query contains a mix of unmodified and modified monomers: The Fastsearch or inverted keys index
is used to find all structures in the database which contain modified or cross-linked monomers
matching those in the query, after those aremapped the unmodified monomers in the query are
mapped onto the remainder of the target.
Query contains only unmodified monomers: The sequence text for the query is generated (for
example “LLLL”) and the sequence text for each structure in the database is searched for text
sequences which contain the query text. A query monomer may map to a modified target monomer
if the target monomer has the same text value (letter).

The substructure search ancillary operator ssssequenceids returns the template or abbreviation Sgroup
sequence ID values for residues which contain the query as a substructure.

SSS for Molecules Produced by the UniProt Converter
The UniProt converter expands any monomers that are cross-linked, even if one or both are present in
the standard set of template definitions. Thus SSS searches can be used to locate cross-linked residues
when themolecules are produced by the Direct UniProt converter. For example, using an SSS query of
benzene against a database of peptides will hit only those tyrosine-containing peptides where the
tyrosine has been modified in someway, for example, the tyrosine was changed to phosphotyrosine. An
SSS query of C-S-S-Cwill find all peptides containing disulfide cross-links. For details about the Direct
UniProt converter, see "UniProt Converter" in theDirect Administration Guide.

SSS Indexing of Template Atoms
The substructure indexing process includes a small number of the template atoms adjacent to
monomers which are indexed due to modifications or cross-links. This means you can construct an SSS
query which includes a few template atoms adjacent to the real chemistry being searched. For example,
an SSS query of Ala-Gly-N-C(-C-S)would find cross-linked cysteines attached through their N
terminus to glycine which is in turn attached to alanine.

Notes:
A query containing only database template atoms will not select molecules which contain
modified versions of any of thosemonomers. Conversely, an SSS query which is the full chemistry
for an unmodified monomer will not select molecules containing the template atom version of
that monomer. These are limitations of the substructure search algorithm.
The substructure search ancillary operator ssssequenceids returns the template or
abbreviation Sgroup sequence ID values for residues which contain the query as a substructure.

Formula Searching of Biopolymers
Formula searching of biopolymers using the fmlalike and fmlamatch operators is supported.
However, note that the search is for non-template atoms such as C, H, N, O, and S, not for residues such
as Alaand Cys. Thus, these searches are not generally useful except in cases where the search is for an
unusual element such as selenium.

Similarity Searching of Biopolymers
Similarity searching of biopolymers using the similar operator is allowed, but the results are not
useful because of theminimal number of substructure keys generated for biopolymers.

Page 25 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

Exact-match Searching of Biopolymers
An exact-match sequence search using the flexmatch operator is supported. For exact-match searches
BIOVIA recommends using NEMA keys. For more information, see "Using NEMAKey Searching" in Get
Information About Molecules.

Search Biopolymer Sequence Text
Biopolymer sequence text is stored in Direct for use during substructure searching with queries which
contain only unmodified resides, as discussed above. The stored sequence text may also be searched
with a text query using the SEQUENCESEARCH operator in Direct. It searches the text using either the
Oracle LIKE operator or the Oracle REGEXP_LIKE function. For more information see
"sequencesearch" in the BIOVIA Direct Reference Guide.

Substructure Search of Modified Monomers
Direct supports substructure searching (SSS) ofmodified monomers in a biopolymer sequence.
Substructure searching of even the template-compressed biopolymer is not generally feasible due to the
large number of non-template atoms and bonds which might be present. Thus Direct does not support
substructure searching of unmodified monomers, that is, monomers which can be represented using
one of the template definitions. Instead, Direct indexes only the non-template atoms and bonds of
monomers which are not present in the set of template definitions associated with the database. Those
atoms and bonds may be contained in a template. If the template definition is not included in the
standard set of template definitions, the atoms and bonds will be indexed.
For example, a 200 residue peptide which contains all 20 natural amino acids as well as themodified
amino acid d-alanine will contain:

20 template connection tables
199 special template atoms
C,H,N atoms contained in the d-alanine residue

In this example, a search using a substructure query containing a chiral amino-acid fragment with a d-
methyl rather than l-methyl would return the record as a hit because the atoms in the non-natural
alanine residue are indexed. A benzene substructure query would not hit the record because none of
the phenyl substituted amino acids would be indexed. They are all stored as template atoms. If the
peptide contained disulfide crosslinks, the two cysteines on either side of each disulfide bond would also
be indexed, and could be found with a substructure search.

Note: Data Sgroups are used to identify undocumented or ambiguous modifications. It is not
recommended to routinely search for residues identified with data Sgroups. This type of search is
relatively slow, and somemodifications, for example N-glycosylation, are common in proteins. This
can result in slow search times.

Store Biopolymer Sequences
Store Monomer Representations
Amino acid monomer units that are not modified are represented as single atoms within themolecule.
Each of the distinct unmodified monomer types has a corresponding template which defines the
chemical structure of themonomer, its attachment points, and its leaving groups. Templates are stored
just once in themolfile or binary packed connection table, allowing even very large biopolymers to be
represented in a relatively compact form.

BIOVIA Direct 2021 • Developers Guide | Page 26

Chapter 2: How to Use Direct

Monomer units that have been modified (not in the standard set of template definitions) are stored as
their full connection table (but may use abbreviation Sgroups so that a rendering of themolecule will
show only a single- or three-letter abbreviation for themonomer).
For example, a 200 residue peptide which contains all 20 natural amino acids as well as themodified
amino acid d-alanine will contain 20 template connection tables, 199 special template atoms, and the
C,H,N atoms contained in the d-alanine residue.
Molecular weight and molecular formula will be computed taking into account the templates for all of
the special template atoms. Note that the formula will contain only non-template atoms such as C, H, N,
O, and S, not residue names such as Ala and Cys.

Compress Sequence Molecules
Oracle provides a mechanism for compressing large objects. Sequencemolecule connection tables are
very large, and benefit from Oracle LOB compression. Using SECUREFILE COMPRESS MEDIUM provides
about a two-fold compression of typical sequencemolecule connection tables. HIGH compression
provides very little additional gain, and requires more compute resources. There is no performance
penalty to the compression. The performance is slightly better with compressed CTABs.
To create a table with LOB compression, use SECUREFILE COMPRESS MEDIUM as shown in the
following example:
create table peptides
(uniprot_name varchar2(12),
uniprot_accession_nr varchar2(6),
ctab blob,
sequence clob)
lob (ctab) store as securefile (compress medium);

Get the HELM String
HELM, Hierarchical Editing Language for Macromolecules, is a format that can represent natural and
modified biological sequences such as peptides, proteins, and nucleic acids, linked to each other and to
small molecules to form complex structures.
The format specifications are described in "HELM: A Hierarchical Notation Language for Complex
Biomolecule Structure Representation", Tianhong Zhang, Hongli Li, Hualin Xi, Robert V. Stanton, and
Sergio H. Rotstein, J. Chem. Inf. Model. 2012, 52, 2796−2806.
Direct provides the following operators and functions that return HELM strings for molecules:

helm

mdlaux.helm

There are limitations to the generation of HELM strings. Only biopolymer sequencemolecules that do
not havemodified residues can be converted into HELM strings.

See also
Convert HELM strings to molfiles

Convert HELM Strings to molfiles
Direct provides the following function that converts a HELM string to a molfile string:

mdlaux.helmtomolfile

Any function or operator which accepts a general molecule argument also accepts a HELM string. When a
HELM string is used as an input parameter, an implicit conversion of the HELM string to a molfile string
occurs. Thus a HELM string can be inserted into a table and used in a query.

Page 27 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

The following example uses a SMILES string as the structure to be inserted. The mol operator converts
the HELM string to a BLOB.

SQL> create table moltable (id number, ctab blob);

Table created.

SQL> insert into moltable values (1, mol(x));

1 row created.

Get Information About Reactions
Search for Reactions
To search for reactions in an Oracle table that contains reaction objects, you can use any of the following
Direct operators in the WHERE clause of your SQL query:

rss - Reaction substructure search
rxnflexmatch - Reaction flexible match (flexmatch) search
rxnsim - Reaction similarity search

For example, the following SQL query performs a reaction substructure search with a query rxnfile:
select rxnmdlnumber
from samplerx_reaction
where rss(rctab, '/opt/BIOVIA/direct2021/examples/rxnfilesquery.rxn')=1;

When you use the search operators rss, rxnflexmatch, and rxnsim in a WHERE clause, always test
for a result of 1.
When you use the search operators rss, rxnflexmatch, and rxnsim in a SELECT clause, these
operators return 1 for a match, and 0 for an unsuccessful match.
To negate the results of these search operators, use the SQL operator NOT. For example, to retrieve all
structures that do not contain a certain structure:
select rxnmdlnumber
from samplerx_reaction
where not rss(rctab, '/opt/BIOVIA/direct2021/examples/rxnfilesquery.rxn')=1;

For the usage and syntax of the different Direct operators and functions, see BIOVIA Direct Reference.
For detailed information about the reaction flexmatch and substructure searches, see "Exact Search
(Flexmatch) and Reaction Substructure Search (RSS)" in the BIOVIA Chemical Representation Guide. To
get related information about the results of a reaction search, see "Ancillary Operators for Reaction
Searches" in Retrieve Related Reaction Information.
For information about improving performance, see Performance Guidelines.

Fetch Reactions
Use Direct operators to fetch the reactions that match your search, either as CLOBs or as string
segments.

Fetch Reactions as Images
Use the following Direct operator that returns the image of a structure:

rxnimage - Returns a BLOB that contains the image of a reaction. The image can use either the PNG,
BMP, SVG, or EMF format.

BIOVIA Direct 2021 • Developers Guide | Page 28

Chapter 2: How to Use Direct

Fetch Reactions as CLOBs
If your client application supports CLOBs, use the following Direct operators that return reaction CLOBs:

rxnfile - Returns a CLOB representation of a rxnfile.
rxnchime - Returns a CLOB representation of a Chime string.
rsshighlight - Returns a CLOB representation of a highlighted Chime string.

Fetch Reactions as String Segments
If your client application does not support CLOBs, use the following Direct operator that returns string
segments of the reaction:

stringsegment - Returns a VARCHAR2 string that contains a 4000-character segment of an rxnfile
or Chime string representation of the reaction.

The following Java code fetches a specific reaction in a table as string segments.

Note: Exception handling is omitted in this example.

//Format the SELECT SQL to fetch the first 4000-character
//segment of Chime string
String SQL =

"select rxnmdlnumber, stringsegment(0,rxnchime(rctab)) " +
"from samplerx_reaction where rxnmdlnumber='RXCI94058988'";

//Format another SELECT SQL to fetch the next 4000-character
//segment of Chime string
String fetchSQL = "select stringsegment(0) from dual";
Statement stmt = conn.createStatement();
//Execute the SQL to fetch the first 4000-character segment
ResultSet rset = stmt.executeQuery(SQL);
rset.next();
//Get the string content from the reaction column (column #2)
String RxnStr = rset.getString(2);
String s2;
//Execute the SQL to fetch the next segments,
//until nothing more to fetch
do {

Statement ftmt = conn.createStatement();
ResultSet fset = ftmt.executeQuery(fetchSQL);
fset.next();
s2 = fset.getString(1);
if (s2 != null && s2.length() > 0) RxnStr = RxnStr + s2;

} while (s2 != null && s2.length() > 0);

If your client application does not support CLOBs, you can also write string segments to Oracle
temporary CLOBs, and retrieve them later. See Fetch strutures > Copying string segments into a
temporary CLOB.

Set the Default Row Prefetch
If your SQL query returns multiple rows that contain CLOB or BLOB reactions, Oracle might return the
following error:
ORA-22922: nonexistent LOB value

In order to fix this error, your application can disable the prefetch feature in the Oracle database driver
that you use with your application. For example, using the Oracle JDBC driver, you can disable prefetch
to fetch one row at a time, as follows:

Page 29 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

// Connect to database
conn = DriverManager.getConnection(

jdbcUrl, userid, password);
// Prevent ORA-22922 by fetching one row at a time
((OracleConnection)conn).setDefaultRowPrefetch(1);
// Fetch clobs
rset = stmt.executeQuery(

"select extreg, tempclob(1,rxnfile(rxn)) from rdc1");
while (rset.next()) {

String extreg = rset.getString(1);
//JDBC 2 supports Clobs - get the Clob
CLOB clob = rset.getClob(2);
String rxnfile = clob.getSubString(1,32000);
//Free the LOB
//Client interfaces such as JDBC require that the
//temporary LOBs returned from BIOVIA Direct
//must be explicitly freed.
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

}

Another alternative is to select the ROWID (or other unique row identifier) from the reaction table,
instead of selecting a CLOB or BLOB reaction. Then, use the unique identifier in a second SELECT
statement to fetch one reaction object at a time.

Retrieve Related Reaction Information
Direct provides operators that return related information about the reactions that match your query.
You can use the following operators in the SELECT clause of your SQL query:

rxnautomap - Returns a CLOB representation of an automapped rxnfile.
rxnautomapchange - Returns the number of changes performed in the last automap operation.
rxnautomapstatus - Returns the status of the last automap operation.
ncomponents - Returns the number of reactant or product molecules of a reaction structure.
rxnmol - Returns a CLOB representation of a reactant or product molecule from a reaction structure.
rxnkeys - Returns the reaction key strings from a reaction object.
hasnostructs - Indicates whether or not a reaction contains any component that has no atom (no-
structure).
rxnsmiles - Returns the string for a reaction. For more information, see the Getting the reaction
SMILES string section that follows.

The following SQL example returns an automapped reaction, and the number of components in the
product of a specific reaction:
select rxnautomap(rctab, 'default'),

ncomponents(rctab, 2)
from samplerx_reaction
where rxnmdlnumber='RXCI94058988';

Ancillary operators for reaction searches
Direct provides ancillary operators or functions that return related reaction information from a structure
search. Use an ancillary operator in the SELECT clause of the same query that used the Direct search

BIOVIA Direct 2021 • Developers Guide | Page 30

Chapter 2: How to Use Direct

operator. The ancillary functions take a single parameter, which is an arbitrary number. This number
must match the appropriate parameter passed to the search operator. In the following example, the
parameter for the rsshighlight operator matches the last parameter of the rss operator.
select rsshighlight(2)

from samplerx_reaction

where rss(rctab, 'c:\BIOVIA\direct80\testmolrxn\query.rxn', 2)=1;

The following table lists the ancillary operators that are available with the different search operators.

Search
Operator

Ancillary operators

rxnflexmatch rxnflexmatchtimeout - Indicates if the reaction flexmatch search timed out.

rss rsshighlight - Returns a highlighted Chime reaction.
rsstimeout - Indicates if the reaction substructure search timed out.

rxnsim rxnmolsim - Returns the percentage value of themolecule component similarity of
a record that matches a reaction similarity search.
rxnctrsim - Returns the percentage value of the reacting center similarity of a
record that matches a reaction similarity search.

Get the reaction SMILES string
Reaction SMILES is an extension to SMILES that represents reactions using concatenated molecule
SMILES strings. Direct provides the following operators and functions that return SMILES strings for
reactions:

mdlaux.rxnsmiles

rxnsmiles

There are limitations to the generation of the SMILES strings for molecules. The extension of SMILES to
support reactions also has limitations, it:

Cannot store reacting center bond information.
Cannot distinguish between multiple fragments in a single reaction component, fragments are
stored as if they are separate reaction components.

Conversion of reaction SMILES strings to rnxfile
Direct also provides the following function that converts a reaction SMILES string to a rxnfile string:
mdlaux.smilestorsnfile

For more information on mdlrxn.smiles and mdlaux.smilestorsnfile, see the BIOVIA Direct
Administration Guide > Command Reference.
Any function or operator that takes a general reaction argument also accepts a reaction SMILES string.
When a reaction SMILES string is used as an input parameter, an implicit conversion of the reaction
SMILES string to a rxnfile string occurs. Thus, a reaction SMILES string can be inserted into a table and
used in a query.
The following example uses a reaction SMILES string as the reaction query parameter for the rss
operator:
select rxnmdlnumber from samplerx_reaction where rss(rctab,
‘>>Clclccccc1’)=1;

Page 31 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

See also
Work with Molecules in a Reaction
Registration trigger on a reaction table
Retrieve related structure information >Getting the SMILES string

Navigate Search Results
To navigate the search results from Direct, use themethods of the application programming interface
that you use to access Oracle data objects. Examples are the API for ActiveX Data Objects (ADO), Java
Database Connectivity (JDBC), Oracle Call Interface (OCI), and Oracle Objects for OLE (OO4O). Another
example is the use of the CURSOR construct in PL/SQL.
For information about how to use the application programming interface to navigate the result set, see
the reference documentation of the databases connectivity package you use, or theOracle Application
Developer's Guide.

Save the Search Results
To create a list of ROWID or primary key values from the search results, save the results of your query in
a temporary Oracle table. For example, in the example table samplerx_reaction, the primary key is
rxnmdlnumber:
Create a table of primary key values from the results of your query. For example:
create table temp_list as

select rxnmdlnumber
from samplerx_reaction
where rss(rctab,'/opt/BIOVIA/direct2021/examples/rxnfiles query.rxn')=1;

Create an index for the new table, using the primary key column. For example:
create index temp_list_idx

on temp_list(rxnmdlnumber);

Use the temporary table as a reference list in other searches. For example:
select a.rxnmdlnumber,

rxnctrsim(1) "Reacting Center Similarity",
rxnmolsim(1) "Molecule Similarity"

from samplerx_reaction a,
temp_list b

where a.rxnmdlnumber = b.rxnmdlnumber
and

rxnsim(a.rctab, '/opt/BIOVIA/direct2021/examples/rxnfiles query.rxn', '20
60', 1)=1;

Save Reactions to a Searchable Table
You can create a newOracle table to store the reaction objects from the results of your search on a
reaction table:
1. Create a table whose rows are populated from your query. For example:

create table temp_result as
select *
from samplerx_reaction
where rss(rctab,'/opt/BIOVIA/Direct/examples/rxnfiles/query.rxn')=1;

BIOVIA Direct 2021 • Developers Guide | Page 32

Chapter 2: How to Use Direct

2. Create an index on the primary key column of the new table. For example:
create index temp_result_pkix

on temp_result(rxnmdlnumber);

3. If you plan to search the reactions in the new table, and the table is large, create a reaction domain
index for the new reaction column. For example:
create index temp_result_rxnidx

on temp_result(rctab)
indextype is c$Direct.rxixmdl;

Note: c$directx.rxixmdl indicates that the index is a reaction domain index.

4. If you performed Step 3, call the mdlaux.smiles function to check if there is an error. Oracle
might still create an invalid index even if there was an error. If mdlaux.smiles returns an error,
you must drop and recreate the index, if Oracle created it.

5. If you performed Step 3, BIOVIA recommends that you apply statistics on this table for better
performance. To apply statistics to any table to which you have applied a domain index, use the
Oracle command:
ANALYZE TABLE tablename ESTIMATE STATISTICS

6. To test the results, select from the newly created table. For example:
select count(*)
from temp_result
where rss(rctab,'/opt/BIOVIA/Direct/examples/rxnfiles/query.rxn')=1;

This should return the total number of rows in the temporary table.

See also
Generate and Lock Table Statistics

Inserting, Updating, and Deleting Reactions
You can insert into, update, and delete reaction objects directly from an Oracle table that contains
them. If the reaction table does not have a domain index, Oracle performs the insert, update, or delete
operation on this table. If the reaction table has a domain index on the reaction column, Oracle calls the
related method of the domain index, and performs related Direct operations that support the domain
index.
When you use Direct to insert into, update, or delete from an Oracle table that contains reaction
objects.

Page 33 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

Notes:
You must register and update reactions of BLOB data type. For more details, see the following
section, Inserting and updating reaction objects.
Do not register a reaction that contains query features. A query feature is a restriction on a
structure that specifies that a reaction substructure search will retrieve only certain types of
structures from a database. For example, a reaction contains query features if it has only a single
molecule or product, or if it contains a molecule which contains query atoms.
Direct does not support registration of reactions which contain only reactants or only products.
The user that executes the SQL command must have the correct Oracle INSERT, UPDATE, or
DELETE privilege in order to update data in the reaction table.
Triggers must not reference the table for which the trigger fired. If a trigger or function attempts to
access or modify a table that is being modified by the statement which fired the trigger, Oracle
returns the following error:
ORA-04091: table table_name is mutating, trigger/function may not see
it

For information about structural features that can or cannot be registered, see "Registration of
Reactions" in the BIOVIA Chemical Representation Guide.

Inserting and Updating Reaction Objects
Direct stores binary, packed reactions, or reaction objects, in a BLOB column in an Oracle table. To insert
or update a reaction object in a reaction table, the reaction that you use for the insert or update
operation must be a BLOB. Direct provides the rxn operator that converts a rxnfile or Chime string
representation of a reaction to a BLOB reaction object. The rxn operator accepts a filename string, or
the rxnfile or Chime string as a CLOB or VARCHAR2 string.

Note: Direct allows the registration of NULL reaction objects. See NULL structures.

The following example uses the rxn operator to convert the contents of a rxnfile into a BLOB, and insert
the BLOB into a reaction table:
insert into samplerx_reaction (

rxnmdlnumber,
rctab

)
values (

'RXCI94058988',
rxn('/opt/BIOVIA/Direct/examples/rxnfiles/reaction800.rxn')

);

The following example uses the rxn operator to convert into a BLOB the CLOB Chime reaction selected
from a different table, and use the BLOB to update a specific reaction:
update samplerx_reaction
set rctab =

rxn(
(select rxnchime(rctab)
from temp_result
where rxnflexmatch(
rctab,
'/opt/BIOVIA/Direct/examples/rxnfiles/reaction100.rxn',
'match=all'

BIOVIA Direct 2021 • Developers Guide | Page 34

Chapter 2: How to Use Direct

)=1
)

)
where rxnmdlnumber='RXCI94058988';

Note: The SELECT query must return only one reaction.

You can also transfer reaction objects from one table to another without using the rxn operator. Using
the preceding example, you can also select the value of the rxn column directly, and use it in the
update:
update samplerx_reaction
set rctab =

(select rctab
from temp_result
where rxnflexmatch(
rctab,
'/opt/BIOVIA/Direct/examples/rxnfiles/reaction100.rxn',
'match=all'
)=1

)
where rxnmdlnumber='RXCI94058988';

Note: The SELECT query must return only one reaction.

Inserting Related Reaction Information
To insert related structure information, such as reaction components, into a reaction table, insert the
values returned by the following Direct functions:

mdlaux.rxnkeys - Returns the RSS key string which would be registered for a structure.

Note: When inserting the RSS keys, you must use the mdlaux.rxnkeys function instead of the
rxnkeys operator. The mdlaux.rxnkeys function allows you to specify a reaction table or
reaction domain index that specifies which key definitions to use. The rxnkeys operator always
uses the global key definitions which are not appropriate for registration.

rxnfile - Returns an rxnfile from a binary reaction.
rxnchime - Returns a Chime string from a binary reaction.
ncomponents - Returns the number of reactants or products in a binary reaction.
rxnmol - Returns a molfile CLOB for a molecule in a reaction.
mdlaux.hasnostructs - Indicates whether or not a reaction contains a component with no atoms
(no-structure).

Multi-user Registration and Locking
During registration BIOVIA Direct locks the domain index with a fine degree of granularity that allows
many users to register at the same timewith fewer wait states. The locking mechanism increases multi-
user throughput and makes interference with other transactions less probable. The lock identifier used
to prevent the resitration of duplicates is based on the reaction’s features. It is still possible for reactions
that are very similar to require the same lock; so two processes might need the same lock at the same
time, resulting in one process waiting for the other to COMMIT its transaction.

Page 35 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

This means that deadlock situations can occur. If two processes are each registering more than one
reaction in a single transaction, it is possible for both processes to need a lock that the other process
already holds. This results in ORA-00060:deadlock detected, and one of the two processes will
have its transaction rolled back. Applications should either COMMIT frequently enough to avoid
deadlock conditions, or they should be written to roll back and retry a transaction that encounters an
ORA-00060 condition. Deadlock conditions are rare since they require two transactions running at the
same time that both want to register two pairs of reactions that are similar.
The locking mechanism applies when uniqueness checking has been turned on, and applies for
structures other than no-structures. No-structures are inserted without any duplicate check, because
they are considered to be unique by definition.

Accessing Files
Direct provides operators that allow read and write access to files in the operating system. When you
use these operators in a SQL statement, Oracle uses a single operating system account to execute the
Direct shared library. This operating system account is the user that owns the extproc listener. Because
of this:

Direct cannot use the attributes in the operating system environment of an application user, such as
user profile and environment variables.
The file name that is passed as an operand to the Direct operator, such as readbinaryfile,
readfile, writebinaryfile, writefile, sss, flexmatch, rss, rxnflexmatch, and rxnsim
must:

Include the full path name.
Not contain environment variables.
Be accessible to the operating system account that executes the Direct shared library.

For example, if your administrator used an operating system account called MDLIRXN1 to start the
Oracle extproc listener, Oracle uses the permissions of MDLIRXN1 on the file that is being read by
readbinaryfile, or being written to by writebinaryfile. On Windows, this operating system
account is typically the Oracle account. If Directt is attempting to write a new file, Direct uses the
permissions of MDLIRXN1 in the specified location. On Linux, verify with the system administrator that
the profile of the owner of the Oracle listener, for example MDLIRXN1, contains the following umask
command:
umask u=rw,g=rw,o=rw

Similarly, the log file that is used for debugging Direct must be specified with a full path name, and must
be writable by the operating system account that executes the Direct shared library.
For details about how to log debugging information from the Directt, see theDirect Administration
Guide > Logging Information.

Checking Errors
Direct creates and maintains a message stack for each Oracle session that uses Direct operators and
functions. The first message in the stack is the first Direct informational, warning, or error message that
the user encountered in an Oracle session. To display the contents of themessage stack, use the Direct
function mdlaux.errors. If there are no informational, warning, or error messages, the function
returns NULL. Direct clears the stack after each invocation of mdlaux.errors.

BIOVIA Direct 2021 • Developers Guide | Page 36

Chapter 2: How to Use Direct

If the SQL statement that uses Direct operators or functions returns an Oracle error, or if you have an
Direct query that might take a long time to execute, call mdlaux,errors to check for Direct errors.
Messages that contain the string CTLIB(100) are informational.
Because Direct clears the stack after displaying its contents, frequent calls to mdlaux.errors reduce
the chances of overflowing the stack. If the stack overflows, you lose the last error message, and the last
line in the stack contains the string ...more.
For details about how to log debugging information from Direct, see theDirect Administration Guide >
Logging Information.

Working with Molecules in a Reaction
Direct provides the following operators that return information about the component molecules in a
reaction:

ncomponents - Returns the number of reactant or product components in a reaction.
rxnmol - Returns a CLOB representation of a specific reactant or product molecule in a reaction.

Extracting Molecules from a Reaction
The following PL/SQL example is a function that extracts a specific component molecule in a reaction
from a table, and returns the first 4000 characters as a string.

CREATE OR REPLACE FUNCTION GetMol(whichmol NUMBER)
RETURN VARCHAR2

IS
-- Declarations
rxnval BLOB;
molval CLOB;
nreax NUMBER;
nprod NUMBER;
comptype NUMBER;
compidx NUMBER;
molfile CLOB;
loblen INTEGER;
amount BINARY_INTEGER;
retval VARCHAR2(4000);

BEGIN
-- Get a specific reaction
SELECT rxn INTO rxnval FROM isisrx
WHERE rxnregno = 100;
retval := NULL;
comptype := 0;
compidx := 0;
molval := NULL;
-- Count the number of reactant and product molecules
nreax := mdlaux.ncomponents(rxnval, mdlaux.reactant);
nprod := mdlaux.ncomponents(rxnval, mdlaux.product);
-- Determine the index of component molecule to get
IF (whichmol <= nreax+nprod) THEN

comptype := mdlaux.reactant; -- 1
compidx := whichmol;
IF (whichmol > nreax) THEN
comptype := mdlaux.product; -- 2

Page 37 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

compidx := whichmol - nreax;
END IF;
--Get the molecule structure into a clob
molval := mdlaux.rxnmol(rxnval, comptype, compidx);

END IF;
-- Copy the first 4000 chars of the CLOB to a string
molfile := molval;
IF (molfile IS NOT NULL) THEN

loblen := dbms_lob.getlength(molfile);
IF (loblen > 4000) THEN

amount := 4000;
ELSE

amount := loblen;
END IF;
dbms_lob.read(molfile, amount, 1, retval);

END IF;
RETURN retval;

END;
/
SHOW ERRORS;

This is another PL/SQL example that accepts a reaction object, and populates a table with the
component molecules:

DROP TABLE rxnmolstable;
CREATE TABLE rxnmolstable

(id NUMBER(12), comptyp NUMBER(1),
compidx NUMBER(3), molval CLOB);

CREATE OR REPLACE PROCEDURE getrxnmols(idval NUMBER, rxnval BLOB)
IS

comptype NUMBER;
compidx NUMBER;
molval CLOB;

BEGIN
IF (rxnval IS NOT NULL) THEN
-- Start with first reactant
comptype := rdcaux.reactant;
compidx := 1;
LOOP
-- Get molecule
molval := mdlaux.rxnmol(rxnval, comptype, compidx);
IF (molval IS NULL) THEN

IF (comptype = mdlaux.reactant) THEN
-- Done with reactants, switch to products
comptype := mdlaux.product;
compidx := 1;

ELSE
-- All done (or could be error, can't distinguish)
EXIT;

END IF;
ELSE

-- Insert comptype, compidx, and molval into table
EXECUTE IMMEDIATE 'INSERT INTO RXNMOLSTABLE'||

' (ID, COMPTYP, COMPIDX, MOLVAL)'||

BIOVIA Direct 2021 • Developers Guide | Page 38

Chapter 2: How to Use Direct

' VALUES (:1, :2, :3, :4)'
USING idval, comptype, compidx, molval;
-- Advance to the next reactant or product component
compidx := compidx + 1;

END IF;
END LOOP;

END IF;
END;
/
SHOW ERRORS

Note: You can execute the sample getrxnmols procedure by passing it the BLOB format of either a
rxnfile or a Chime string. Use the package function mdlaux.rxn to convert the reaction to a BLOB.
mdlaux.rxn is the package function name of the rxn operator. For example, to execute the sample
getrxnmols procedure, enter the following command in SQL*Plus:
execute getrxnmols(1, mdlaux.rxn('/tmp/test.rxn'));

Inserting Component Molecules into a Molecule Table

Registration Trigger on a Reaction Table
The rxnmol operator is used in a registration trigger to extract the component molecules from a
reaction that was inserted into a reaction table, and inserts the component molecules into a molecule
table.
Direct provides a sample procedure, MakeMolXrefTrigger, that creates a sample trigger on a reaction
table. The sample trigger:

The sample trigger uses the rxnmol operator to extract the component molecules in a reaction.
After an insert to the reaction table, the sample trigger inserts each component molecule into a
molecule table.
After an insert to the reaction table, the sample trigger inserts rows into a cross-reference table that
associates the component molecules in themolecule table with the originating reaction in the
reaction table. If themolecule already exists in themolecule table, the trigger uses the CDBREGNO of
the existing molecule.
After an update to the reaction table, the sample trigger deletes the rows from the cross-reference
table that are associated with the current reaction, and inserts new rows into the cross-reference
table and molecule table. The trigger does not delete the old molecules from themolecule table
because they might be used by other reactions.
After a delete from the reaction table, the sample trigger deletes the rows from the cross-reference
table that are associated with the current reaction. The trigger does not delete themolecules from
themolecule table because they might be used by other reactions.

The following diagram shows an example of a reaction table (samplerx_reaction) and its trigger
(samplerx_reaction_trigger), a cross-reference table (samplerx_reaction_molxref), and a
molecule table (samplerx_reaction_molecules), and shows how these are related to each other:

Page 39 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

If you insert or update a reaction in a reaction table, and you want to create the sample trigger that
automatically inserts or updates the component molecules in a molecule table, use the procedure
MakeMolXrefTrigger that follows.

Using MakeMolXrefTrigger
To use MakeMolXrefTrigger:
1. In SQL*Plus, verify that the reaction table trigger you want to create does not already exist. For

example:
select trigger_name from user_triggers
where trigger_name like 'MY_RXN_TABLE%';

where MY_RXN_TABLEis the name of your reaction table.
2. If the reaction table trigger already exists, drop it before proceeding. For example:

drop trigger my_rxn_table_trigger;

where my_rxn_table_triggeris the name of the existing trigger on your reaction table.
3. Verify that themolecule table which will contain the reaction components contains a CDBREGNO

column and that the values in this column are automatically generated. For the
MakeMolXrefTrigger procedure, see BIOVIA Direct Reference > RDCAPPS Procedure >
Requirements >MakeMolXrefTrigger.

4. In SQL*Plus, log in as the user who owns the reaction table. Create the RDCAPPS package that
contains the MakeMolXrefTrigger procedure:
/opt/BIOVIA/direct2021/examples/rdcapps.sql

5. where /opt/BIOVIA/direct2021 installation.

BIOVIA Direct 2021 • Developers Guide | Page 40

Chapter 2: How to Use Direct

6. Execute the MakeMolXrefTrigger procedure. For example:
SQL> call rdcapps.makemolxreftrigger('my_rxn_table',

'rxnregno',
'my_mol_table');

The example shown uses the default values for the names of the reaction table trigger (MY_RXN_
TABLE_TRIGGER) and the cross-reference table (MY_RXN_TABLE_MOLXREF). To override the
default values, see the complete syntax for MakeMolXrefTrigger in BIOVIA Direct Reference.

Reaction Tables that Share a Molecule Table
If you havemultiple reaction tables that share the samemolecule table, create a trigger for each reaction
table in order to automatically populate component molecules from all reaction tables into one table. If
you want to use the sample trigger created by the MakeMolXrefTrigger procedure, each reaction
column in each table needs its own trigger and cross-reference table. For each reaction table, execute
the MakeMolXrefTrigger procedure. For example, execute the following commands for two reaction
tables rxn_table1 and rxn_table2, which both use the samemolecules table moltable_mols:
SQL> call rdcapps.makemolxreftrigger('rxn_table1',

'rxnregno',
'moltable_mols');

SQL> call rdcapps.makemolxreftrigger('rxn_table2',
'rxnregno',
'moltable_mols');

In this example, the two commands create: RXN_TABLE1_TRIGGER and RXN_TABLE1_MOLXREF for the
table rxn_table1, and RXN_TABLE2_TRIGGER and RXN_TABLE2_MOLXREF for the table rxn_
table2.

Maintaining Referential Integrity
When a user inserts into, updates, or deletes from a reaction table, you can use a trigger on the reaction
table to maintain referential integrity between the reaction and molecule tables.
The sample trigger that is created by the MakeMolXrefTrigger proceduremaintains referential
integrity by maintaining a cross-reference table that links the rows between the reaction table and the
molecule table. The cross-reference table allows an application to:

Display component molecules in a reaction that are also in a molecule table.
Search for molecules in a molecule table, and find the reactions in the reaction table that contain
them.

However, the sample trigger is only defined on the reaction table, and not themolecule table. If a user
updates or deletes a molecule from themolecule table, the cross-reference table becomes incorrect. The
referential integrity is no longer maintained between the reaction table and themolecule table. This
implies that if you use the sample trigger that is created by the MakeMolXrefTrigger procedure, the
usersmust not update or delete from themolecule table. The usersmust only insert into themolecule
table.
To prevent users from updating or deleting molecules from a molecule table that is linked to a reaction
table, you can create a trigger on the CDBREGNO or other primary key column of themolecule table. The
molecule table trigger must:

Check whether the primary key value exists in the cross-reference table, if a user attempts to update
or delete a molecule from themolecule table.
Return an error, if the primary key value exists in the cross-reference table.

Page 41 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

Homology Group Searching and Registration
About Homology Groups
A homology group is a possibly ambiguous representation of a structural feature such as alkyl group or
acyclic group. The groups are listed in The Homology Group Hierarchy and Names.
BIOVIA Direct supports representation and searching of homology groups. Direct:

Allows a structure to contain a homology group with no underlying exact specification, by including a
star atom with an abbreviation such as Alkyl.
Searches for homology group features using substructure search (sss) where the query contains a
star atom with an abbreviation such as Alkyl. The database can contain exactly defined molecules
and/or molecules with incompletely specified homology groups as mentioned in the second bullet.

Note: Homology groups cannot be used with a database of generic (markush)molecules, they are
limited to normal 2D fully specified molecules.

The Homology Group Hierarchy and Names
Homology groups are hierarchically ordered. It starts with “Any Group” which represents any group,
and becomes more specific according to the hierarchy shown in the following figure.

Note: The names shown in the previous figure are the exact names of the homology groups. If the
group name has special characters such as spaces and commas, include them when specifying the
name as an abbreviation label. For example, Any Group and Cyclic, no Carbon.

There are 16 distinct groups forming the hierarchy, with the first division being between Cyclic and
Acyclic groups. The hierarchy is four levels deep, so substructures can belong to up to four separate
groups. For example, a substructure or star atom that belongs to the Alkyl group is also a member of
Carbacyclic, Acyclic and Any Group.
When created from exactly defined structures, groups consist of connected collections of atoms and
bonds. They have one and only one crossing bond per group. The group must be all chains bonds or all
ring bonds, combinations are not allowed Single and double bond types refer to true single and double
bonds, not to aromatic bonds (such as the alternating single and double bonds in benzene).
An atom connected to an Acyclic group in a query might or might not be part of that group in the
target. For example, C-Alkyl (carbon bonded to an Alkyl group) should map onto chloroethane. This
can be rationalized by having chloroethane contain two overlapping Alkyl groups, an ethyl and a

BIOVIA Direct 2021 • Developers Guide | Page 42

Chapter 2: How to Use Direct

methyl group. Because groups are restricted to having only one crossing bond, this overlapping
situation does not arise for Cyclic groups.

Homology
Group Name

Homology Group
Abbreviation

Chain
or Ring

Allowed Atom
Types

Allowed Bond Types

Alkyl ALK Chain Carbon Single

Alkenyl AEL Chain Carbon Single, double

Alkynyl AYL Chain Carbon Single, triple

Alkoxy AOX Chain Carbon, oxygen Single to oxygen, single, double,
triple between carbon

Carbacyclic ABC Chain Carbon Single, double, triple

Heteroacyclic AHC Chain Any (at least one
non-carbon)

Single, double, triple

Aryl ARY Ring Carbon Aromatic, single, double, triple
(at least one acromatic)

Cycloalkyl CAL Ring Carbon Single

Cycloalkenyl CEL Ring Carbon Single, double (at least on
double)

Heteroaryl HAR Ring Any (at least on
non-carbon)

Aromatic, single, double, triple
(at least one aromatic)

Carbocyclic CBC Ring Carbon Any

Heterocyclic CHC Ring Any (at least one
non-carbon)

Any

Cyclic, no
carbon

CXX Ring Any except
carbon

Any

Cyclic CYC Ring Any Any

Registering Molecules and Homology Group Information
You can register molecules containing unspecified homology groups. These are indicated in themolecule
as a star atom with an abbreviation name that matches one of the homology group names in the
diagram shown previously.

Note: Although the homology group hierarchy is under Any Group, the Any Group name should
not be used.

The procedure for adding homology groups to a molecule for registration is the same as when creating a
query. See Searching Structures with Homology Groups.

Searching Structures with Homology Groups
Search for homology groups using a query structure that contains only the homology group name.
Create the query structure in BIOVIA Draw by adding a star atom (the atom symbol is “*”) at the point
where you want the homology group, and then connecting to it an abbreviation label using one of the

Page 43 | BIOVIA Direct 2021 • Developers Guide

Chapter 2: How to Use Direct

homology group names shown in Homology Group Searching > The Homology Group Hierarchy and
Names Section.
For more details about searching structures with homology groups, see BIOVIA Chemical
Representation Guide >Homology Groups.

BIOVIA Direct 2021 • Developers Guide | Page 44

Chapter 3:
Performance Guidelines

Guidelines Overview
BIOVIA Direct includes a set of functions that are called by Oracle to satisfy SQL queries. Oracle
Corporation has been gradually improving the Oracle optimizer to make better choices, and BIOVIA has
been gradually improving the capacity of Direct to provide the Oracle optimizer with the input it needs
to make better decisions. However, applications developers must still compose SQL statements with
considerable care and attention to performance issues in order to get consistent, acceptable
performance from SQL queries.
Direct is only one component in the execution of SQL statements. It is essential for the application to
write SQL statements that persuade the Oracle optimizer to use the Direct functions efficiently. Direct
cannot compensate for performance problems that are outside of its control.
There are two implementations of each Direct search operator: Indexed implementation of a search
operator and Non-indexed implementation of a search operator.
As a data cartridge, Direct uses the external procedure (extproc) interface to call Direct routines from
within the Oracle database environment. Consequently, applications that use Direct need to manage
thememory usage of extproc processes.

Indexed Implementation of a Search Operator
The indexed implementation of a search operator generates a result set all at once, using the whole
structure table as the potential candidates. The indexed implementation takes advantage of the BIOVIA
search indexes, such as the fastsearch and flexmatch indexes. The Oracle optimizer chooses the indexed
implementation of an operator when it believes that the indexed implementation would be faster than
evaluating the candidates row by row, or when an INDEX hint is specified in the SQL statement.

Non-indexed Implementation of a Search Operator
The non-indexed implementation of a search operator is chosen by the Oracle optimizer when:

Oracle believes that the non-indexed implementation will be faster than the indexed
implementation.
A FULL table scan hint was supplied in the SQL.
Using the indexed operator will violate one of the optimizer's rules that prohibit the use of the
indexed operator.

extproc Memory Usage
Each Oracle session that executes Direct has an associated extproc process. An extproc process provides
themechanism for Direct to operate directly within the Oracle environment. Oracle sessions that are
created to execute Direct occupy approximately 40MB of virtual memory per user when active, and
approximately 30MB per user when inactive. An inactive Oracle session is a session that continues to be
connected to Oracle without submitting SQL statements that use Direct.
Applications that need to support large user workloads must restrict the number of Oracle sessions that
are kept logged-in to a level that the available system memory and swapfile space can accommodate.
These applications might need to implement techniques to conserve system resources. For information
about managing Oracle resources, see theOracle Database Administrator’s Guide.

Page 45 | BIOVIA Direct 2021 • Developers Guide

Chapter 3: Performance Guidelines

Configuration Issues
The following configuration issues can degrade performance:

Lack of a Valid Domain Index
The Oracle optimizer will not use indexed operators if themolecule or reaction column specified in the
search does not have an appropriate domain index, or the domain index is not valid.
A domain index can become invalid if any of the underlying objects aremodified or dropped. This can
happen when a schema is restored from a backup during an Oracle upgrade, or when the Direct product
is uninstalled and reinstalled. The domain index status can be fetched from the STATUS, DOMIDX_
STATUS, and DOMIDX_OPSTATUS columns of the USER_INDEXES view; the values should be 'VALID'.
Molecule and reaction columns must have the domain indexes created or recreated. To create or
recreate the domain index, use the SQL commands DROP INDEX and CREATE INDEX.
The following SQL command tests for the existence and validity of the domain index on a molecule or
reaction table:
SELECT STATUS,ITYP_OWNER FROM USER_INDEXES WHERE TABLE_NAME='tablename'
AND INDEX_TYPE='DOMAIN';

For example:
SQL> SELECT STATUS,ITYP_OWNER FROM USER_INDEXES WHERE TABLE_NAME='MOLTABLE'
AND INDEX_TYPE='DOMAIN';
STATUS ITYP_OWNER
-------- ------------------------------
VALID c$direct2021

If the domain index is not valid, it can be recreated using the SQL commands DROP INDEX and CREATE
INDEX. For example:
SQL> DROP INDEX RXNINDEX;
Index dropped.
SQL> CREATE INDEX RXNINDEX ON RXNTABLE (RCTAB) INDEXTYPE IS
c$direct2021.RXIXMDL;
Index created.

Lack of Valid Statistics
The Oracle optimizer might not use the Indexed Implementation of a Search Operator if the structure
table lacks statistics, or if the statistics reflect a much smaller database. This can be corrected by
performing the SQL operation ANALYZE TABLE tablename ESTIMATE STATISTICS on the table.

See also
Generating and Locking Table Statistics

Schema Mismatch
The Oracle optimizer will not use the Indexed Implementation of a Search Operator if the operator is
owned by a different schema than the domain index. This can happen after the installation of an
updated version of Direct on a system that already has Direct.
The following SQL command can be used to display the name of the schema that owns the Direct
synonyms:

BIOVIA Direct 2021 • Developers Guide | Page 46

Chapter 3: Performance Guidelines

SELECT TABLE_OWNER FROM USER_SYNONYMS WHERE SYNONYM_NAME='SSS';
For example:
SQL> select table_owner from user_synonyms where synonym_name='SSS';
TABLE_OWNER

c$direct2021

The following SQL command shows the owner of the Direct domain index:
SQL> SELECT ITYP_OWNER FROM USER_INDEXES WHERE TABLE_NAME='MOLTABLE' AND
INDEX_TYPE='DOMAIN';
ITYP_OWNER

c$direct2021

If the synonyms are not owned by the correct schema, or if the table owner and index owner are
different, the synonyms can be redefined by running the MDLAUXOP.SETUP function from the
appropriate schema. For example:
SQL> EXECUTE c$direct2021.MDLAUXOP.SETUP
PL/SQL procedure successfully completed.

Lack of a Valid Fastsearch Index
When executing most substructure search queries, Direct uses the fastsearch index. This index
significantly improves the performance ofmany types of queries. Verify that the Direct administrator
maintains a valid fastsearch index.

Oracle Cache Size
Direct stores reaction fastsearch index information in an Oracle table. The name of this table will always
be the name of the domain index followed by _FSIX. For example, if the domain index name is CIRX_
MDLIX, the name of the fastsearch table will be CIRX_MDLIX_FSIX.
This fastsearch index table can be quite large. On average, the table contains one to three kilobytes of
information for each structure in the database. So, in order to obtain themaximum possible benefit
from this index, you might want to do some tuning of the Oracle initialization parameters.
BIOVIA recommends that you increase the value of the appropriate Oracle caching parameter (DB_
CACHE_SIZE, DB_8K_CACHE_SIZE, or DB_KEEP_CACHE_SIZE) by at least one-fourth of the size of the
reaction fastsearch index table.
For example, if the current value of the DB_CACHE_SIZE parameter is 500megabytes and the size of the
reaction fast-search index table is 1000megabytes, consider increasing the value of DB_CACHE_SIZE to
750megabytes. System resource limitations might affect your ability to increase the cache size.
If the fastsearch table already exists, you can use a SQL statement to calculate the approximate size of
that table. For example, the following statement computes the size of a reaction fastsearch table named
CIRX_MDLIX_FSIX:
SELECT SUM(DBMS_LOB.GET_LENGTH(FSINDEX)) FROM CIRX_MDLIX_FSIX;

For additional information on Oracle tuning procedures, consult the Oracle documentation. For
information about the reaction fastsearch index, see theDirect Administration Guide >Maintaining
Reaction Tables and Indexes.

Optimizing Queries
The following are guidelines for executing queries more efficiently and receiving results more quickly:

Page 47 | BIOVIA Direct 2021 • Developers Guide

Chapter 3: Performance Guidelines

Writing Efficient Structure and Reaction Queries
Writing efficient SQL statements can also result in a significant improvement in query performance.
Oracle and Direct configuration can also affect query performance.

See also
SQL Complexity
Checking the Execution Plan of a SQL Statement.
Performing an Incremental Search
Avoiding PRODUCT NOT REACTANT and REACTANT NOT PRODUCT Searches
Usage of the DISTINCT SQL Keyword
Temporary LOB Usage of Oracle temporary tablespace
Configuration Issues
Lack of a Valid Fastsearch Index
Oracle Cache Size

Efficient Structure and Reaction Queries
When writing chemical structure and reaction queries, BIOVIA strongly recommends that application
users follow these guidelines, in order to ensure that their queries execute quickly:

Always map reactants to products in your reaction query. Amapped query often executes much
faster than an unmapped query. Because a mapped query can still return unmapped reactions,
there is no disadvantage to submitting a mapped query.
Make the query as specific as possible. If possible, add atom and bond query features to the query.
Avoid writing queries that contain multiple fragments.

Performing an Incremental Search
An application can perform a substructure (sss) or reaction substructure (rss) search in an incremental
manner. When an application performs an incremental search, Direct runs the RSS or SSS portion of the
query for approximately two seconds. It then stops executing the query and returns the results that it
has obtained thus far. If and when the application requests additional records, Direct continues to
execute the search (in increments of approximately two seconds).

Note: An incremental search is slightly slower than a comparable search that is not incremental.
However, for many applications, the advantage of being able to display initial results to the
application user quickly far outweighs the slight performance degradation.

To perform an incremental search, use the FIRST_ROWS Oracle hint.
Here is an example of a SQL statement for an RSS search that uses the FIRST_ROWS hint for this
purpose:
SELECT /*+ FIRST_ROWS */ EXTREG

Avoiding PRODUCT NOT REACTANT and REACTANT NOT PRODUCT Searches
The rss search operator provides the option to search a molecule as a reactant or product
substructure. You can specify how themolecule should be searched in the context of reactions by
specifying one of the following values in the third rss parameter:

BIOVIA Direct 2021 • Developers Guide | Page 48

Chapter 3: Performance Guidelines

REACTANT - Finds reactions that contain the specified molecule as a substructure in one of the
reactants.
PRODUCT - Finds reactions that contain the specified molecule as a substructure in one of the
products.
REACTANT NOT PRODUCT - Finds reactions that contain the specified molecule as a substructure in
one of the reactants, and do not contain this substructure in any of the products.
PRODUCT NOT REACTANT - Finds reactions that contain the specified molecule as a substructure in
one of the products, and do not contain this substructure in any of the reactants.

If performance is critical, it is generally not advisable to perform PRODUCT NOT REACTANT and
REACTANT NOT PRODUCT reaction searches. An example of this type of search is RSS(RCTAB,
'molfile', 'PRODUCT NOT REACTANT').
If a database has a separate table (or separate tables) that contains reactant and product molecule
information, performing two SSS searches on these tables is almost always preferable. Two exceptions
(cases in which performing a PRODUCT NOT REACTANT search or a REACTANT NOT PRODUCT search
might be preferable) are:

Databases in which the reactant and product molecule tables are unindexed.
Applications for which converting the SSS results into reactions requires a huge amount of work.

However, if the database lacks a separate table for reactant and product molecule information, there is
no practical alternative to performing the PRODUCT NOT REACTANT or REACTANT NOT PRODUCT

search.
Here is an example of a SQL statement for a PRODUCT NOT REACTANT RSS search:
SELECT RXNMDLNUMBER
FROM SAMPLERX_REACTION
WHERE RSS(RCTAB, 'molfile', 'PRODUCT NOT REACTANT') = 1;

Here is an example of a SQL statement for an alternative to that search:
SELECT RXNMDLNUMBER

FROM SAMPLERX_REACTION
WHERE RXNMDLNUMBER IN

(SELECT P.RXNMDLNUMBER
FROM PRODUCT P,

MOLECULE M
WHERE P.MOLREGNO = M.MOLREGNO

AND SSS(M.CTAB, 'molfile') = 1)
AND NOT RXNMDLNUMBER IN

(SELECT R.RXNMDLNUMBER
FROM REACTANT R,

MOLECULE M
WHERE R.MOLREGNO = M.MOLREGNO

AND SSS(M.CTAB, 'molfile') = 1);

Usage of the DISTINCT SQL Keyword
Oracle does not support the usage of the DISTINCT SQL keyword if a query retrieves any LOB values.
For example, a query cannot include the DISTINCT keyword if it selects MOLCHIME(CTAB) or
RXNCHIME(CTAB). The return values from those operators are both CLOB values.

See also
Molecule and Reaction Objects in SQL Statements

Page 49 | BIOVIA Direct 2021 • Developers Guide

Chapter 3: Performance Guidelines

Temporary LOB Usage of Oracle Temporary Tablespace
The temporary LOBs that are returned by Direct operators are of CALL duration. Temporary LOBs
occupy space in the Oracle instance's temporary tablespace until they are freed. If the temporary LOBs
are not explicitly freed, they accumulate until the Oracle session is disconnected. Observe the following
guidelines:

The Oracle temporary tablespacemust have enough storage to accommodate the temporary LOB
activities of all users.
Oracle will automatically free temporary LOBs as they are consumed on the server (in SQL*Plus,
PL/SQL, or server OCI programs). However, applications using client interfaces such as JDBC create
additional temporary LOBs which must be explicitly freed.
The following Java example frees the temporary LOB associated with the LOB locator object named
"clob":
if (((oracle.sql.CLOB)clob).isTemporary()){

((oracle.sql.CLOB)clob).freeTemporary();
}

Where practical, separate the generation of the result set from the selection of the data that the end-
user is to see. Generate and fetch only those result rows that the end user really wants to see.

Optimizer Hints
It might be necessary to supply Oracle optimizer hints to obtain good performance with SQL queries
that contain Direct operators. See the Oracle documentation to determine which hints apply to domain
index searches and which hints can be used in combination in the same SELECT clause.

Note: Always check the execution plan when you use Oracle hints in your query. Note that the
optimizer can choose different execution paths according to the size of data and the speed of the
machine. See Checking the Execution Plan of a SQL Statement.

FIRST_ROWS
When used in conjunction with an SSS or RSS search, the FIRST_ROWS Oracle hint directs Oracle to
perform an incremental search. When an application requests an incremental search, Direct runs the
SSS or RSS portion of the query for approximately two seconds. It then stops executing the query and
returns the results that it has obtained so far. If and when the application requests additional records,
Direct continues to execute the search in increments of approximately two seconds.
An incremental search is slightly slower than a comparable non-incremental search. The ability to quickly
display initial results to the user outweighs the slight performance degradation. For example:
SELECT /*+ FIRST_ROWS */ EXTREG
FROM RXNTABLE
WHERE SSS(MOLCOL, '/home/user/query.mol') = 1;

INDEX
The Oracle optimizer often chooses to execute non-indexed operators in situations where the indexed
operator would bemore efficient. The choices made by the Oracle optimizer change with each release of
Oracle. These choices also depend on the init.ora settings and the quality of the statistics for the
table.
You can force an indexed operation by specifying an INDEX hint that specifies both the table name and
the domain index name. For example:

BIOVIA Direct 2021 • Developers Guide | Page 50

Chapter 3: Performance Guidelines

SELECT /*+INDEX(rxntable rxnindex)*/ EXTREG
FROM RXNTABLE
WHERE RSS(RCTAB,(SELECT QRY FROM QUERIES WHERE QID=1))=1;

FULL
In cases where it is more efficient to process each candidate row, you can specify the FULL table scan
hint. For example:
SELECT /*+FULL(RXNTABLE)*/ A.CDBREGNO
FROM SOURCE_DATA S,

RXNTABLE A
WHERE S.IDENTIFIER='XXX'

AND S.EXTREG=A.EXTREG
AND RSS(RCTAB,(SELECT QRY FROM QUERIES WHERE QID=2))=1;

ORDERED
In cases where you want to specifically control the order of execution of the WHERE clause, you can use
the ORDERED hint. For example:
SELECT /*+ORDERED*/ A.EXTREG
FROM SOURCE_DATA S,

RXNTABLE A
WHERE S.IDENTIFIER='XXX'

AND S.EXTREG=A.EXTREG
AND RSS(RCTAB,(SELECT QRY FROM QUERIES WHERE QID=2))=1;

SQL Complexity
Keep individual SQL statements as simple as possible. Investigate alternatives to complex SQL
statements, such as creating temporary tables of intermediate results. A long SQL statement that tries
to perform all of the processing at oncemight not be better than several simpler SQL statements that
accomplish portions of the task in ways that the Oracle optimizer can work well with.

WHERE Clause Guidelines
Reduce the result set as quickly as possible. That is, run themost specific portion of the query first.
Touch theminimum number of rows possible.
Use Direct indexed operators where practical. Additionally, use hints if necessary (see Optimizer
Hints).
Exploit any indexes on available table columns.
Avoid the use of outer joins. Outer joins greatly multiply the number of rows that have to be
processed, and might preclude the use of indexed operators.
Where joins are necessary, join over stored columns, not expressions, and make sure that the
columns are indexed. Check the output of EXPLAIN PLAN to ensure that there are no full table
scans. Full table scans might indicate that an index is missing or invalid.

The Oracle data cartridge interface specifies a method for returning result rows that involves additional
overhead. With result sets of up to a few thousand rows, this overhead is small. However, when
processing hundreds of thousands of rows, the overhead of returning the result set to the Oracle data
cartridge interface can become very significant. Search queries will perform poorly if they are so general
that they return a large percentage of the database as hits.

Page 51 | BIOVIA Direct 2021 • Developers Guide

Chapter 3: Performance Guidelines

FROM Clause Guidelines
Keep the FROM clause as simple as possible.
Use table names and not expressions.
Avoid using VIEWs in the FROM clause. Views might perform CPU-intensive formatting operations on
many rows that will not be needed in the final result. Oracle cannot take advantage of the index on a
column and so the performance advantage of having the index is lost when the index is ignored. View
results are cached in an intermediate form, which can result in greater memory and I/O load on your
system. Consider separating the generation of the result set of rows from the selection (and
formatting) of the data values to be presented to the end-user.
Never use an Direct indexed search operator on a view. Use the underlying table instead. The
intermediate data caching of the view can greatly degrade the speed of the returning of the result
rows from the indexed search operator to Oracle.
Avoid nested SELECTs.

SELECT List Guidelines
Separate the generated results from the data selection. Generate and fetch the result rows that the
end user requests.
Separating lists is important when using client interfaces like JDBC and ODBC that cause LOB data
such as rxnfiles and Chime strings to accumulate in the Oracle temporary tablespace until the cursor
is closed. This behavior can cause the temporary tablespace to fill up. See Temporary LOB Usage of
Oracle Temporary Tablespace.
Use the SELECT list to fetch data items, rather than to format them. Let the application format rows
the end-user wants to view.

Checking the Execution Plan of a SQL Statement
Oracle provides an EXPLAIN PLAN command used to display the execution plan of a SQL statement.
The EXPLAIN PLAN command requires a table named PLAN_TABLE. Create this table in the schema
before executing EXPLAIN PLAN. You can create the table by executing the utlxplan.sql script,
located in the $ORACLE_HOME/rdbms/admin directory.
You must embed the command to be explained in a script, as shown in the following example. Insert the
command to be explained after the words EXPLAIN PLAN FOR.
set echo off
set feedback off
delete from PLAN_TABLE;
EXPLAIN PLAN FOR
select r.rxnregno, p.yield_min from cirx98 r,
cirx98_product p, cirx98_variation v where p.yield_min > 80 and
rss(r.rxn, '/work/rssqrys/gq5.rxn')=1 and r.rxnregno = v.rxnno and
v.rxnno = p.rxnno and v.varno = p.varno;
col Operation format a30
col Options format a20
col Object format a20
select lpad(' ', 2*LEVEL) || OPERATION ||

decode(ID, 0, ' Cost = '||POSITION) "Operation",
OPTIONS "Options",
OBJECT_NAME "Object"

BIOVIA Direct 2021 • Developers Guide | Page 52

Chapter 3: Performance Guidelines

from PLAN_TABLE
connect by prior ID = PARENT_ID start with ID = 0
order by ID

/

set feedback on
set echo on

The resulting output looks like this:
Operation Options Object
------------------------------ -------------------- --------------------

SELECT STATEMENT Cost = 6
TABLE ACCESS BY INDEX ROWID CIRX98_PRODUCT

NESTED LOOPS
NESTED LOOPS

TABLE ACCESS BY INDEX ROWID CIRX98
DOMAIN INDEX CIRX98RXNIX

TABLE ACCESS BY INDEX ROWID CIRX98_VARIATION
INDEX RANGE SCAN CIRX98_VARIATION_IX1

INDEX RANGE SCAN CIRX98_PRODUCT_IX1

The entry that says that the reaction table is being accessed via the DOMAIN INDEX indicates that an
indexed search is being done. If the access had said anything else, then it would have been a non-
indexed search. It is usually undesirable to perform non-indexed searches.

Note: The EXPLAIN PLAN command can give varying results on the same query, based on the size of
data and the speed of themachine. For example, if you run the same query on a test versus a
production database, the optimizer will choose different execution path if it thinks it is faster to
perform a full table scan on a small table instead of using indexes on a large table. Also, if you run the
same query on a test versus a production machine, the optimizer can choose different execution
paths depending on the I/O bus speed and CPU speed of themachine.

Generating and Locking Table Statistics
Oracle uses table statistics for query optimization. To improve structure query performance, generate
statistics on the BIOVIA Direct molecule and reaction tables (and in general, any table your SQL
statements will access). In addition, lock the table statistics because Oracle periodically updates the
statistics unless the table is locked. If the table statistics are not locked and Oracle updates them, Oracle
can set incorrect values for the LOB columns, which affects query performance.
For versions prior to Oracle 10, use the ANALYZE TABLE command. For Oracle 10 and later versions,
use the DBMS_STATS package. For example:
EXECUTE DBMS_STATS.UNLOCK_TABLE_STATS(‘schema_name’,’moltable_name’);
EXECUTE DBMS_STATS.GATHER_TABLE_STATS(‘schema_name’,’moltable_name’);
EXECUTE DBMS_STATS.LOCK_TABLE_STATS(‘schema_name’,’moltable_name’);

Note: For Oracle 10 and later versions, if you do not gather and lock table statistics, the AVG_COL_
LEN value reported in the Oracle USER_TAB_COLUMNS view for the CTAB column of themolecule
table and/or the AVG_ROW_LEN value reported in the Oracle USER_TABLES view for themolecule
table might become inaccurate.

For more information about using optimizer statistics, see the Oracle documentation.

Page 53 | BIOVIA Direct 2021 • Developers Guide

Chapter 4:
Limitations on Resource Conservation Techniques
Different resource conservation techniques have been attempted with Direct to try to reduce the
workload on the server. However there are limitations which cause some of these techniques to fail with
Direct.

Using Oracle Shared Server
Oracle's Shared Server feature improves the scalability of large workloads by reducing the number of
processes that run on the server. This is accomplished by processing all user requests through a fixed set
of Oracle shadow tasks. The traditional, dedicated server approach causes a new shadow task to be
created for each user session. Since these processes occupy approximately 4MB to 10MB of virtual
memory, thememory usage to support hundreds of connected users can be reduced by hundreds of
megabytes.
According to Oracle Corporation, Oracle Shared Server is designed to be transparent to applications like
Direct.
Oracle Shared Server uses a small number of shadow processes to service a queue of database access
requests. With the traditional, dedicated server model, Oracle created one shadow process for each
connected user, and that user had exclusive use of the shadow process. The shared server model
reduces thememory load on the database server by using fewer shadow processes, while still
maintaining each user’s logical session (logon) to the database. With both approaches, the same
number of extproc processes are created to service Direct user sessions.

IMPORTANT!
On Windows systems, if you intend to use the POOL=ON setting, verify that you are running a
version of Oracle that contains the fix for Oracle bug 2994216.
Oracle Shared Server shadow processes may hang with undetected deadlocks when waiting to
acquire locks using the SYS.DBMS_LOCK package. The lock wait used by the DBMS_LOCK package
does not release the shadow process for use by other sessions until the lock is acquired. Direct
administration functions use the DBMS_LOCK package to prevent collisions.

Client Connection and Session Pooling
Typical client (JDBC or OCI) session and connection pooling schemes require that all sessions created for
a particular Oracle user be equivalent and that every SQL transaction be independent of the session
history. These are required so that sessions can be redeployed at will and connections redeployed
without consequence to the user activity. While this might generally be compatible with Direct, the user
error stack is maintained at the session level. Errors from a previous use of the session could show up in
a subsequent use, causing confusion.

Parallel Processes
Oracle provides the capability to distribute the SQL processing among multiple parallel processes. The
PARALLEL degree option for creating a table and the PARALLEL hint are intended to encourage the
Oracle optimizer to break queries into pieces that can be run simultaneously in different threads.

BIOVIA Direct 2021 • Developers Guide | Page 54

Chapter 4: Limitations on Resource Conservation Techniques

Note: The PARALLEL feature does not apply to domain index operations. Oracle will serialize them;
therefore the PARALLEL feature is of limited value when Direct operators are included. Oracle will not
multithread the extproc, nor will it createmultiple extproc processes to run the Direct portions of the
query.

For more information about parallel processes, see the OracleDatabase Administrator’s Guide >
Managing Processes for Parallel Execution.

Page 55 | BIOVIA Direct 2021 • Developers Guide

	Chapter 1: About Direct
	Direct Overview
	Direct in a SQL Query
	Direct Operators and Functions
	Molecule-Related Tasks
	Reaction-Related Tasks
	Read and Write Files
	Perform Administrative Tasks
	Perform Other Tasks

	Molecules and Reactions as Large Objects
	Molecule and Reaction Objects in SQL Statements
	Temporary LOBs

	Molecule and Reaction Tables
	Direct Domain Indexes
	Direct Domain Index and the Oracle Optimizer

	Chapter 2: How to Use Direct
	Get Information About Molecules
	Fetch Structures
	Retrieve Related Structure Information
	Navigate Structure Search Results
	Save Structure Search Results

	Insert, Update, and Delete Molecules
	Insert and Update Molecule Objects
	Insert Related Structure Information
	Null Structures
	Propagate New Primary Key Value
	Multi-user Registration and Locking

	Biopolymer Search and Registration
	Overview
	Search Monomers in a Biopolymer Sequence
	Substructure Search of Modified Monomers
	Store Biopolymer Sequences
	Get the HELM String
	Convert HELM Strings to molfiles

	Get Information About Reactions
	Search for Reactions
	Fetch Reactions
	Retrieve Related Reaction Information
	Navigate Search Results
	Save the Search Results

	Inserting, Updating, and Deleting Reactions
	Inserting and Updating Reaction Objects
	Inserting Related Reaction Information
	Multi-user Registration and Locking

	Accessing Files
	Checking Errors
	Working with Molecules in a Reaction
	Extracting Molecules from a Reaction

	Inserting Component Molecules into a Molecule Table
	Registration Trigger on a Reaction Table
	Using MakeMolXrefTrigger
	Reaction Tables that Share a Molecule Table
	Maintaining Referential Integrity

	Homology Group Searching and Registration
	Registering Molecules and Homology Group Information
	Searching Structures with Homology Groups

	Chapter 3: Performance Guidelines
	Guidelines Overview
	Indexed Implementation of a Search Operator
	Non-indexed Implementation of a Search Operator
	extproc Memory Usage

	Configuration Issues
	Lack of a Valid Domain Index
	Lack of Valid Statistics
	Schema Mismatch
	Lack of a Valid Fastsearch Index
	Oracle Cache Size

	Optimizing Queries
	Efficient Structure and Reaction Queries
	Performing an Incremental Search
	Avoiding PRODUCT NOT REACTANT and REACTANT NOT PRODUCT Searches
	Usage of the DISTINCT SQL Keyword
	Temporary LOB Usage of Oracle Temporary Tablespace

	Optimizer Hints
	FIRST_ROWS
	INDEX
	FULL
	ORDERED

	SQL Complexity
	WHERE Clause Guidelines
	FROM Clause Guidelines
	SELECT List Guidelines

	Checking the Execution Plan of a SQL Statement
	Generating and Locking Table Statistics

	Chapter 4: Limitations on Resource Conservation Techniques
	Using Oracle Shared Server
	Client Connection and Session Pooling
	Parallel Processes

